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Abstract: Fault detection and isolation can be handled by many different approaches. This
paper builds upon a hypothesis test that checks whether the mean of a Gaussian random
vector has become non-zero in the faulty state, based on a chi2 test. For fault isolation, it
has to be decided which components in the parameter set of the Gaussian vector have changed,
which is done by variants of the chi2 hypothesis test using the so-called sensitivity and minmax
approaches. While only the sensitivity of the tested parameter component is taken into account
in the sensitivity approach, the sensitivities of all parameters are used in the minmax approach,
leading to better statistical properties at the expense of an increased computational burden. The
computation of the respective test variable in the minmax test is cumbersome and may be ill-
conditioned especially for large parameter sets, asking hence for a careful numerical evaluation.
Furthermore, the fault isolation procedure requires the repetitive calculation of the test variable
for each of the parameter components that are tested for a change, which may be a significant
computational burden. In this paper, dealing with the minmax problem, we propose a new
efficient computation for the test variables, which is based on a simultaneous QR decomposition
for all parameters. Based on this scheme, we propose an efficient test computation for a large
parameter set, leading to a decrease in the numerical complexity by one order of magnitude in
the total number of parameters. Finally, we show how the minmax test is useful for structural
damage localization, where an asymptotically Gaussian residual vector is computed from output-
only vibration data of a mechanical or a civil structure.

Keywords: Fault isolation, residual evaluation, statistical tests, numerical computation,
mechanical systems.

1. INTRODUCTION

Fault detection and isolation (FDI) are of practical im-
portance in many branches of automatic control and have
found a strong interest in connected areas [Hwang et al.,
2010]. In structural engineering, they have found an ap-
plication for vibration monitoring of civil, aeronautical or
mechanical structures in order to detect damages (fault
detection) and to locate damages (fault isolation) [Bas-
seville et al., 2000, 2004, Döhler and Mevel, 2013]. For
such applications, FDI is based on a Gaussian residual
vector with zero mean in the reference state and non-zero
mean in the faulty state. Based on a parameterization of
the investigated system, hypothesis tests are performed
on the Gaussian vector for FDI [Basseville and Nikiforov,
1993, Basseville, 1997].

For fault isolation, it has to be decided which components
in the parameter set of the Gaussian vector have changed,
which can be done by variants of the hypothesis test using
the so-called sensitivity or minmax approaches. While only
? This work was supported by the European project FP7-PEOPLE-
2009-IAPP 251515 ISMS.

the sensitivity of the tested parameter component is taken
into account in the sensitivity approach, the sensitivities
of all parameters are used in the minmax approach, lead-
ing to better statistical properties at the expense of an
increased computational burden. Moreover, the estimated
covariance of the Gaussian vector may be badly condi-
tioned due to noise and insufficient data, which leads to an
ill-conditioned computation of the respective test variable
in the FDI tests. In Zhang and Basseville [2003], a nu-
merically robust computation of both statistical tests was
presented. The robust computation is based on the perti-
nent use of the QR decomposition applied to the sensitivity
and covariance parameters of the Gaussian vector. While
significantly improving the computation of these tests and
making them possible for practical applications, the com-
putations can further be optimized. Furthermore, fault
isolation often requires the repetitive calculation of the
test variable for the different parameters that are tested
for a change, in order to identify which of these parameters
actually have changed, which may represent a significant
computational burden. In this paper, we improve the nu-
merical efficiency of the computation of the test variable
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in the minmax test from Zhang and Basseville [2003] by
reducing the number of necessary QR decompositions from
three to one. Based on this development, we propose an
efficient test computation for large parameter sets, leading
to a decrease in the numerical complexity by one order of
magnitude in the total number of parameters.

For structural vibration monitoring, output-only measure-
ments are taken from a linear system subject to state and
measurement noise [Juang, 1994]. Subspace methods have
shown excellent properties for the treatment of such data
[Van Overschee and De Moor, 1996, Peeters and De Roeck,
1999, Basseville et al., 2007, Döhler and Mevel, 2012]. An
asymptotically Gaussian subspace-based residual vector
for FDI has been proposed in Basseville et al. [2000], which
is used for damage localization in [Basseville et al., 2004,
Balmès et al., 2008], corresponding to fault isolation using
a parameterization that is linked to local structural prop-
erties. However, in these works only the sensitivity test
was used, whereas the minmax test has more appropriate
properties. In this paper, we extend the previous results on
structural damage localization with the minmax test. In
this context, both the numerical robust computation and
the efficient test computation for many parameters are of
importance, the former due to noisy data and the latter
since parameter sets can be huge in this application.

