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Abstract: In this paper, the pH boundary control problem of a tubular photobioreactor is
treated. The method of characteristics is used to transform the hyperbolic system of equations
into a set of first order ordinary differential equations without approximation. The proposed
approach is geometric in nature. The method is shown to be effective in controlling pH
concentration of a tubular photobioreactor through simulations under real data disturbances.
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1. INTRODUCTION

Distributed Parameter Systems (DPSs) represent many
processes in engineering when more than one independent
variable exists. Under such circumstances the governing
equations will contain temporally dependent terms as
well spatial gradients. Examples can be found in many
fields ranging from chemical and metallurgical processes
to physiological systems and ground water modelling.
Although the study of DPSs has originated more than 50
years ago [Tzafestas and Stavroulakis, 1982], a definitive
control methodology is still under research for the general
class of nonlinear DPSs.

On the other hand, the theory of Variable Structure Sys-
tems (VSS), and their associated sliding regimes, has been
extensively developed to lumped systems during the last 60
years. The study of VSS for DPSs is not much developed.
The reason seems to be twofold. First, there is no gen-
eral theory on Partial Differential Equations (PDEs) with
discontinuous right hand side. Secondly, application of
VSS techniques to DPSs must exploit boundary conditions
in order to develop the control law. Once the boundary
conditions vary, the designed sliding mode may not always
exist.

Most available results in literature are based on approxi-
mating the DPS by a finite dimensional lumped parameter
system, as can be seen in [Boubaker and Babary, 2003].
But discretization and order reduction often may result in
loss of relevant dynamics and always raises the question
on the discretization efficiency.

? This work has been partially funded by the following projects:
CAPES-DGU 220/2010; CNPq-BRASIL; PHB2009-008 financed by
the Spanish Ministry of Education; and Spanish Ministry of Science
and Innovation and EU-ERDF funds under contract DPI2011-27818-
CO2-01.

The approach shown in [Godasi et al., 2002], utilizes
symmetry group theory and allows controller design for
a general nonlinear DPS. However no rigorous proofs are
offered since the solution of sets of arbitrary PDEs, via
group theory, still remains an open area of research in
mathematics.

The complete theory just can be found for Nonlinear
First Order PDEs (NFOPDEs) by the Method of Char-
acteristics (MoC). Applying this method, the NFOPDEs
are transformed into a finite set of characteristic Ordi-
nary Differential Equations (ODEs) which, along with
their Cauchy data (initial conditions), exactly describe the
original PDE. Thus, control design may be subsequently
performed on a set of nonlinear ODEs in place of the
NFOPDEs without approximation.

The use of Sliding Mode Control (SMC) design for DPSs
based on the MoC was firstly proposed by [Sira-Ramirez,
1989, 1990] and, subsequently, developed in [Hanczyc and
Palazoglu, 1994, 1995]. The MoC is used to exploit features
of the flows associated to the characteristic direction
field of the closed-loop system. Thus, the fundamental
properties and the characterization of sliding regimes can
be proven by means of a geometric approach.

The theory proposed in [Sira-Ramirez, 1989, 1990] and
[Hanczyc and Palazoglu, 1994, 1995] is used in this paper
to develop a control law for the boundary control of pH
concentrations of a tubular photobioreactor. Due to the ac-
tuator characteristics, the control law can be implemented
with the discontinuous control law or with a continuous
control law.

The contributions of this paper are twofold. On one
hand, a nonlinear control law to pH control of a tubular
photobioreactor is developed. On the other hand, it is
shown an effective control approach for SISO (Single-
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Input Single-Output) NFOPDEs using the exact solution
obtained by the MoC.

The paper is organized as follows: Section 2 presents the
background material of the MoC. Section 3 discusses the
application of distributed sliding mode control to nonlinear
DPSs by exploiting the set of characteristic ODEs. Section
4 briefly presents the tubular photobioreactor process
and its dynamic model. Section 5 describes the proposed
control design for the tubular photobioreactor. Section 6
shows the simulation results of an on-off control standard
strategy compared with the proposed boundary SMC
strategy. Finally, the main conclusions are presented in
Section 7.

2. METHOD OF CHARACTERISTICS

In this section, it is briefly reviewed the MoC used to
reduce the NFOPDEs into nonlinear ODEs. For more
details about the MoC, see [Arnold, 1983].

