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Abstract: This paper investigates the problem of local stabilization of Markov jump nonlinear quadratic
systems. A method is presented for the synthesis of a static nonlinear quadratic state feedback control
law that ensures the local exponential mean square stability of the zero equilibrium point of the closed-
loop system in some polytopic region of the state-space with a guaranteed region of stability inside
this polytope. The proposed control design is tailored in terms of linear matrix inequalities together
with convex optimization to achieve an enlarged stability region. A numerical example is presented to

illustrate the application of the stabilization method.
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1. INTRODUCTION

Markov jump systems, namely dynamic systems that are sub-
ject to random abrupt parameters changes in their structure
which are modeled via a Markov process, constitute an im-
portant class of dynamic systems and find applications in a
number of scenarios, as for instance, to model plants subject to
random components failures, sudden environment disturbances
and changes of the operating point. Over the last ten or more
years, intensive research effort has been direct towards Markov
jump systems and important advances have been made to the
topics of stability analysis, control design and filtering in the
context of linear systems; see, the seminal works of Sworder
[1969] and Wonham [1970], and the books [Mariton, 1990,
Boukas, 2006, Costa et al., 2013, 2014] and their references to
cite a few. However, to date, few results have focused on the
nonlinear counterpart. For instance, Boukas ez al. [2003], Wei
et al. [2008] and Wang et al. [2010] have dealt with control of
Markov jump linear systems subject to unknown nonlinearities
under either a global Lipschitz condition or linear growth con-
dition, Liu et al. [2006] have proposed stabilization conditions
for jump linear systems subject to sector bound nonlinearities,
and in Wu ef al. [2009] the classical backstepping technique
of control design for nonlinear systems has been extended to
Markov jump systems. Furthermore, de Souza and Coutinho
[2006] have developed a linear matrix inequality (LMI) method
of local robust stability analysis and estimation of domain of
attraction for the class of Markov jump nonlinear rational sys-
tems under parametric uncertainty, and very recently Zhao et
al. [2012] have studied the input-to-state stability of Markov
jump nonlinear systems.
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On the other hand, the class of bilinear systems and its exten-
sion, the so-called nonlinear quadratic systems (i.e. systems
with quadratic nonlinearities in the state variables and bilin-
ear terms in the state and control signal), have attracted the
attention of control systems researchers in the last years due
to its capability of adequately modeling a number of process
dynamics while keeping the conditions for stability analysis and
control synthesis numerically tractable. To cite a few, Amato
et al. [2007] have derived conditions for designing locally
stabilizing linear controllers with a guaranteed region of sta-
bility for quadratic systems, Valmoribida et al. [2010] have
addressed the problem of actuator saturation, and Coutinho and
de Souza [2012] have proposed designs of nonlinear quadratic
controllers for local stabilization, quadratic cost control, and
H., control of quadratic system while providing a guaranteed
region of stability. In spite of these developments, to the au-
thors’ knowledge, the design of locally stabilizing feedback
controllers for Markov jump nonlinear quadratic systems has
not yet been addressed in the specialized literature.

This paper deals with the problem of local mean square sta-
bilization of Markov jump nonlinear quadratic systems. The
motivations for considering this problem are as follows. First,
Markov jump systems with quadratic nonlinearities can repre-
sent a large number of processes, and includes the so-called
Markov jump bilinear systems as a special case. Secondly,
stabilization conditions generally do not hold globally for non-
linear systems. We will develop an LMI based synthesis method
of static nonlinear quadratic state feedback controllers to ensure
the local exponential mean square stability of the zero equilib-
rium point of the closed-loop system with a guaranteed region
of stability (in the mean-square sense) inside a given bounded
polyhedral region of the state-space.
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Notation. R" is the n-dimensional Euclidean space, R is
the set of n x m real matrices, || - || is the Euclidean vector norm,
0, and 0,,x, are respectively the n x n and m X n matrices of
zeros, I, is the n X n identity matrix, and diag{---} denotes a
block-diagonal matrix. For a real matrix S, S’ is the transpose
of S, He(S) denotes S+ ', and S >0 (S > 0) means that S
is symmetric and positive definite (semi-definite). The symbol
* in symmetric block matrices stands for the transpose of
the blocks outside the main diagonal block and mathematical
expectation is denoted by E[-].

2. PROBLEM FORMULATION

Fix an underlying probability space (,.%#,IP) and consider the
stochastic system:

x(t) = Ag, (x(2))x(t) + B, (x(1))u(t), x(0)=x€ Z (1)
where x(1) € R” is the state vector u(t) € R™ is the control
vector, {6} is a homogeneous Markov process with right
continuous trajectories and assuming values on a finite set @ =
{1,2,...,0} that represents the system operating modes, 2" C
R”" is a given polytopic region of the state-space containing
the origin that defines the domain to be considered for local
stability analysis (to be specified latter), and Ag, (x) and Bg, (x)
for each possible values of 6, =i, V i € ©, are affine matrix
functions of x, namely

Agt 0] + ZxkA[k s Bgt ) ] + Zka 2)

where x; denotes the k-th component of x, and A[elf] and B[elf],
k=1,...,n, forall 8(¢) € O, are given constant matrices.

The Markov process {6;} is assumed to satisfy the following
assumptions:

Assumption 1.

(a) {6} has a stationary transition rate matrix A =
1,...,0, such that

[Aij], i, j=

Aijh+o(h), i#j

P{6., =6 —it—
{60 =716, =1} {1+A,~ih+o(h), i=j

where h >0, limy, o ( ) — 0, A;j > 0 is the transition rate
from the state i to the state j, i # j, and

(9
=-Y Aj: (3)
j=1
J#
(b) {6} is accessible.