This paper is organized as follows. In Section 2, the sensi-
tivity and the minmax tests are recalled. In Section 3, the
numerically robust computation of these tests is recalled
from [Zhang and Basseville, 2003] and a more efficient
and fast approach for multiple parameter tests is derived.
These tests are shown in the context of structural damage
localization in Section 4. In Section 5, an application on
a simulated flexural beam is shown, where the minmax
test outperforms the sensitivity test, before stating some
concluding remarks in Section 6.

2. BASIC FAULT ISOLATION TESTS

We consider the problem of isolating changes in a param-
eter θ ∈ Rl of a Gaussian residual vector ζ = ζ(θ) ∈ Rh in
a faulty state, following the distribution

ζ ∼
{
N (0,Σ) under H0

N (J δθ,Σ) under H1
(1)

where the null hypothesis H0 corresponds to a reference
state and H1 to a faulty state. The vector δθ ∈ Rl denotes
the parameter change, the matrix J ∈ Rh×l with full
column rank denotes the sensitivity of the residual vector,
and the positive definite matrix Σ ∈ Rh×h is its covariance.
Many methods have been proposed in the literature for
fault detection (decide if there is a change in θ) and
isolation (decide which elements of vector θ have changed)
by the means of such a Gaussian residual vector ζ, see e.g.
Basseville and Nikiforov [1993], Basseville [1997].

For fault isolation, different partitions of the vector δθ into
two subvectors are considered, where each time a decision
is made if the first subvector is zero or not. Without loss
of generality, let this partition be

δθ =

[
δθa
δθb

]
. (2)

Let F = J T Σ−1J be the Fisher information matrix of
the parameter θ contained in vector ζ, and let J and F
be partitioned accordingly as

J =[Ja Jb], F =

[
Faa Fab

Fba Fbb

]
=

[
J T
a Σ−1Ja J T

a Σ−1Jb
J T
b Σ−1Ja J T

b Σ−1Jb

]
. (3)

In the following, two isolation tests are recalled as stated
in Zhang and Basseville [2003], where a decision is made
between δθa = 0 and δθa 6= 0 in partition (2). Both tests
will be applied to a subspace-based residual vector with
property (1) to perform fault isolation in the context of
vibration-based structural damage localization [Basseville
et al., 2004, Balmès et al., 2008] in Section 4.

2.1 Sensitivity Test

The simplest possibility for testing changes δθa is to as-
sume δθb = 0 and thus ζ ∼ N (Ja δθa,Σ). The corre-
sponding Generalized Likelihood Ratio (GLR) test writes
as [Basseville, 1997]

tsens = ζT Σ−1Ja
(
J T
a Σ−1Ja

)−1 J T
a Σ−1ζ, (4)

which is called sensitivity test. The test variable tsens is
χ2-distributed with dim(θa) degrees of freedom and non-
centrality parameter δθTa Faa δθa, if δθb = 0 is actually true.
For a decision, the test variable is compared to a threshold.

2.2 Minmax Test

Instead of assuming δθb = 0, the variable δθb is replaced
by its least favorable value for a decision about δθa, as
follows. Define the partial residuals as

ζa
def
= J T

a Σ−1ζ, (5a)

ζb
def
= J T

b Σ−1ζ, (5b)

the robust residual as [Basseville, 1997]

ζ∗a
def
= ζa − FabF

−1
bb ζb (6)

and

F ∗
a

def
= Faa − FabF

−1
bb Fba. (7)

Then, the mean of the robust residual ζ∗a is sensitive to
changes δθa, but blind to δθb, and it holds

ζ∗a ∼ N (F ∗
a δθa, F

∗
a ) .

The corresponding GLR test writes as

tmm = ζ∗Ta F ∗−1
a ζ∗a , (8)

which is called minmax test. The test variable tmm is
χ2-distributed with dim(θa) degrees of freedom and non-
centrality parameter δθTa F

∗
a δθa, independently of δθb. For

a decision, the test variable is compared to a threshold.
Note that the invertibility of all matrices in the computa-
tion is guaranteed, since J is assumed to have full column
rank and Σ is positive definite.