A general NFOPDE is a mathematical expression given by

∂z

∂t
+ φ (z, x, u, t, p) = 0

y = ϑ(z, x, t) (1)

where z is the state of the system, t denotes time, x is
the vector of n local spatial coordinate functions xi (i =
1, . . . , n), p is the n-dimensional vector with components
pi denoting the spatial partial derivatives of the state,
∂z/∂xi, u = (z,x, t) is a distributed time-varying feedback
control law, φ is a smooth function of its arguments,
and y = ϑ(z, x, t) is the system output defined by a
smooth scalar function. Furthermore, it is introduced a
new variable q = ∂z/∂t to represents the state time
derivative.

All of the considerations and results are of local character
on a given open set N of Rn+2 described by the vector
of local coordinate functions (z,x, t), denoted by χ. The
projection of such an open set N onto Rn+1, along the
direction of z, is denominated as M with local coordinates
(x, t). Also, it is denoted by η the vector of local coordi-
nates (z,x, t,p, q) in R2n+3, labelled as 1-jet of functions
of (z,x, t,p, q), which it is denoted as J1.

The equation (1) can be interpreted as the expression of a
2n+ 2 dimensional hypersurface in J1, denoted by E and
defined as

E = F−1(0) :=
{
η ∈ J−1 |F (η) = q + φ (z, x, u, t, p) = 0

}
.

It is generally assumed that the manifold E is noncharac-
teristic at all points η under consideration of the space J1.
In general, if the problem is well posed, the hypersurface E
is considered to be noncharacteristic, requiring that F (η)
is smooth and the initial conditions for the system are
consistent.

The jet characteristics of a PDE are the set of integral
curves that are determined from the set of characteristic
ODEs. The following expression is obtained for the com-
ponents of the jet characteristic vector ξ(η):

ż = p
∂F

∂p
+ q ṗ = −∂F

∂z
p− ∂F

∂x

ẋ =
∂F

∂p
q̇ = −∂F

∂z
q − ∂F

∂t
ṫ = 1

(2)

To complete the problem definition, the initial condition
for the equation (1) is needed. The state z must be assigned
to some particular value on the points of a n-dimensional
hypersurface defined in the space n+ 1 dimensional, with
coordinatesM = (x, t). This is well known as Cauchy data.
For more details about the calculation of it, see [Arnold,
1983].

3. DISTRIBUTED SLIDING MODE CONTROL

Sliding Mode Control is a classical nonlinear control
method characterized by a switching control action. This
control approach has, as the main idea, the definition of a
surface on which the system has some desirable behavior.
In this section, the classical concepts of SMC for lumped
parameter systems to systems described by NFOPDEs is
extended, labelled as Distributed Sliding Mode Control
(DSMC).

The following feedback switching law determines the con-
trol action

u =

{
u+(z, x, t) if h(z, x, t) > 0
u−(z, x, t) if h(z, x, t) < 0

(3)

where u+(z,x, t) > u−(z,x, t) and h(z, x, t) is a scalar
function of the state, being h(z, x, t) = 0 defined as the
sliding surface or the switching boundary.

The condition h(z, x, t) = 0 is assumed to define a smooth
local solution manifold z = ϕ(x, t). Thus, the sliding
manifold or sliding surface is defined as

S = {(z, x, t) ∈ Rn+2 : z = ϕ(x, t)}. (4)

The manifold S can be prolonged to the space of J1 [Sira-
Ramirez, 1990]. If the problem is well posed with consistent
boundary and initial conditions, the sliding regime will
exists for the NFOPDE.

To introduce a parametrization of the hypersurfaces rep-
resenting the variable structure controlled system, a dis-
tributed switching function ν is defined, taking values in
the discrete set {0, 1}. The switching function ν acts as a
distributed control parameter and it is possible to rewrite
the system give in equation (1) to

∂z

∂t
+H(z, x, t, p) + νG(z, x, t, p) = 0, (5)

with

H(z, x, t, p) = φ
(
z, x, u−, t, p

)
G(z, x, t, p) = φ

(
z, x, u+, t, p

)
− φ

(
z, x, u−, t, p

)
ν =

{
1 if h(z, x, t) > 0
0 if h(z, x, t) < 0

(6)

It follows, from equation (5), that the controlled vector
field ξ(η) is described by:
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ż = p

(
∂H

∂p
+ ν

∂G

∂p

)
+ q

ẋ =
∂H

∂p
+ ν

∂G

∂p

ṫ= 1

ṗ =−
(
∂H

∂z
+ ν

∂G

∂z

)
p−

(
∂H

∂x
+ ν

∂G

∂x

)
q̇ =−

(
∂H

∂z
+ ν

∂G

∂z

)
q −

(
∂H

∂t
+ ν

∂G

∂t

)
(7)

Thus, the controlled system (5) has two hypersurfaces E+

and E− defined in J1, generated by the vector field ξ+(η),
when ν = 1, and ξ−(η), when ν = 0. The components of
the vector fields ξ+(η) and ξ−(η) can be directed obtained
by set of ODEs given in equation (7).

