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Abstract: This paper concerns fuel injection control of compressed natural gas engines. The
main operating conditions are considered and for each one a fractional-order PI controller is
designed. Then at each sudden change of rail pressure and injection timing, a change of the
determined controller gains is scheduled. Switching between controllers is driven by step changes
of the reference pressure. Robust stability of the designed closed-loop system is guaranteed by
D-decomposition. Detailed simulation verifies both dynamic performance and robustness given
by the controllers and stability of the switching.

1. INTRODUCTION

Over the past 20 years, Compressed Natural Gas (CNG)
engines have experienced significant growth due to the
environmental policy placing strict limits to the pollutants
emission. However, it is not easy to achieve reduced pollu-
tants emission. Only an accurate fuel metering, indeed, can
form a stoichiometric air/fuel mixture. In CNG injection
systems, proper fuel metering needs a precise control of
both the gas injection pressure and the injection timings.
Now, electronic control allows a precise adjustment of
injectors opening time interval, whereas injection pressure
regulation is difficult because the gas compressibility pro-
duces strongly nonlinear behavior. Basically, the variation
of the working point, according to the power and speed re-
quirements, and load disturbances or parametric variations
of the environment make it difficult to precisely control the
injection pressure.

Usually, the Electronic Control Units (ECUs) of vehicles
implement PI controllers for regulating the injection pres-
sure. These controllers are tuned once and for all as final
solution, by applying heuristic rules, e.g. Ziegler-Nichols
rules [2]. Typically, to take into account variations in
the engine working condition, the gains of PI controllers
are scheduled. Clearly, this solution does not guarantee
optimal performance owing to nonlinearities, load distur-
bances, and plant parameters variations.

Therefore, to contribute to the researches on pressure
control, this paper proposes a novel strategy combining
fractional-order control with a scheduling technique. Non-
integer or fractional-order proportional-integral-derivative
(FOPID) controllers [27], also named fractional-order con-
trollers (FOC) [3], are chosen because they have recently
shown higher robustness than conventional PID controllers
in many automotive applications, e.g. in car suspensions
control [25]. The main feature of FOC is that they consider
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algorithms to approximate integration or differentiation of
noninteger order. In particular, for each equilibrium point,
a fractional-order proportional-integral (FOPI) controller
is used to overcome the ordinary performance and ro-
bustness of PI controllers. This controller leads to good
robustness and improves tuning flexibility because the
fractional order of integration introduces a further degree-
of-freedom in the design process.

Moreover, since a switching from an operating point to
another is sometimes required, a scheduling strategy is
adopted based on a sensitivity analysis of model parame-
ters. Simulation is used to test performance and robustness
and to show stability in switching [8]. Recent techniques
based on LPV exist [22]. Here a different approach is
followed to simplify the analysis and design.

The paper is structured as follows. Section 2 synthetically
describes the injection model and its linearization. Section
3 explains the control strategy to cope with different equi-
librium conditions. Sections 4 and 5 illustrate the design
of FOPI controllers and how robust stability is obtained.
Finally, Section 6 reports some simulation results for real
operating conditions and Section 7 concludes the paper.

2. MODELING THE CNG INJECTION SYSTEM

The typical CNG injection system has the following main
components: a fuel tank, a pressure reducer, a solenoid
valve, a fuel metering system consisting of a common rail
volume and electro-injectors, and an ECU (see Fig. 1 and
[11] for more details). The tank stores high pressure gas
and feeds the rest of the system. The mechanical pressure
reducer includes a main chamber and a control chamber.
A solenoid valve regulates the fuel entering the control
chamber, the pressure of which actuates a second shutter
for delivering the fuel in the main chamber. This chamber
and a common rail are connected and share almost the
same pressure. Then, the rail pressure is controlled by
varying the duty cycle of the current that drives the
solenoid valve. Note that the PWM modulation may cause
oscillations, as the rail pressure increases (decreases) when
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Fig. 1. The CNG injection system

the solenoid valve is open (closed) within the control
period. However, efficiently controlling the rail pressure
allows to meter the injected fuel by contemporaneously
setting the opening time intervals of electro-injectors.