3. NUMERICALLY EFFICIENT COMPUTATION

Both the sensitivity and the minmax test require a number
of matrix inversions, which may be numerically critical
due to possible ill-conditioning of the covariance matrix Σ.
In [Zhang and Basseville, 2003] numerically more robust
computations of both tests were suggested, making use of
the decomposition

Σ−1 = (Σ−1/2)T Σ−1/2
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and a number of QR decompositions. Note that an efficient
computation of Σ−1/2 is detailed in [Döhler and Mevel,
2011, Döhler et al., 2014], and let nr×h be the dimensions
of Σ−1/2 that may be different from each other.

After recalling the robust computations from [Zhang and
Basseville, 2003] for completeness, we improve the com-
putation of the minmax test in this section. While the
computation in [Zhang and Basseville, 2003] needs three
QR decompositions, we suggest a more efficient computa-
tion that just needs one simultaneous QR decomposition.
Based on this development, we furthermore propose a fast
computation for multiple minmax tests, where different
subvectors of δθ are tested.

3.1 Results from [Zhang and Basseville, 2003]

Sensitivity Test Using the thin QR decomposition
[Golub and Van Loan, 1996]

Σ−1/2Ja = QR,

the sensitivity test in (4) writes as

tsens = αTα, where α = QT Σ−1/2ζ.

Here, the number of numerically critical matrix inversions
and multiplications is limited to a minimum compared to
a direct computation in (4).

Minmax Test Using the thin QR decompositions

Σ−1/2Ja = Q̃aR̃a, Σ−1/2Jb = Q̃bR̃b,

(I − Q̃bQ̃
T
b )Q̃a = Q̃cR̃c,

the minmax test in (8) writes as

tmm = β̃T β̃, where β̃ = Q̃T
c Σ−1/2ζ.

Again, the number of numerically critical operations is
strongly reduced.

3.2 Minmax Test Revisited

In the following theorem, a more direct and more efficient
computation than in the previous section is shown.

Theorem 1. Let the thin QR decomposition of

Σ−1/2 [Jb Ja] = [Qb Qa]

[
Rbb Rba

0 Raa

]
(9)

be given and partitioned accordingly. Then, the minmax
test in (8) writes as

tmm = βTβ, where β = QT
a Σ−1/2ζ.

Proof. From the QR decomposition (9) it follows

Σ−1/2Ja =QbRba +QaRaa,

Σ−1/2Jb =QbRbb,

where QT
aQa = I, QT

b Qb = I and QT
b Qa = 0, and thus

in (3)

F =

[
Faa Fab

Fba Fbb

]
=

[
RT

baRba +RT
aaRaa R

T
baRbb

RT
bbRba RT

bbRbb

]
. (10)

The partial residuals in (5a) and (5b) write as

ζa =RT
baQ

T
b Σ−1/2ζ +RT

aaQ
T
a Σ−1/2ζ,

ζb =RT
bbQ

T
b Σ−1/2ζ,

and the robust residual in (6) yields

ζ∗a = ζa −RT
baRbb(R

T
bbRbb)

−1ζb

=RT
baQ

T
b Σ−1/2ζ +RT

aaQ
T
a Σ−1/2ζ

−RT
baRbb(R

T
bbRbb)

−1RT
bbQ

T
b Σ−1/2ζ

=RT
aaQ

T
a Σ−1/2ζ.

Similarly, substituting the elements of F ∗
a in (7) with (10)

yields

F ∗
a = (RT

baRba +RT
aaRaa)−RT

baRbb(R
T
bbRbb)

−1RT
bbRba

=RT
aaRaa.

Finally, replacing ζ∗a and F ∗
a in the minmax test (8) yields

tmm = ζT (Σ−1/2)TQaRaa(RT
aaRaa)−1RT

aaQ
T
a Σ−1/2ζ

= ζT (Σ−1/2)TQaQ
T
a Σ−1/2ζ,

leading to the assertion.