The jet characteristics in J1 uniquely define characteristics
in the open set N by simple projection. Associated to such
characteristics ones defines the characteristic vector fields
κ+(χ) and κ−(χ) in N whose prolongations to the space of
J1 coincide with the jet characteristic vector fields ξ+(η)
and ξ−(η), respectively.

The main idea in sliding control systems is to define the
desired operating point in such a way that it is in the
attractive sliding region.

The existence problem of a sliding mode resembles a gen-
eralized stability problem, therefore the second method of
Lyapunov provides a useful setting for analysis. Specifi-
cally, stability to the switching surface requires selecting a
candidate Lyapunov function V (z,x, t), which is positive
definite and has a negative time derivative in the region of
attraction. This approach will be used in Section 5.

4. TUBULAR PHOTOBIOREACTOR PLANT

The tubular photobioreactor plant studied in this paper
is located at the Estación Experimental Las Palmerillas,
property of Fundación CAJAMAR (Almeŕıa, Spain), lo-
cated inside a greenhouse where the Scenedesmus alme-
riensis is cultivated (see http://aer.ual.es/MACROBIO
for more information). A general scheme of the plant is
depicted in Figure 1, showing its main components: the
external loop and the bubble column.

The main objective of the external loop is to increase
the surface exposed to the sun, allowing the microalgaes
to capture a larger quantity of irradiance to perform the
photosynthesis. The bubble column realizes several func-
tions, mainly, desorption of O2 produced during the pho-
tosynthesis at the external loop. The culture temperature
control is made at the bubble column too. Moreover, the
medium injection and the harvesting are located at the top
of bubble column. The culture is continuously recirculated
between the loop and the column by a pump located at
the bottom of the column.

In order to maximize the microalgae production, it is
required to operate several variables at the optimal value.
Among them, the pH is one of the most critical variables
that needs to be adequately regulated. On one hand, the
supply of CO2 as nutrient causes the transformation of
carbon dioxide and consequently the pH declines. On the
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Fig. 1. Industrial tubular photobioreactor scheme.

other hand, the microalgae realizes the photosynthesis
when there is solar irradiance, consuming CO2 and gener-
ating O2, causing a gradual rise of the pH.

In continuous operation mode, the manipulated variables
can be the speed of the pump, the valve opening to
supply CO2 to the culture, the valve opening to inject
air for O2 desorption and the valve opening for injection of
nutrients when the harvesting of biomass occurs. The main
measured disturbance is the solar irradiance. The main
measured variables are the pH at the end of the external
loop and the dissolved oxygen at the bubble column.

Currently, the only controlled variable is the pH, since
it is the most critical one. Regarding the control design
purposes, the pH of the culture is influenced mainly by
two phenomena: supplied CO2, by means of an valve con-
sidered as the manipulated variable, and solar irradiance,
as the main system disturbance. The other manipulated
variables are operated at a constant value during the
operation mode.

4.1 Dynamic Model

The dynamic model of microalgal production of the tubu-
lar photobioreactor was previously developed and de-
scribed in [Fernández et al., 2012]. The model for a mi-
croalgae production system must consider the relationship
between light availability and photosynthesis rate, the
mixing and the gas-liquid mass transfer inside the system.

The mass balances for the liquid phase are given by

(1− ε)A∂[Cb]

∂t
+Ql

∂[Cb]

∂x
= PO2(1− ε)A[Cb]Yp/x. (8)

(1− ε)A∂[O2]

∂t
+Ql

∂[O2]

∂x
= (1− ε)APO2

[Cb]

MO2

+(1− ε)AKO2
([O∗

2 ]− [O2]). (9)

(1− ε)A∂[CT ]

∂t
+Ql

∂[CT ]

∂x
= (1− ε)APCO2 [Cb]

MCO2

+(1− ε)AKCO2
([CO∗

2 ]− [CO2]). (10)

In addition to the liquid phase, it is necessary to define
the mass balances for the gas phase. The mass balance
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for oxygen and carbon dioxide molar fraction can be
established as

ε

Vm

∂yO2

∂t
+
Qg

Vm

∂yO2

∂x
= −(1− ε)AKO2

([O∗2 ]− [O2]). (11)

