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Abstract: Self-optimization enables technical systems to adapt their behavior to varying
environmental conditions and changing system settings. Objective functions serve as evaluation
criteria for the system behavior. In this paper we propose a hierarchical control approach of an
objective-based Pareto controller. We separate the processes of optimization and control. First,
we use multiobjective optimization to compute a Pareto set of optimal system configurations
offline. This set serves as a data base for the Pareto controller in an upper control loop,
which is designed secondly. The goal of the Pareto controller is to drive the system toward
a desired relative weighting of the objective values, despite unknown and varying environmental
disturbances. Furthermore, the Pareto controller has to cope with limits of the objective values.
For that, we propose a calculation of a reference value, which is based on an approximated
Pareto front of the current situation. The Pareto controller selects suitable configurations out
of the Pareto set and applies them to a lower control loop. A test rig of an active suspension
system affected by unknown track excitations serves as application example. Finally, we give
some results with the test rig that validate our approach and point out the advantages.

Keywords: Pareto optimal control, hierarchical control, multiobjective optimization,
self-optimization, active suspension system

1. INTRODUCTION

Intelligent technical systems have the ability to adapt their
control structure and parameters to varying environmen-
tal conditions and changing system settings at runtime.
This feature is introduced as Self-optimization within the
Collaborative Research Center 614 – Self-Optimizing Con-
cepts and Structures in Mechanical Engineering (cf. Frank
et al. [2004] among others). Objective functions serve as
evaluation criteria for the self-optimizing system’s behav-
ior. In order to exploit the possibilities opened up by self-
optimization, multiobjective optimization has been proven
to be an effective technique for computing Pareto opti-
mal configurations, see Geisler et al. [2008] and Schütze
[2004] among others. As the objectives typically contradict
one another, the solution of a multiobjective optimization
problem is given by a set of optimal compromises, which
is called Pareto set (cf. Hillermeier [2001]).

The optimal system configurations can be computed on-
line at runtime or offline at design time. Model Pre-
dictive Control (MPC) approaches solve an optimization
problem over a finite horizon within the closed control
loop, see Camacho and Bordons [2004] and Mayne et al.
[2000] among others. MPC approaches usually are based
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on simplified optimization models of the system and its
objective functions, in order to solve an optimal control
problem with minimal computational cost. In Vöcking and
Trächtler [2008], Münch et al. [2008] and Esau et al. [2012],
planning approaches are introduced, which use online sim-
ulations of forthcoming situations in order to select the
best configurations out of the Pareto sets. For feedforward
control approaches, the environmental disturbances have
to be known exactly in advance. A simple linear-quadratic
regulator (LQR) approach with a fixed parameter design
is not able to control the objective values or at least
their relative weighting. In Geisler and Trächtler [2009]
the matrices of a classical LQR design are adjusted at
runtime with respect to the current objective values. A
drawback of adaptive LQR approaches is the restriction
to simplified linear optimization models to guarantee an
analytical solution. For many technical systems a LQR
approach is neither useful nor applicable.

In this contribution we present a novel objective-based
controller, which uses a Pareto set to control the system
behavior within a superordinated control loop. In contrast
to MPC approaches, we separate the processes of optimiza-
tion and control. The multiobjective optimization process
is executed offline, using a nonlinear optimization model of
the plant and complex objective functions. The optimiza-
tion model emulates the system behavior in detail. In such
an approach, it is possible to compute the entire Pareto
set in advance. Within a superordinated control loop we
are able to select online suitable system configurations
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Fig. 1. Structure of the half-vehicle test rig.

out of the Pareto set. The main goal of this objective-
based Pareto controller is to drive the system to a desired
relative weighting of the objective values. We present how
to continuously control the Pareto points, in order to react
situationally on rapidly varying and unknown environmen-
tal disturbances, which affect the current objective values.
In realistic scenarios the system has to cope with limits
of the objective values, e.g., an upper limit of energy
consumption. This demand has to be ensured within the
objective-based Pareto controller. Hence, we propose a
calculation of a reference value in objective space as an
input for the Pareto controller in the superordinated loop,
in order to satisfy the limits. Thus, we are able to control
both the relative weighting of the objective values and the
absolute value of one objective due to a given limit.