This theorem makes the operation of the minmax test
directly visible, when writing it equivalently as tmm = β̄T β̄
with β̄ = QaQ

T
a Σ−1/2ζ. Note that QaQ

T
a defines an

orthogonal projection. So in fact the squared norm of a
vector β̄ is computed, which is the orthogonal projection
of the covariance-normalized residual into the subspace of
the normalized “change directions” Σ−1/2Ja that are of
interest and that are orthogonal to the normalized change
directions Σ−1/2Jb. Like this the projection is blind to
changes in the parameters θb, while only possible changes
in parameters θa remain in the projected vector. Note
that this means in practice that the sensitivities of all
parameters in J need to be sufficiently pairwise distinct,
otherwise the effect of a tested parameter in δθa might be
removed by another parameter in the projection. This also
corresponds to the necessity of (numerical) invertibility
of the R matrix in (9) and thus of Raa and Rbb in the
proof of Theorem 1, which is in theory given through the
full column rank of J and the positive definiteness of
Σ. However, if these matrices are too badly conditioned
because some parameters in θ are too close, the minmax
test might not perform as expected, which is even more
the case in its original formulation in Section 2.2.

Compared to the computation proposed in [Zhang and
Basseville, 2003], Theorem 1 provides a more direct ap-
proach, where only one instead of three QR decomposi-
tions and only about half the numerical operations are
necessary. Moreover, a fast iterative update of the QR de-
composition for testing multiple subsets becomes possible
thanks to the direct computation in the new approach, as
described in the following section.

3.3 Minmax Tests on Multiple Parameter Subsets

When not only one subset θa of parameter θ is tested for a
change, but many different subsets, the QR decomposition
in (9) is necessary for each tested parameter subset, which
is a significant computational burden if the number of
parameters l is high.

Without loss of generality, we assume θa to be one-
dimensional in the following for simplicity of notation.

Denote the elements of parameter θ =
[
θ1 θ2 . . . θl

]T
.
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Thus, when testing parameter θi for a change, denote θa
and θb from the previous section as

θia = θi, (11a)

θib =
[
θi+1 · · · θl θ1 · · · θi−1

]T
, (11b)

and the corresponding sensitivity matrices as J i
a and J i

b ,
respectively.

Instead of computing the QR decomposition in (9) for each
parameter i, the fact can be used that the columns of
the sensitivity matrix J are the same all the time, but
only differently ordered in

[
J i
b J i

a

]
. In the following, an

efficient iterative computation of the QR decomposition
for the different parameters is derived.

Assume that the thin QR decomposition is given for
parameter i in (9) as

Ki def
= Σ−1/2

[
J i
b J i

a

]
= QiRi, (12)

where Ki ∈ Rnr×l. At this stage, the vector Qi
a in Qi =[

Qi
b Q

i
a

]
is used for the minmax test of parameter θia in

Theorem 1 in the previous section.

In the next step, it is convenient to compute the QR
decomposition for parameter i+1 to perform the respective
minmax test, where the decomposition

Ki+1 = Σ−1/2
[
J i+1
b J i+1

a

]
= Qi+1Ri+1. (13)

is required. It can be obtained efficiently as follows. The
matrices Ki and Ki+1 are related by a permutation of one
column due to the definition in (11a)–(11b): partitioning
Ki = [k1 K2] with k1 being the first column leads to
Ki+1 = [K2 k1]. Partitioning Ri = [r1 R2] analogously,

it follows Ki =
[
Qir1 Q

iR2

]
from (12) and thus

Ki+1 = Qi [R2 r1] .

The matrix [R2 r1] is upper Hessenberg due to the up-
per triangular structure of Ri = [r1 R2]. Hence, there
are Givens rotations G1, . . . , Gl−1, such that the prod-
uct GT

l−1 · · ·GT
1 [R2 r1] is upper triangular [Golub and

Van Loan, 1996], and the QR decomposition of the next
iteration in (13) can be obtained efficiently from

Qi+1 = QiG1 · · ·Gl−1, R
i+1 = GT

l−1 · · ·GT
1 [R2 r1]. (14)

This update for Qi+1 and Ri+1 takes only 6nrl flops and
3l2 flops, respectively, compared to 4nrl

2− 4
3 l

3 flops for the
direct computation of the thin QR decomposition [Golub
and Van Loan, 1996].

The QR decomposition is the dominant operation in the
computation of the minmax test, and it holds nr ≥ l.
Testing all parameters i = 1, . . . , l with the minmax test
requires thus O(nrl

2) flops with the iterative scheme in
(14), compared to O(nrl

3) flops for the direct computa-
tion.