A state-space non-linear model [11] describes the rail
pressure dynamics, where the pressures of the control
chamber and rail are state variables, the control signal
to the solenoid valve is the input, and the fuel injection
process is a disturbance. A linearization process leads to
a set of models with parameters depending on the actual
working points. More in details, if a slowly varying then
practically constant tank pressure is assumed, the ECU
sets the injection pressure and timings and hence the ac-
tual working point. Moreover, the equilibrium values of the
remaining variables are easily obtained from the nonlinear
model [13], [14]. Under these assumptions, applying the
Laplace transform to the linear model and neglecting the
non-dominant dynamics yield a set of first order with time
delay transfer functions [13], [14]

Gp(s) =
K

1 + T s
e−τs (1)

where s is the complex variable, the input and the output
of G(s) are the solenoid valve driving signal and the
rail pressure, respectively. The parameters K, T , τ are,
respectively, the static gain, the time constant of the
dominant dynamics, and the dead time of the injection
system, and each of them depends on the actual working
point. At each equilibrium point, a different controller is
tuned and then a scheduling policy schedules the controller
gains switching from one working condition to another.

3. CONTROL STRATEGY

The new idea is to combine the potentialities of robust
FOPI controllers with a scheduling strategy, as it is usually
made by combining standard integer order PI controllers
with a scheduling policy [30], [4]. Scheduling the controller
parameters takes into account the different CNG engine
working conditions for fuel injection, i.e. different equilib-
rium points. To each point corresponds a different con-
troller that is designed according the approach of section
5. Choosing the appropriate controller for each working
condition improves performance and robustness with re-
spect to commonly used control strategies. Namely, for
all operating conditions, injection systems usually employ

only one simple PI controller that applies the conventional
Ziegler-Nichols tuning rules [31, 5], [2], [11].

The scheduling strategy is synthetically the following. For
each tank pressure, the working point is established by
the rail pressure and by the average duration, say I, of
the injection process.Then, the rail pressure and I of the
new required working point are taken as reference, and
the variation from the current point to the required one
is considered. Then, the FOPI controllers are tuned with
reference to the set (K,T, τ) of parameters associated
to the new equilibrium point. This always occurs when
variations between a pair of operating points are bounded
by 2 bar for the rail pressure and by 6 s for I, respectively.
However, if the variations are higher, then several interme-
diate pressure reference values (or I values) can be con-
sidered. Then, several sets of parameters are determined
and several corresponding controllers are required. In this
way, maps of controller gains are built for the different
equilibrium points. This kind of strategy is common in
many automotive applications [4], [23].

Two scheduling variables, i.e. the pressure reference and
I, are subject to step variations, to take the system to
new equilibrium points. Since each local linear controller
guarantees stability in the neighbors of corresponding
equilibrium point, the step amplitudes have to be limited,
in order to ensure that the initial state is in the region of
attraction of the new equilibrium point [8]. Then, a smooth
transition is achieved between equilibrium points.

In case of fast variations of scheduling variables, it is not
possible to assess global stability for classical gain schedul-
ing. Then stability in switching controllers is evaluated
by simulation in Section 6 [28]. Recent design approaches,
such as LPV [22], explicitly take into account time de-
pendency of scheduling variables, so that global closed
loop stability is a priori achieved [23]. The number and
variation rate of scheduling parameters, as well as com-
plexity of the nonlinear model, make the LPV framework
not appropriate. Namely, analysis and design are complex,
and the computational effort is high [23].

4. STABILITY ANALYSIS BY D-DECOMPOSITION

In control design the closed-loop stability is the first re-
quirement. Then, this section builds the entire set of the
controller gains leading to a stable closed-loop system.
The motivation is twofold. First, consider the changes in
working conditions during the injection control. Knowing
the set of the gains can avoid time-consuming stability
checks for any new controller settings and makes the
tuning faster. Moreover, if the chosen controller gains
correspond to a point of the set that is far from its bound-
ary, then the stability is still ensured for (small) bounded
variations of the controller gains. For this analysis, the D-
decomposition methodology is useful [24]. This approach
is well-established for the design of IO controllers in the
parameter space [1], and has been also recently applied
to investigate stability of control systems in which FOPID
controllers operate on fractional order systems with delays
[6], [15] , [7]. The effect of delays has been also investigated
for designing classical PID controllers stabilizing fractional
order systems [26]. The D-decomposition can determine
all stabilizing FOPID controllers for integer or noninteger
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order plants also when the plant transfer function is not
known but its frequency response is at disposal [9].