We present the active suspension system of the innovative
railway vehicle RailCab (see Henke et al. [2008], RailCab
[2013]) as an application example for the objective-based
Pareto controller. An energy management system of the
vehicle limits the available amount of energy for the active
suspension system, e.g., in the case of a low state of charge.
The suspension system performs the task of compensating
for bumps and other excitations of the railway, in order
to increase passenger comfort. There is a test rig which
emulates the active suspension system of a half-vehicle,
i.e., front or rear of the RailCab. The structure of the test
rig is illustrated in Figure 1. It consists of a coach body
which can move in vertical, lateral and rotational (body
roll) degrees of freedom. Beneath the coach body there are
two symmetrically mounted actuator groups (highlighted
in Fig. 1), each one consisting of a guide kinematic, which
is connected to the upper end of a GRP spring (glasfiber
reinforced polymers) and three hydraulic cylinders. The
main function of the actuator groups is to exert damping
forces on the coach body by deflecting the GRP springs
actively. A sky-hook controller is used to compute the
damping forces (cf. Li and Goodall [1999]). It depends on
three controller parameters pi, i ∈ {1, 2, 3}, representing
the damping characteristic of each degree of freedom of the
coach body. At the lower end of the GRP springs there is
a chassis framework that can again be displaced by three
hydraulic cylinders. The chassis framework represents the
environmental disturbances and it is used to simulate the

railway excitations. These excitations vary continuously
along the track and have high influences on the dynamic
behavior of the coach body.

The paper is structured as follows: The theoretical back-
ground of multiobjective optimization and the application
to the test rig are described in Section 2. In Section 3
we introduce the basic structure of the objective-based
Pareto controller. We also point out the computation of a
reference value for the Pareto controller considering a given
limit of one objective values. We present the results with
the real test rig in Section 4, which show the applicability
of our approach. Finally, we conclude and give an outlook
on future research in Section 5.

2. MULTIOBJECTIVE OPTIMIZATION

In this section we give a brief overview of the theoretical
background of multiobjective optimization. Further, we
present the application of multiobjective optimization for
the active suspension system and we discuss the optimiza-
tion results.

2.1 Theoretical Background

In the context of multiobjective optimization of mecha-
tronic systems usually several objectives have to be con-
sidered and optimized simultaneously, e.g., minimization
of energy consumption or maximization of performance.
Mathematically speaking, this leads to a multiobjective
optimization problem (MOP)

min
p
{F (p) : p ∈ S ⊆ Rnp}, (1)

where F is defined as the vector of objective functions,
f1, ..., fk, k ≥ 2, which are at least continuous and S is the
feasible set given by equality and inequality constraints,
see Hillermeier [2001], and Ehrgott [2005] for a general
introduction. Here, minimization refers to the comparison
of vectors. A vector v1 dominates another vector v2, if
all its entries are less than or equal to the entries of the
other vector, i.e., v1 ≤p v2. A point p? ∈ S is called
Pareto optimal for (1), if there is no p ∈ S with F (p) ≤p

F (p?) and fj(p) < fj(p
?) for at least one j ∈ {1, ..., k}.

Thus, for contradicting objectives, the solution of (1) is
not a single point, but a set of optimal compromises,
which is called Pareto set PS . The image of the Pareto
set is called Pareto front PF . In mechatronic systems
the optimization parameters p are typically controller
parameters or reference trajectories, e.g., controller gains
or sampling points of a trajectory. The feasible set S is
limited to parameters which can be implemented to the
system and satisfy the stability criteria of the closed-loop
system. These demands have to be evaluated in advance.

For the computation of the Pareto set we use numerical
set-oriented methods, see Schütze [2004] and Dellnitz et al.
[2005] for a detailed description. The objective functions
of (1) are typically chosen as mean values of characteristic
signals, i.e., they are given by integral functions

fi : Rnp → R, fi(p) =
1

T

∫ T

0

h(ye(p, t)) dt. (2)

The evaluation of (2) is done by means of simulations
of an optimization model. The vector ye is the simulated
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output of the plant model and the function h respresents
additional modifications, e.g., a weighting or filtering of
the components of ye. Using this optimization model, a
generic reference situation of the system can be simulated,
see Krüger et al. [2013] for more details. A large simulation
time T is required in this simulations for the objective
functions to converge to steady state values. The simula-
tion time T depends on the system dynamic visible in the
signal h(ye(p, t)).