4. VIBRATION-BASED STRUCTURAL DAMAGE
LOCALIZATION

Based on the asymptotic local approach for change detec-
tion [Benveniste et al., 1987], a subspace-based residual
vector has been proposed in Basseville et al. [2000] that
asymptotically satisfies relation (1). It found an interesting
application in vibration monitoring of civil, aeronautical or
mechanical structures for damage detection and localiza-
tion [Basseville et al., 2004, Balmès et al., 2008]. For the

localization problem, a structural parameterization vector
θ in connection with a finite element model (FEM) of the
structure is used, whose components refer to local struc-
tural properties. Damage localization thus corresponds to
isolating the changed components of θ by means of the
residual vector.

In this section, the subspace-based damage localization
method is recalled from [Basseville et al., 2004, Balmès
et al., 2008], where, however, only the sensitivity test was
used for fault isolation. We extend these results with the
minmax test in this section.

4.1 The Residual Vector

The behavior of linear time-invariant dynamical structures
subject to unknown ambient excitation can be described
by system

MẌ (t) + CẊ (t) +KX (t) = υ(t) (15)

where t denotes continuous time; M, C,K ∈ Rm×m are
mass, damping, and stiffness matrices, respectively; the
(high dimensional) state vector X (t) ∈ Rm is the displace-
ment vector of the m degrees of freedom of the structure;
and υ(t) is the external unmeasured force (noise). Observ-
ing system (15) at r sensor positions (e.g. acceleration or
displacement sensors) at discrete time instants t = kτ
(with sampling rate 1/τ), it can be transformed to an
equivalent discrete-time state space system [Juang, 1994]{

xk+1 = Axk + vk
yk = Cxk + wk

(16)

with the states xk ∈ Rn, the measured outputs yk ∈ Rr,
the state transition matrix A ∈ Rn×n and the observation
matrix C ∈ Rr×n, where n = 2m is the model order and
r the number of outputs. The state noise vk and output
noise wk are unmeasured and assumed to be Gaussian,
zero-mean, white. The eigenvalues and eigenvectors at the
observed degrees of freedom of model (15) constitute a
canonical parameterization that can be equivalently ob-
tained from the eigenstructure of model (16) [Juang, 1994].
The modal parameters (frequencies, damping ratios and
mode shapes) are deduced from the eigenstructure, and
their changes indicate damages (faults). While fault de-
tection can thus be built on changes in the eigenstructure,
fault isolation for damage localization is built on a param-
eterization containing local structural parameters later on.

First, a subspace-based residual vector is defined as follows
[Basseville et al., 2000]. Let G = E(xk+1y

T
k ) be the

cross-covariance between the states and the outputs, let
Ri = E(yky

T
k−i) = CAi−1G (i ≥ 1) be the theoretic output

covariances and let

Hp+1,q
def
=


R1 R2 . . . Rq

R2 R3 . . . Rq+1

...
...

. . .
...

Rp+1 Rp+2 . . . Rp+q

 def
= Hank (Ri) (17)

be the theoretic block Hankel matrix with the well-known
factorization property

Hp+1,q = Op+1Cq (18)

into observability and controllability matrices
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Op+1 =


C
CA

...
CAp

 , Cq =
[
G AG . . . Aq−1G

]
.

Parameters p and q are chosen such that rank(Op) =
rank(Cq) = n. In the reference state, the left null space
S of observability matrix Op+1 is obtained, such that
STOp+1 = 0. Then, S defines also a basis of the left null
space of Hp+1,q in the reference state because of factor-
ization property (18), and the characteristic property of a
system in the reference state writes [Basseville et al., 2000]

STHp+1,q = 0. (19)

From the outputs {yk : k = 1, . . . , N}, a consistent

estimate Ĥp+1,q = Hank
(
R̂i

)
is obtained from the esti-

mated output covariances R̂i = 1/N
∑N

k=1 yky
T
k−i. Based

on property (19), the residual vector

ζN =
√
N vec

(
ST Ĥp+1,q

)
(20)

is defined, which has the property E(ζN ) = 0 iff the system
is in the reference state.