This paper follows the procedure of [6], [15]. Consider the
open-loop transfer function determined by the plant (1)
and by a FOPI controller

G(s) =
KKI (1 + TIs

ν)

(1 + Ts) sν
e−τs. (2)

Then the closed-loop transfer function is

F (s) =
KKI (1 + TIs

ν) e−τs

(1 + Ts) sν +KKI (1 + TIsν) e−τs
(3)

where ν is the fractional order of integration, TI =
KP /KI , and KP and KI are the proportional and inte-
gral gain, respectively. The roots of the fractional order
characteristic pseudo-polynomial equation

E(s) = (1 + Ts) sν +KKI (1 + TIs
ν) e−τs = 0 (4)

determine stability of the control system: if all roots lie
in the open left-half of the s-plane (LHP), i.e. no roots
are in the closed right-half of the s-plane (RHP), then the
closed-loop system is BIBO stable.

Then the set of all stabilizing controllers is determined
by a complete stability region, say D, in the parame-
ter space associated to the triple (KP ,KI , ν). Hence, if
(KP ,KI , ν) ∈ D then all roots of (4) lie in the LHP. The
stability domain D is defined by the so-called real root
boundary (RRB), the infinite root boundary (IRB), and
the complex root boundary (CRB) [6], [1]. The RRB is
associated to s = 0, then to the solutions of E(s = 0) = 0:

KKI = 0 ⇒ KI = 0 (5)

The CRB comes from E(s = jω) = 0

(1 + Tjω)ων (C + jS)+

+KKI [1 + TIω
ν(C + jS)] [cos(x)− j sin(x)] = 0 (6)

with C = cos(θ), S = sin(θ), θ = π
2 ν, x = ωτ . Taking the

real and imaginary parts of the complex equation (6) leads
to the following solutions:

KI(ω) =
ων (sin(x) + ωT cos(x))

K S

TI(ω) =
(ωTS − C) sin(x)− (S + ωTC) cos(x)

ων (sin(x) + ωT cos(x))

KP (ω) =
(ωTS − C) sin(x)− (S + ωTC) cos(x)

K S

(7)

that can be used to plot a curve in a 2D-space (KP ,KI)
(or (KP , TI) or (TI ,KI)), when ν is fixed and ω is varied
from 0 to ∞. The IRB for s → ∞ does not exist [6].

Now, in a first step, one of the parameters is fixed so
that the stability regions and their boundaries belong to
the plane defined by the remaining two parameters. In a
second step, the fixed parameter is varied and the complete
3D stability domain is obtained by sweeping over all the
admissible values of this parameter. For example, if ν is
fixed, then the boundaries specified by RRB and CRB
divide the parameter plane (KP ,KI) into unstable and
stable regions, that can be distinguished by checking one
arbitrary test point within each region. Algorithms for
checking stability were given by [7] and [21].

In the CNG injection system, τ is approximately constant.
Namely, τ = 0.05 seconds in the whole operating range
of an accurate model of a real CNG engine, see Section

Table 1. Engine parameters in working points

pr (bar) tinj (ms) K (bar) T (s)

4 5 165 1.74
6 5 136 1.71
8 5 118 1.95
10 5 127 1.97

6. Moreover, representative working conditions are con-
sidered according to the values of the rail pressure, pr,
and injection timing, tinj , and an engine speed of 2500
rpm, thereby providing different pairs (K,T ) of the system
parameter values (see Table 1). Then one can design a
different FOPI controller for each operating point and
obtain a different stability domain for each pair (K,T ) (see
Fig. 2 for a specific working point). In particular, instead
of showing the complete 3D stability domain, Fig. 2 plots
its projections on the plane (KP ,KI), i.e. the stability
region, for ν = 1.3, 1.4, 1.5, 1.6. The values of the gains
are indicated but a multiplying factor of 10−2. Similar
plots could limit stability regions in the planes (KP , TI)
or (TI ,KI), but they are omitted here for sake of space.