2.2 Application of Multiobjective Optimization

The purpose of the active suspension system is to in-
crease passenger comfort by minimizing the accelerations
of the coach body, while reducing the energy consump-
tion of the actuator modules at the same time. Both
objectives are contradicting because the more the coach
body is damped, i.e., the accelerations are reduced, the
more hydraulic power is needed. This leads to a MOP
(1) with two objective functions, combined in the vec-
tor F (p) = [f1(p), f2(p)]T . The system behavior can be
adapted according to one objective by varying the three
damping coefficients dsky of the sky-hook controller. Thus
for an optimization these controller parameters are also the
optimization parameters p. The set of optimal parameters
p? are computed by means of solving a MOP offline. The
objectives are given by the following integral functions

f1 : R3 → R, f1(p) =
1

T

∫ T

0

6∑
j=1

Phyd,j(p, t)dt , (3)

f2 : R3 → R, f2(p) =
1

T

∫ T

0

3∑
i=1

|wi(ai(p, t))|dt . (4)

The equation (3) describes the average energy consump-
tion given by the hydraulic power Phyd of the six cylinders.
A value of an average discomfort is computed by (4) con-
sidering the frequency weighted coach body accelerations
ai in the aforementioned three degrees of freedom. The
weighting filters wi are explained in VDI norm 2057 [2004].

The optimization is based on a complex nonlinear model,
which emulates the test rig in detail (see Figure 1). The
feasible set S of the three controller parameters pi is
restricted due to stability limits of the test rig. A band-
limited white noise excitation profile is used as a synthetic
environment model and emulates a common track profile
with a wide range of typical track characteristics. The sim-
ulation time T is fixed to 3.5 seconds during one simulation
of the optimization process. The large simulation time is
required for the objective function evaluation of (3) and
(4) to converge to steady state values along the track in
order to calculate the best possible solution of the MOP.

The numerical solution of the MOP with its three op-
timization parameters pi, i.e., damping coefficients dsky
of the sky-hook controller, is shown in Figure 3. The
corresponding Pareto front is illustrated in Figure 2 and
has the typical shape of MOPs consisting of two con-
tradicting objective functions. Low damping coefficients
dsky at the one end of the Pareto set result in a high
value of the discomfort, f2, but a low value of the average
energy consumption, f1, in objective space. In contrast,
high damping coefficients at the other end of the Pareto
set lead to a low value of the discomfort and a high value
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Fig. 2. Pareto front of the suspension system.
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Fig. 3. Pareto set of the suspension system.

of the average energy consumption. The resulting system
configurations in between are the optimal compromises of
both objectives.

Usually the excitation profile varies along the railway and
influences the dynamic behavior and also the objective
values f1 and f2 of the system. This fact results in a
separate MOP for each excitation profile. However, Münch
[2012] shows the robustness of the Pareto set of the active
suspension system in terms of varying magnitudes of the
track excitation. In this context robustness means that
the optimal parameters p? of each MOP are practically
identical. Nevertheless, the corresponding Pareto fronts of
the robust Pareto set do not remain the same. For system
operation, it is feasible to use one robust Pareto set, that
is valid for a wide range of realistic track excitations.

In order to get a one-dimensional parameterization of the
numerical solution, the Pareto set can be parameterized by
a parameter α by means of the continuous and bijective
function

s : R→ PS ⊆ Rnp , α 7→ s(α), (5)

as illustrated in Figures 2 and 3. The parameter α is
the relative weighting of the objective values, represented
by the angle of the vector of the objectives. The Pareto
front of the numerical solution and the smoothed front are
almost congruent (cf. Fig. 2). The three-dimensional point
cloud of the Pareto set can by approximated by (5) with
sufficient accuracy (cf. Fig. 3). The limits of the feasible
set S are reached within the optimization process. The
parameterized smoothed set and front serve as a data base
for the objective-based Pareto controller.
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Fig. 4. Structure of the objective-based controller for the
active suspension system.