4.2 Fault Isolation Tests for Damage Localization

The evaluation of the residual is possible based on the
asymptotic local approach for change detection [Ben-
veniste et al., 1987], assuming the close hypotheses

H0 : θ = θ0 (reference system),

H1 : θ = θ0 + δθ/
√
N (faulty system),

(21)

where vector θ0 denotes the system parameter in the refer-
ence state and vector δθ is unknown but fixed. With this
statistical framework, very small changes in the system
parameter θ can be detected if N is large enough. The
subspace-based residual ζN yields [Basseville et al., 2000]

ζN
d−→
{
N (0,Σ) under H0

N (J δθ,Σ) under H1
(22)

for N →∞, where J and Σ are the asymptotic sensitivity
and covariance, respectively. The estimation of J is de-
scribed in detail in [Basseville et al., 2004, Balmès et al.,
2008] for a chosen structural parameterization θ, and the
estimation of Σ is described in [Döhler and Mevel, 2011],
both in the reference state.

Thanks to property (22), both the sensitivity and the
minmax test can be applied to residual ζN (asymptotically,
N large enough) for each of the structural parameters in
θ =

[
θ1 . . . θl

]
. A test value for a parameter above a

certain threshold corresponds to a damage location in the
structure associated with the parameter. In this respect,
the preferred test should be the minmax test instead of
the sensitivity test used in [Basseville et al., 2004, Balmès
et al., 2008], since the condition δθb = 0 can never be
guaranteed when testing δθa = δθi for some parameter i.
As all parameters of θ are tested successively, the efficient
test computation of Section 3.3 is beneficial especially for
large parameterizations.

As noted in Section 3, care must be taken that J is well-
conditioned for the minmax test, i.e. that the structural
parameters in θ are sufficiently distinct. This might require

a prior clustering step as already performed in [Basseville
et al., 2004, Balmès et al., 2008].

5. APPLICATION

The model of a flexural beam structure is considered
for the application of the damage localization tests. The
model comprises 40 equally sized finite 2D elastic beam
elements (Figure 1) allowing two translational and one
rotational displacements at each node. The beam has a
fixed support on one end and a movable support on the
other end, so the system is statically indeterminate and
four of the altogether 123 degrees of freedom of the model
are restricted. The beam has invariable cross-sectional and
material properties in the undamaged state. The mass is
distributed and defined such that the first frequency of
the system is at 5 Hz and damping is defined such that all
modes have a damping ratio of 2%.

Damage is modeled by a 20% reduction of Young’s mod-
ulus for two damage cases, first in element 10, and second
both in elements 10 and 18, having a linear impact on the
stiffness at the affected elements. The parameter vector θ
is of dimension 40 and consists of Young’s modulus at each
of the 40 elements.

For both the reference and the damaged states, a data set
with N = 50 000 acceleration samples at ten sensor posi-
tions was generated at a sampling frequency of 500 Hz from
white noise excitation. 5% white noise were added on the
generated outputs as measurement noise. All parameters
of the localization tests (S, J , Σ) were estimated based
on the data set in the reference state and information
from the FEM using only the first eight modes. In the
damaged state, both the sensitivity and the minmax tests
with their efficient numerical computation from Section 3
were applied to the data sets of the two fault scenarios. No
comparison was made to the naive computation of the test
variables (Sections 2.1 and 2.2), since the ineffectiveness
of this computation was already shown in [Zhang and
Basseville, 2003].

The respective test values were computed for each of
the 40 structural elements and are shown in Figures 2
and 3. In both fault scenarios, the damaged elements
have the highest test values, thus correctly indicating the
damage locations. However, the test values corresponding
to the undamaged elements in the sensitivity test are much
higher (in relative terms) than in the minmax test. This
behavior was expected since the sensitivity test value for
some parameter may also be influenced by a change in
another parameter. Thus, the minmax test indeed offers a
better “contrast” for fault isolation in our application on
damage localization and should be the statistical test of
choice for this application.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 

Fig. 1. Flexural beam model with element numbers and
ten sensors.
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Fig. 2. Sensitivity tests (left) and minmax tests (right) for
damage at element 10.
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Fig. 3. Sensitivity tests (left) and minmax tests (right) for
damage at elements 10 and 18.

6. CONCLUSIONS

In this paper, two statistical tests for fault isolation based
on a Gaussian residual vector were recalled. A new, nu-
merically more efficient computation for the minmax test
was derived in Theorem 1 together with an associated fast
computation when testing the different parameters of a
large parameter set in Section 3.3, which are the main
theoretical results of this paper. An application of this
test was shown for vibration-based structural damage lo-
calization, where changes in local parameters of a structure
indicate damage. In this setting, the minmax test proved to
be more effective than the previously used sensitivity test
and seems to be promising for applications in structural
health monitoring.
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