The stability regions are delimited by the CRB curves
(solid lines) and by the horizontal RRB line. All CRB
curves start from (KP ,KI) = (−1/K, 0), for ω = 0
rad/second, and cross the RRB line at the same point.
Note that, for a given value of ν, the point (marked with
× in Fig. 2) is associated to the designed values of KP and
KI inside the stability region. Moreover, this point belongs
to a “relative stability curve” obtained by considering the
specified phase margin PMs and using the technique of the
phase margin tester [6], [15]. More in details, this further
line is obtained by increasing the pure dead-time in G(s)
by PMs. Then, in (7), x is replaced by y = x + PMs,
where PMs is the stability margin. Each point in the
line corresponds to a frequency. In this case, the relative
stability line starts from (KP ,KI) = (−1/(K S), 0), for
ω = 0 rad/second. Obviously, the point determined by the
designed gains corresponds to the specified gain crossover
frequency, ωc. Finally, the distance between the CRB
curves and the design points, i.e. the associated relative
stability lines, gives a measure of the robustness level.

A similar line of reasoning can be followed to define a
relative stability line associated to a gain margin GMs

(not shown in Fig. 2). This curve can be determined by
amplifying G(s) by GMs, then by replacing K by KGMs

in (7). Again, each point on the curve corresponds to a
frequency, and the designed controller gains determine a
point associated to the phase crossover frequency.

5. DESIGN PROCEDURE

For each operating point, a FOPI controller is designed
by applying a loop-shaping approach [12]. In the proposed
methodology, relatively easy closed formulas directly relate
performance and robustness specifications to the values
of the controller gains. An integrator of noninteger order
ν, 1 < ν < 2, achieves robustness to gain variations by
leading to an open-loop frequency response (OLFR for
short) with a nearly flat phase diagram and a constant
slope of the magnitude diagram in a sufficiently wide
frequency range around the crossover [12]. Moreover, the
optimality of the feedback system is pursued by shaping
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trollers designed for the first working point (uc = 5.7)

the OLFR so that its gain is high at low frequencies and
rolls off at high frequencies [29]. In this way, a good input-
output tracking is obtained in a specified bandwidth.

Consider a unitary feedback control system, in which
sensor dynamics are neglected for simplicity, and with the
plant model (1). Let the FOPI controller use a standard
proportional action and an integral action of noninteger
order 1 < ν < 2:

Gc(s) = KP +
KI

sν
=

KI

sν
(1 + TI s

ν) (8)

with TI = KP

KI
and where KP and KI are the proportional

and integral gain, respectively. Therefore, an increased
flexibility is due to three design parameters (i.e. one
more degree of freedom with respect to a PI controller).
However, a reliable and effective design rule must be
established. Putting s = jω yields the OLFR associated
to G(s) = Gc(s)Gp(s), that is

G(jω) =
KKI [1 + TI (jω)

ν ]

(jω)ν (1 + jω T )
e−jωτ . (9)

Now, after introducing u = ω T , using S and C as
previously defined allows to simply obtain

G(ju) =
KKI T

ν
{
1 + TI (

u
T )

ν [C + jS]
}

uν [C + jS] (1 + j u)
e−j uτ

T (10)

with

|G(ju)| =
KKI T

ν

uν

√
1 + 2TI (

u
T
)ν C + T 2

I ( u
T
)2ν

1 + u2

̸ G(ju) = arctan

(
TI (

u
T
)ν S

1 + TI (
u
T
)ν C

)
− arctan(u)− θ −

uτ

T

(11)

Now, the requirement |F (ju)| ≡ 1 is approximated in a
significant bandwidth uB , where F (ju) = 1

1+G−1(ju) is

the closed-loop frequency response. In theory, however,
an optimal feedback system should be achieved only if
this holds true for all frequencies, i.e. |G(ju)| ≫ 1,∀u.
Instead, |G(ju)| is shaped around the crossover uc to
guarantee robust stability and desired performance despite
parameter variations in the controlled injection system.

To synthesize, the first step chooses uB where optimal
tracking is requested. In particular, a trade-off is reached
between high values reducing the rise time in the system
closed-loop response, and lower values shifting uc (which
is itself a measure of the bandwidth) toward the center of

the flat region of the phase characteristic. For sake of con-
venience, uB is chosen higher than the plant bandwidth.