3. PARETO CONTROLLER

The active suspension system pursues a compromise of
the objectives, represented by the relative weighting α
of the objective values. The main goal of the objective-
based Pareto controller is to drive the system toward a
specific desired relative weighting, despite the effects of
environmental disturbances, which change unpredictably
and continuously over time. Besides, the controller has
to cope with limits of the objective values. In this con-
tribution we treat an upper limit of the average energy
consumption of the actuator modules as an example. Nev-
ertheless, a lower limit is also conceivable, e.g., a minimum
of passenger comfort. Therefor, we present both the basic
approach on how to control points on the Pareto set in case
of varying excitations and the computation of a reference
value of the relative weighting considering a given limit of
the average energy consumption, i.e., objective value f1.

3.1 Basic Pareto Controller

The structure of the objective-based Pareto controller of
the active suspension system is illustrated in Figure 4. It
is a hierarchy of two control loops. The lower control loop
comprises the plant, i.e., the test rig of the suspension
system, and the configurable sky-hook controller with the
three damping coefficients dsky. The task of the lower
control loop is to ensure a desired damping characteristic.
Varying environmental disturbances z of the track have
high influences on the dynamic behavior of the suspension
system and lead to heavy fluctuations of the coach body’s
accelerations and the energy consumption of the hydraulic
cylinders. With an arbitrary optimal parameterization p?

of the sky-hook controller, the current objective values
F (p?) and their relative weighting α fluctuate as well.

The upper objective-based Pareto controller continuously
adjusts the optimal parameters p? of the lower sky-hook
controller, in order to control the current objective val-
ues F (p?). Hence, an online evaluation of the objective
functions is required. The use of the integral functions (3)
and (4) of the optimization process leads to a discrete
execution of the upper control loop with a sample time
of several seconds, as presented in Krüger et al. [2013].
As a result, the parameters of the lower control loop are
constant during each sampling period. This leads to a poor

performance of the Pareto controller in case of intensively
varying track excitations z. In order to react more quickly
on unpredictable and continuously varying excitations, it
is necessary to evaluate the objective functions continu-
ously at runtime. The calculation of the objective values
is divided into two parts (cf. Fig. 4): The function h(ye)
computes the relevant data for the objective functions
based on the measurements ye of the suspension system.
Further, we use a first-order lowpass filter as an appro-
priate approximation of the objective values, instead of
the integral functions (3) and (4). The filter computes
an average value of the signal h(ye(t)) over a preceding
horizon. The transfer function of this filter is given by

GPT1(s) =
1

Tlp s+ 1
. (6)

The time constant Tlp is chosen as 0.5 seconds with
respect to the slowest dynamic of the lower loop. The
high-frequency signal parts visible in the measurements
ye, e.g., peaks of the hydraulic power of the cylinders, are
suppressed. The initial value of the filter is set to the offline
computed solution of the MOP (cf. Figure 2).

The current objective values F (p∗) are mainly affected by
the unknown track excitations z. In general, the higher the
magnitude of the excitation, the higher the acceleration of
the coach body and the energy consumption of the actua-
tor modules. Thus, the objective-based Pareto controller is
not able to drive the objective values to an arbitrary point
in objective space. Hence, the current objective values
F (p∗) are transformed to a current relative weighting in
objective space, αcur. The αcur value serves as control
variable to the objective-based Pareto controller in the
upper loop. The controller Gc(s) is realized as a linear
SISO (single-input, single-output) controller. In combina-
tion with a reference value of the relative weighting, αref ,
the controller computes the αuse value. The controller is
proposed to be a PI-controller with the transfer function

Gc(s) = Kp +Ki
1

s
, (7)

so that the steady state error is zero. For the active suspen-
sion system the controller parameters are set to Kp = 4
and Ki = 12.5. The controller design has to be consid-
ered separately and is not topic of this contribution (cf.
Krüger et al. [2013]). The computation of the αref value is
described subsequent. Finally, optimal sky-hook controller
parameters p? are selected out of the parameterized Pareto
set by means of the αuse value. Then, these parameters are
continuously set to the lower loop.

3.2 Computation of the αref Value

In realistic scenarios the active suspension system has to
cope with a limited amount of energy. One can imagine
that a superordinated energy management system of the
vehicle limits the available energy due to a low state of
charge of the energy storage, for example. This demand
must be ensured within the computation of the reference
value αref in the upper loop.