ε

Vm

∂yCO2

∂t
+
Qg

Vm

∂yCO2

∂x
= −(1− ε)AKCO2

([CO∗2 ]− [CO2]). (12)

Equations (8)-(12) describe the tubular photobioreactor
model. However, a relationship between the total inorganic
carbon concentration and the dissolved carbon dioxide in
the culture is also needed. Since the total inorganic carbon
is equal to the sum of inorganic carbon species, an equation
can be obtained to represent the total inorganic carbon
variation as

∂[CT ]

∂t
=

(
1 +

K1

[H+]
+
K1K2

[H+]2

)
∂[CO2]

∂t
−

[CO2]

(
K1

[H+]2 + 2K1K2

[H+]3

)
∂[H+]

∂t
(13)

Taking into account the electroneutrality constraint, the
following equation is derived

∂[H+]

∂t
=

K1

[H+] + 2K1K2

[H+]3

1 + Kw

[H+]2 + K1[CO2]
[H+]2 + 2K1K2

[H+]3

∂[CO2]

∂t
(14)

Equations (13) and (14) relate the three concentrations,
[H+], [CT ] and [CO2]; knowing any one of these concen-
trations enable the calculation of the others.

All the parameters and variables are described in Table 1
[Fernández et al., 2012].

Table 1. Photobioreactor plant model variables
and parameters

Symbol Description

[CO2] carbon dioxide concentration in the liquid phase

[CT ] total inorganic carbon concentration

[O2] oxygen concentration in the liquid phase

[H+] proton concentration in the liquid

[Cb] biomass concentration

[CO∗
2 ] CO2 concentration in equilibrium with the gas phase

[O∗
2 ] O2 concentration in equilibrium with the gas phase

A cross-sectional area

MO2 molecular weight of O2

MCO2 molecular weight of CO2

KCO2
mass transfer coefficient for CO2

KO2
volumetric gas-liquid mass transfer coefficient for O2

K1 first equilibrium constant for bicarbonates buffer

K2 second equilibrium constant for bicarbonates buffer

Kw hydrolysis constant of the water

PCO2
carbon dioxide consumption rate

PO2
oxygen production rate per biomass mass unit

Qg gas flow rate supplied

Ql volumetric flow rate of liquid

Vm molar volume at the conditions of the reactor

yCO2
molar fraction of CO2 in the gas phase

yO2
oxygen molar fraction in the gas phase

Yp/x biomass yield coefficient produced by oxygen unit mass

Pt total pressure

ε gas holdup

5. CONTROLLER DESIGN

In this section, two approaches are developed in order to
control the pH dynamics of the tubular photobioreactor
previously described. The first one based on the classi-
cal on-off switching strategy and the second one is the
proposed DSMC strategy. In this work, two case studies
are made: (i) the valve is on-off and the control law is a
SMC with a hysteresis to limit the frequency; (ii) the valve
has a continuous characteristic and the control law used is
DSMC equivalent control approach in order to smoothing
the control action signal.

5.1 Standard on-off Control Law

The objective is to design a discontinuous control law in
order to include a desired dynamic on the closed loop
system. For this aim, the sliding manifold is chosen to be
the surface determined by

h = pH(x, t)− pHref (x, t), (15)

where pHref (x, t) is the set-point profile over the spatial
domain of the tubular photobioreactor.

The feedback switching control law based on the sliding
surface of equation (15) requires a distributed input.
Since the CO2 injection of the tubular photobioreactor is
temporally but not spatially dependent, the control input
must be integrated over the spatial domain.

For practical implementation, the integral over the spatial
domain of equation (15) is approximated by a weighted
sum of the state error calculated at four different points
along the pipe. This sum determines whether u+ or u−

must to be applied.

Moreover, the switches of the CO2 valve have a frequency
limitation to operate safely. Forcing the switches to their
maximum switching values can damage the valve. The
most common solution is to limit the switching frequency
with a hysteresis band as follows

u(t) =

 u+, if h(t) > δ
u−, if h(t) < −δ
uprev, if − δ ≤ h(t) ≤ δ

(16)

where δ is a constant which defines the hysteresis band
and uprev the last value of u(t). It is desirable that the
closed loop system operates at a predetermined frequency.
This can be achieved by means of the correct choice of the
hysteresis band δ.