The normalized crossover is estimated by uc ∈ [uB

1.7 ,
uB

1.3 ],
e.g. uc = uB

1.5 . (Changing the estimate and playing inside
this range allows us to adjust TI .) Then, to achieve a
specified phase margin PMs at uc, TI is properly selected.
Namely, if the phase margin PM = π + ̸ G(juc) is:

PM =arctan

(
TI (

uc

T )ν sin(θ)

1 + TI (
uc

T )ν cos(θ)

)
− arctan(uc)−

ucτ

T

+ π − θ = φ1(uc)− φ2(uc)−
ucτ

T
+ π − θ (12)

where φ1(uc) and φ2(uc) are the first two arguments on
the right side of (12). Then, TI is chosen to compensate
the delay by φ1(uc) − φ2(uc) − uc

τ
T = 0 and to obtain a

closed formula:

TI =
T ν [uc + tan(ucτ

T )]

uν
c [S − uc C − (C + uc S) tan(

ucτ
T )]

. (13)

This choice yields:

PMs = π − θ = (2− ν)π/2 ⇔ ν = 2− 2PMs/π (14)

that represents a direct and easy design relation between
the fractional order ν and PMs. Note that (14) gives ν > 1
for a plant without integrator. Obviously, at the end of
the design procedure, it is always verified that the FOPI
controller leads to a nearly flat Bode plot of ̸ G(ju) with
a nearly constant phase margin in a wide range around uc.

The condition |G−1(juc)|2 = 1 leads to another closed
formula for determining KI :

KI =
1

K

(uc

T

)ν
√

1 + u2
c

1 + 2TI (
uc

T )ν C + T 2
I (uc

T )2ν
. (15)

The (15) also leads to KP = KI TI .

Now, the approximation of the irrational operator sν by a
rational transfer function completes the design procedure.
An efficient approach employs continued fraction expan-
sions [17] and a priori guarantees interlacing [19] between
negative real minimum-phase zeros and stable poles of
the approximation. Closed formulas express coefficients of
numerator and denominator of the transfer function and
avoid numerical problems [19]. Interlacing can be enforced
also for digital realization [16], [18], [20]. Moreover, the
number of required zeros and poles to obtain a reduced
approximation error is relatively low, so that an easy
implementation is possible.

The previously described design procedure determines
the points marked by × in Fig. 2. The controller gains
correspond to nominal values of (K,T, τ). One can verify
that changing the fractional order ν varies the shape of
the stability region, but it does not affect the closed-loop
stability, while preserving the same specifications on the
phase margin and on the crossover frequency. Moreover,
the points are quite far from the CRB of the stability
region, thereby ensuring a good level of robustness.

As regards the obtained performance, one may choose
larger uc to increase uB and then the promptness of re-
sponse. Hence one can move the design point along the rel-
ative stability line in the sense of increasing frequencies, to
augment or diminish the integral and proportional actions.
Following the line, however, the same phase margin PMs
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Table 2. Values of TI with ν = 1.5 for different
pairs (r, uc), and with different ν for a working
condition with r = 0.0286 and for uc = 5.7

(r, uc) TI (s) ν PM TI (s) τmax (s)
(0.8, 5.0294) 1.5897 1.1 81◦ 1.6320 0.1013
(0.8, 5.7000) −0.1225 1.2 72◦ 0.7579 0.1494
(0.8, 6.5769) 0.0573 1.3 63◦ 0.4635 0.1975
(1.0, 5.0294) 0.0313 1.4 54◦ 0.3200 0.2456
(1.0, 5.7000) 0.1233 1.5 45◦ 0.2372 0.2937
(1.0, 6.5769) 0.2259 1.6 36◦ 0.1847 0.3418
(1.2, 5.0294) 0.1959 1.7 27◦ 0.1493 0.3899
(1.2, 5.7000) 0.4015 1.8 18◦ 0.1245 0.4381
(1.2, 6.5769) −0.0246 1.9 9◦ 0.1067 −0.4760

is kept. A good position could be the point of maximum of
KI , on the top of the relative stability line. This position
can be obtained by an optimization procedure.