The computation of the αref value in objective space is
schematically shown in Figure 5. As already mentioned,
the values of the current objectives F (p∗) are affected
by the unknown excitation z. The points in objective
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Fig. 5. Scheme of the computation of the αref value in
objective space.

space depend on the magnitude of the excitation and
the present configuration p?. In the event illustrated, the
current objective value f1,cur is higher than the objective
value f?1,cur of the Pareto front referred to the current
relative weighting αcur. This implies that the magnitude
of the current excitation is higher than the one of the
synthetic excitation model of the optimization process.
Without knowing the numerical solution of the MOP
of the current event, we assume a similar shape of the
approximated Pareto front to the smoothed Pareto front
of the numerical solution, as shown in Figure 5 (cf. Münch
[2012]). The current objective values, f1,cur and f2,cur,
are restricted to points on the approximated front due to
the current magnitude of the excitation z. Considering a
lower limit value f1,lim of the average energy consumption,
both objective values could be at best at the intersection
point of the approximated front and the limitation line
(cf. Fig. 5). The relative weighting of this point serves
as the reference value αref for the objective-based Pareto
controller in the upper loop. In order to compute the αref

value, we can use the theorem of intersection lines. For
that, we have to calculate the corresponding f?1,lim value
of the numerical solution by

f?1,lim = f1,lim
f?1,cur
f1,cur

. (8)

Then, the reference value αref is uniquely defined by

αref = s−1(f?1,lim) , (9)

where s−1 is the inverse function to (5). In this event,
the goal of the objective-based Pareto controller is to
drive the current objective value f1,cur toward the upper
limit f1,lim. As a consequence of contrary objectives, the
objective value f2, i.e., low coach body accelerations,
becomes worse due to the adherence of the upper limit
of energy consumption (cf. Fig. 5).

3.3 Switching Logic at Runtime

The current objective values F (p∗) are computed continu-
ously at runtime by an appropriate approximation with a
first-order lowpass filter. The points in objective space vary
and depend on the current magnitude of the excitation z,
which changes rapidly over time. Now, two cases must be
distinguished in terms of the computation of the reference

mode 1 mode 2

Fig. 6. Switching logic for the αref value.

value αref at runtime. For that, there exist two operation
modes and switching conditions, illustrated in Figure 6.

In mode 1, we consider the case that the current objective
value f1,cur is less than a given limit value f1,lim. In
this case, the reference value αref is equal to a desired
relative weighting αdes. The αdes value and the f1,lim
value are given by an external source, e.g., by a super-
ordinated vehicles management system or by the user (cf.
Fig. 4). The objective-based Pareto controller drives the
current relative weighting αcur toward the desired rela-
tive weighting αdes. If the magnitude of the excitation z
increases, the current objective value f1,cur increases as
well, until it exceeds the limitation value f1,lim. Within
the controller structure of the upper loop the reference
value αref switches situationally from the constant de-
sired relative weighting αdes in mode 1 to the value of
the relative weighting considering the energy limit f1,lim
in mode 2. In that case, the switching condition from
operation mode 1 to operation mode 2 is straightforward,
given by the inequality f1,cur > f1,lim (see Fig. 6). In
operation mode 2, the f?1,lim value and the αref value are

calculated continuously by (8) and (9). If the magnitude of
the excitation z still increases, the current objective value
f2,cur becomes worse. In contrast, if the magnitude de-
creases, the current objective values f2,cur becomes better.
The reverse switching condition from operation mode 2 to
operation mode 1 is not as obvious as in the first case.
It is not sufficient to consider only the f1,cur value, i.e.,
f1,cur ≤ f1,lim, because the current objective value f1,cur
runs within a small range around the upper limit due to
the unknown and continuously varying excitation z and
the predefined assumptions. This would result in a high-
frequent switching rate with unintended steps in the αref

value. Thus, we treat the continuously computed relative
weighting itself for the reverse switching condition. Here,
the switching condition from mode 2 to mode 1 is defined
by αref ≥ αdes (cf. Fig. 6), in order to get a continuous
reference value αref as an input for the Pareto controller.
In that case, the inequality f1,cur ≤ f1,lim is implicit.

4. RESULTS

In this section we show the practical results of the
objective-based Pareto controller with the test rig of
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the active suspension system. The objective-based con-
trol strategy is applied to a realtime hardware, using the
configurable sky-hook controller of the lower loop and the
Pareto controller of the upper loop. The excitation sce-
nario used for test rig operation is based on a virtual track,
which contains excitations in each of the three degrees
of freedom of the chassis framework. These excitations
are generated stochastically, but describe a realistic track
profile along the railway.