5.2 Proposed DSMC Strategy

The objective of this section is to develop a smooth
conrol law by finding the system dynamics on the sliding
surface. For sake of simplicity it will be considered the total
inorganic carbon [CT ] instead of the pH concentration to
simplify the mathematical development. This fact is due
to the pH concentration is obtained by a conversion factor
of the total inorganic carbon.

The sliding surface is expressed as
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h = ([CT ](x, t)− [CTref
](x, t)) +

1

τi

∫ t

0

〈[CT ]− [CTref
]〉dt. (17)

where the first term denotes the error between the mea-
surement distributed total carbon inorganic along the tube
and the set-point profile. The second term corresponds to
the integral of the average error and τi is the integral time
constant. Notation 〈·〉 denotes the average value of the
respective variable.

Since the pH is obtained by a conversion factor of [CT ],
it can be observed that the system’s relative degree is 2,
i. e., the output must be differentiated twice to generate
an explicit relationship between the output and the input
(the control input appears explicitly on CO2 molar fraction
equation).

Thus, equations (10) and (12) are used to develop the
control law. The extreme characteristic vector field of [CT ]
and yCO2 are, respectively, given by

κ1 = ẋ1
∂

∂x1
+
∂

∂t
+ ˙yCO2

∂

∂yCO2

(18)

κ2 = ẋ2
∂

∂x2
+
∂

∂t
+ ˙[CT ]

∂

∂[CT ]
(19)

where the components (ẋ1, 1, ˙yCO2) and (ẋ2, 1, ˙[CT ]) of the
jet characteristic vectors can be directly obtained by the
MoC. For the sake of brevity, these equation are omitted
here.

The directional derivative of the sliding surface h in the
space of the extreme jet characteristics is expressed as
follows:

Lκ1
h= ẋ1

∂h

∂x1
+
∂h

∂t
+ ˙yCO2

∂h

∂yCO2

(20)

Lκ2h= ẋ2
∂h

∂x2
+
∂h

∂t
+ ˙[CT ]

∂h

∂[CT ]
(21)

where Lκ1
and Lκ2

is labeled as the directional (Lie)
derivative. It can be noted that as the manipulated vari-
able appears only in the CO2 molar fraction balance, thus
only Lκ1

h must be defined for both values of the binary
switching function.

The set of two hyperbolic PDEs can be combined and
expressed as a single second-order PDE. The leading
second-order derivatives can be expressed by the two Lie
derivatives as follows

Lκ1 (Lκ2 [CT ]) =
∂2[CT ]

∂t2
+

[
Qg

ε
+

Ql

(1− ε)A

]
∂2[CT ]

∂x∂t
+

Qg

ε

Ql

(1− ε)A
∂2[CT ]

∂x2
= −

[
PCO2

MCO2

(
Qg

ε

∂[Cb]

∂x
+
∂[Cb]

∂t

)
− KCO2

HtPt

(
(1− ε)AKCO2

([CO∗2 ]− [CO2])
Vm

ε

)
−KCO2

(
∂[CO2]

∂t
+
Qg

ε

∂[CO2]

∂x

)]
. (22)

As stated in Section 3, the existence problem of a sliding
mode resembles a generalized stability problem. The Lya-
punov stability problem for a set of hyperbolic PDE with
relative degree 2 can be formulated in order to choose the
switched feedback gains to guarantee

(Lκ1
+ λ1) (Lκ2

+ λ2)h < 0. (23)

where λ1 and λ2 are two tuning parameters that guarantee
the reachability of the systems trajectories to the sliding
manifold in a finite time and, once on the sliding surface,
the systems trajectories remain there.

Supposing that there exists a local attractive sliding
regime to the distributed controlled system in an open set
N of S. Thus, the total derivative of h in S ∈ Rn+2 satisfies
the condition (23). The directional derivative depends on
the local of a given point in the sliding surface S, where
for h > 0

(Lκ+
1

+ λ1)(Lκ2 + λ2)h < 0 (24)

and to h < 0

(Lκ−
1

+ λ1)(Lκ2 + λ2)h > 0 (25)

Thus, the directional characteristic flow satisfies the exis-
tence condition to sliding regime in S.