Remark 1. The absolute value and sign of TI depend on
the choice of ν (i.e. PMs) and uc (i.e. uB). Then, if uc

is fixed, ν is restricted to allow TI > 0. Viceversa, if ν
is fixed, the same restriction applies on uc. For example,
for ν = 1.5, Table 2 provides the values of TI for several
pairs (r, uc), where r = τ/T is the delay ratio and uc ∈
{uB/1.7, uB/1.5, uB/1.3}, with uB = 8.55. In particular,
given T , uc, and ν, the maximum plant delay allowing

TI > 0 is τmax =
(

T
uc

)
arctan

(
S−ucC
C+ucS

)
. Then, τmax

depends on plant parameters and specifications uB and
PMs. Moreover, values ν ≥ 1.6 are not convenient because
they imply a too low phase margin, which is usually taken
greater than 35◦ [29]. Table 2 also shows the values of TI

for uc = uB/1.5 = 5.7, τ = 0.05 seconds and T = 1.74
seconds (r = 0.0286) that hold for a particular injection
working point (see Table 1 and section 6). In all cases,
τ < τmax. Then the controller design is possible.

6. SIMULATION ANALYSIS

In this section, a detailed model created by the AMESim
developing package is the main tool for evaluating the
performance of the controlled system. AMESim is a multi-
domain virtual prototyping tool produced by IMAGINE
S.A. It enables the modeling of components from different
physical domains and their integration in an overall system
framework [10]. It also guarantees a flexible architecture,
capable of including new components defined by the users.
The resulting model is highly nonlinear and properly de-
scribes the complex fluid dynamic phenomena characteriz-
ing the injection system at different working points. Hence
the model is a virtual prototype, very similar to the actual
hardware in providing an extremely reliable representation
of the controlled system.

To test efficiency and robustness of the control, the FOPI
controllers, with ν = 1.3, 1.4, 1.5, 1.6, are compared to a
PI controller that is typically used for injection control
and tuned by the open-loop Ziegler-Nichols rules. Values
of ν < 1.3 are not considered because they lead to too high
phase margins, neither are values of ν > 1.6 because they
provide too low phase margins, i.e. below 36◦.

With reference to the typical working conditions in Ta-
ble 1, two different cases are simulated. In the first case
there is a small reference pressure variation from 4 to 5
bar. Moreover, the injection timing is 5 milliseconds, the

Fig. 3. Response to a 1 bar step of reference pressure

Fig. 4. Response to large variations of reference pressure

engine speed is 2500 rpm, and the tank pressure is 50 bar.
A single FOPI or PI controller is used with the (K,T )
parameters associated to the final pressure.

Fig. 3 shows the closed-loop step response. With respect
to the standard PI controller, FOPI controllers improve
the performance indices: even if the rise time is slightly
longer, overshoot is highly reduced, then a better accuracy
is achieved in injection; the settling times are comparable
for ν ≤ 1.5. With the PI controller, the performance is
influenced primarily by disturbances and nonlinearities
related to injectors operations, by PWM modulation of
the solenoid valve command, and by saturation of the
actuator. In fact, large variations of the control signal
cause high frequency pressure oscillations around the equi-
librium point. Moreover, the saturation in the control
signal, which is associated to a complete closure of the
valve, determines large rail pressure overshoots and under-
shoots. Conversely, fractional controllers performances are
less sensitive to system disturbances and nonlinearities.

The second case simulates a large variation in the reference
pressure from 4 to 10 bar. Then, the scheduling switches
between several controllers. In particular, the variation is
divided in 3 steps, then 3 FOPI/PI controllers are used.

Fig. 4 shows that FOPI reduce the overshoot significantly
and that responses are similar to the first case. Conversely,
PI controller poorly reacts to larger variations, and the
previously described nonlinear phenomena considerably
affect overall performance. Therefore, FOPI may improve
pressure regulation also for these large perturbations.
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7. CONCLUSIONS

Usually, a unique PI controller for all working conditions
controls injection in CNG engines. In this paper, a new
control strategy conjugates the benefits of FOPI con-
trollers with a proper scheduling of their gains. Pressure
is regulated by tuning different FOPI controllers on the
basis of the reference working points. A D-decomposition
method guarantees the closed-loop robust stability for each
working condition and FOPI controllers achieve higher
robustness and dynamic performance, especially for large
variations of reference pressure. As far as switching is con-
cerned, simulation shows that choosing sufficiently close
working points prevents stability problems.
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