The test rig results are shown in Figures 7 and 8. Figure 7
illustrates the reference and the current relative weighting
αref and αcur, the corresponding current objective values
f1,cur and f2,cur, and the sky-hook controller parameter
dsky,z. Figure 8 shows the current objective values in
objective space. The main task of the objective-based

Pareto controller is to drive the system toward the desired
relative weighting αdes. In this scenario the αdes value
is set to 0.4. From beginning of the measurement to 15
seconds the system is in operation mode 1 (cf. Fig. 6) due
to no limits of the objective value f1. Thus, in mode 1 the
αref value is equal to the αdes value. Until 15 seconds the
Pareto controller is able to keep the αcur value within a
small range of the αref value. The current objective values
lie close to the straight line of the desired relative weighting
αdes, as shown in Figures 7 and 8. The slight fluctuations
of αcur can not be completely compensated for, because
they are the result of the unknown track excitations. The
approximated objective values f1,cur and f2,cur fluctuate
as well due to a varying magnitude of the track excitation
over time. The three sky-hook controller parameters dsky
are selected out of the smoothed Pareto set and they are
continuously set to the configurable controller of the lower
loop. Exemplarily the corresponding sky-hook controller
parameter in vertical direction dsky,z is shown in Figure 7.

At 15 seconds the limit value f1,lim of the objective value
f1, i.e., a limit of the average energy consumption of
the system, is set to 0.2. From that moment the system
switches situationally from operation mode 1 to operation
mode 2 and reverse due to the magnitude of the current
objective values and their relative weighting. From 15 sec-
onds to 30 seconds the reference value αref is less than the
desired relative weighting αdes over large periods, as shown
in Figure 7. In that cases, the system is in operation mode
2 and the reference value αref is calculated continiuously
by (8) and (9). In operation mode 2 the Pareto controller
is able to keep the current objective value f1,cur within
a small range of the limit values f1,lim (cf. Fig. 8). From
approximately 18 seconds to 23 seconds the magnitude
of the track excitation is increased. In this period the
Pareto controller calculates low αref values and selects low
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sky-hook controller parameters out of the Pareto set, as
shown in Figure 7. As a consequence the current objective
value f2,cur, i.e., the value of discomfort, becomes worse.
However, the reverse switching from operation mode 2
to operation mode 1 is clearly shown at approximately
27 seconds. From 27 seconds to 29 seconds the current
objective value f1,cur is less than the limit value f1,lim
and the reference value αref is again equal to the αdes

value of 0.4. Now, the current objective values lie close to
the straight line of the desired relative weighting αdes. The
adherence of the upper limit and the switching processes
are plainly shown by the trajectory of the current objective
values in objective space in Figure 8.

5. CONCLUSION & OUTLOOK

In this contribution we presented a hierarchical approach
of a continuous objective-based Pareto controller for self-
optimizing systems with limited objective values. At first,
we presented the application example of the active sus-
pension system and the results of the multiobjective opti-
mization problem. The Pareto set and the Pareto front
serve as the data base for the objective-based Pareto
controller. Further, we have shown how to control a de-
sired relative weighting of the objective values in case
of unknown and varying track excitations, using suitable
points of the Pareto set. The controller is also able to
cope with limits of the objective values, represented here
by an upper limit of the average energy consumption of
the suspension system. We explained the calculation of a
reference value of the relative weighting and the switching
logic in objective space considering similarity relations of
the Pareto fronts. Finally, the results with the test rig
point out the applicability and effectiveness of our novel
approach.

In future work a number of extensions are planned. To
our experience, this approach seems to be realizable for
a wide range of technical systems, because the proposed
Pareto controller in the upper loop is almost independent
of the underlying structure of the lower loop. Moreover,
the control approach has to be enhanced to multiple
Pareto sets, which are not robust in terms of varying
environmental disturbances. It is also interesting to extend
the approach to multiobjective optimization problems
with more than two objectives. Since the parameterization
of the Pareto set is then much more difficult, the controller
structure in the upper loop has to be a more complex
MIMO (multiple-input, multiple-output) controller.
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