The system dynamic when is on the distributed sliding mo-
tion can be obtained imposing an invariance condition with
respect to the manifold S in the controlled characteristic
flow. This leads to restrict the controlled characteristic
vector field to the null space of h:

(Lκ−
1

+ λ1)(Lκ2
+ λ2)h+ νEQ

[
(Lκ+

1
−

Lκ−
1

)(Lκ2
+ λ2)h

]
= 0. (26)

Thus, the equivalent control function is given by

νEQ = −
(Lκ−

1
+ λ1)(Lκ2 + λ2)h

(Lκ+
1
− Lκ−

1
)(Lκ2 + λ2)h

(27)

Using the equations (20)-(22) and (27) and integrating
over the spatial domain, it is possible to find the equivalent
system dynamics on the sliding surface. Thus, a smooth
control law can be used in place of the discontinuous
control law. The resulting control law is given by

u(t) = ε

{
KCO2HtPt

[
(1− ε)AKCO2 (〈[CO∗2 ]− [CO2]〉)

Vm

ε

]
+KCO2

β2 +
1

τi
β1 + λ1

[
PCO2〈[Cb]〉
MCO2

+KCO2
(〈[CO∗2 ]− [CO2]〉)

]
+λ2

[
β1 +

1

τi
〈[CT ]− [CTref

]〉
]

+ λ1λ2

(
〈[CT ]− [CTref

]〉

+
1

τi

∫ t

0

〈[CT ]− [CTref
]〉dt
)
−
PCO2

MCO2
β3

}
/

{
PCO2

MCO2

−KCO2 [CO2]|x=Lx=0 +
Ql

(1− ε)A
∂[CTref

]

∂x

∣∣∣∣x=L
x=0

−λ2
[

[CT ]|x=Lx=0 − [CTref
]
∣∣x=L
x=0

]}
(28)

where

β1 = −
Ql

(1− ε)A
[CT ]|x=Lx=0 +

PCO2〈[Cb]〉
MCO2

+

KCO2
(〈[CO∗2 ]− [CO2]〉)

β2 =
β1

P2 − 〈[CO2]〉P1P3

β3 = −
Ql

(1− ε)A
[Cb]|x=Lx=0 + PO2〈[Cb]〉Yp/x
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Fig. 2. Standard on-off SMC performance. Top: pH, refer-
ence and solar irradiance; Bottom: CO2 injection.

P1 =
K1

〈[H+]〉2
+

2K1K2

〈[H+]〉3

P2 = 1 +
K1

〈[H+]〉
+

K1K2

〈[H+]〉2

P3 =

K1

〈[H+]〉 + 2K1K2

〈[H+]〉2

1 + Kw

〈[H+]〉2 +
K1〈[CO2]〉
〈[H+]〉2 + 4 2K1K2

〈[H+]〉3

and the notation [·]|x=L
x=0 defines the difference of the

variable [·] at the point (L, t) and (0, t). The control
parameters are λ1, λ2, and τi.

6. RESULTS

This section summarizes the simulation results obtained
from the model described in section 4 in order to validate
the proposed controller performance under real data dis-
turbances.

The controller parameters were obtained by the minimiza-
tion of the ITSE (Integral of the Time-weighted Square
Error) index using a directional direct search optimization
method [Kolda et al., 2003]. This was done since the
objective was to improve performance rather than global
optimality. The following set of parameters were obtained:
λ1 = 126, λ2 = 128, τi = 2000 s. On the other hand,
for the switching strategy the switching frequency of 0.1
Hz was chosen in order to guarantee the safety operation
conditions of the CO2 valve.

In Fig. 2 and Fig. 3 it is shown the time response of the pH
measured at the end of the loop of the tubular photobiore-
actor for the standard on-off switching controller and the
proposed DSMC control strategy, respectively. As can be
observed, the control system follows the desired reference
during all the simulation. Moreover, the undesirable effects
produced by the solar irradiance transients are reduced.

Obviously, the switching strategy has a faster response for
tracking. However, it is important to highlight that, the
chattering problem can be completely eliminated with the
proposed control strategy, but with much lesser aggressive
control effort (see the bottom graphics of Fig. 2 and 3).
The controller parameters of the proposed approach just
need to be chosen to reflect a trade-off between set-point
tracking and disturbance rejection.

7. CONCLUSIONS

This paper discusses the pH control problem of a tubular
photobioreactor, operating in continuous mode. The main
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Fig. 3. Proposed DSMC performance. Top: pH, reference
and solar irradiance; Bottom: CO2 injection.

goal is to guarantee the set-point tracking and disturbance
rejection. Due to the system distributed nature, a dis-
tributed sliding mode strategy is proposed to solve the
control problems. It has been demonstrated that the tubu-
lar photobioreactor described by a system of hyperbolic
PDEs can be effectively controlled using this methodol-
ogy. Furthermore, the method of characteristics showed
to be a powerful tool to analyse and obtain some system
characteristics. As future work, experimental tests will be
performed.
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