Note that the joint process { (x(), 6;), t >0} is a Markov
process; see, for instance, Wonham [1970].

This paper focuses on designing a mode-dependent static non-
linear quadratic state feedback control law as follows:

u= Ker ()C) X5 Ket (‘x) = I([(X), when 91 = iy
Ki(x) = Ki[OJ n Zkai[k]v 4)
k=1

to locally stabilize the equilibrium solution x = 0 of the closed-

loop system, where Ki[k}, i=1,...,0,k=1,...,n, are constant
matrices to be found. To this end, the notion of stability for
the closed-loop system used in this paper is in the mean square

sense. In the sequel we introduce the following concept of local
exponential mean square stability.

Definition 1. The closed-loop system of (1) with the control
law in (4) is said to be locally exponentially mean square stable
if for any x¢ in a neighborhood of x=0 and 6, € ©, there exist
positive scalars o and 3 such that x(¢) satisfies

E[[lx(1)[P] < Bllxol*e™®", ¥1 > 0.

The equilibrium point x=0 of system (1) with u() =0 is al-
lowed to be mean square unstable and the following assumption
is adopted:

Assumption 2. The Markov jump linear system

(1) = Ag,(0)x(t) + By, (0)u(t)

is mean square stabilizable via a mode-dependent static linear
state feedback u(r) = Kg,x(t).

Note that Assumption 2 is required in order for determining a
mean square stabilizing control law as in (4) for the system (1).

For notation simplicity, in the sequel the argument ¢ of x() and
u(t) will be often omitted. In addition, the value of a function
Ry, for each possible values of 6, =i, Vi € ©, will be denoted
byRi7 i=1,...0

In the paper, we will address the following stabilization prob-
lem for system (1): Determine a control law as in (4) that en-
sures the local exponential mean square stability of the closed-
loop system and a guaranteed stability region inside a given
polytopic region 2~ of the state-space, namely a set of ini-
tial states xo for the closed-loop system inside 2~ such that
E[|[x(t)||>] = 0 as t — oo for all 8y € ®. The latter problem
of local stabilization while providing a stability region will be
referred to as regional mean square stabilization.

The polytopic state-space region .2~ plays an important role on
deriving an LMI based solution to the regional mean square
stabilization problem. For simplicity of presentation, it is as-
sumed that 2 is a given symmetric polytope (with respect to
the origin). Depending on the context, 2~ will be represented
either in terms of the convex hull of its n, vertices as below:

Z = Co{vi,v2,...,vn, }» %)

where v, € R*, k = 1,...,n, are the vertices of .2, or in terms

of its faces, that is
%:{xeR"ﬂcﬁcx\gl, kzl,...7nf}, 6)

with ¢y € R", k= 1,...,ns defining the faces of 2 . Note that
the results of this paper can be easily extended to handle a non-
symmetric polytope 2 .

To conclude this section, we present a version of Finsler’s
lemma to handle constrained inequalities (see, e.g., de Oliveira
and Skelton [2001]).

Lemma 1. Given matrix functions H(v) € R**"e_ S(v)=S(v) €
R™>*™ and n(v) € R™, with ve VC RY, then
nE)'SE)n(v) <0, YveV:HE)n(v) =0, n(v) #0

if there exists a matrix L such that

S(v)+He(LH(v)) <0, VveV.
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3. REGIONAL STABILIZATION

First, we write the closed-loop system of (1) with the control
law in (4) in the following form:

s= [0, (0)+ (B +T0)'Bo ) Ko (0) | x, (D
where
B[eil xily
Bg=| : |, x)=| : |. ®)
BE;] X1,

For the sake of easier readability, the results related to local
stabilization and stability region will be separately presented.

3.1 Local Stabilization

Consider the following mode-dependent Lyapunov function
candidate for the closed-loop system in (7):

Vet(x(t)) :x(t)’Pgtx(t), €)
where Py, for each possible value of 6; =i, Vi€ ®, is a
symmetric positive-definite matrix to be determined.

Let </ be the infinitesimal generator of the Markov process
{(x(1),6;), t >0}, where x(¢) satisfies (7). Then, it can be
readily obtained that (see, e.g. Kushner [1967]):

T(x) Bo, Ko, ()] x

(¢
+ X Z /,LO,,ijx-

of Vg, (x) =21 Py, [Ae, (x) + BY Ko, (x) +

(10)
j=1
Define the following variable transformations:
Eo, =Pox, Qo =Py (1n
Then, <7 Vg, (x) in (10) can be written as
Vo, (x) =284, | A6, (¥) + Bly Ko, (x)
(9
+ I(x)' Bg,Ke, (X)] 00,80, +600, Y Ao,jQ; ' Qo,&e- (12)
j=1
Next, introducing the parametrization
Yo, (x o+ Z Yy = Ko ()00, (13)
we can recast (12) as
Vo, (x) = M, | @0, (¥) + N'Qg Aq O N5, 0N | g, (14)
where
"’ = In 0
Ne, = [H(x)]ée” N [ n><n2]a (15)
0]y
q)i(x): He (Al( )+B ( )) +1‘11Q1 * , (16)
B; Y;(x) 0
A= [)villn 2,1-(1;1)],, z'i(iJr])In : A«icln} (17)
Qi =diag { 1101, ..., Lii—1)Qi1, Ai(i+1)Qir 1, - -, Ao Qo } -
(18)

Note that the vector ng, satisfies the following equality con-
straint:

II(x) —1I,

Q(X)TIGI = Oa Q(x) = JV(X) 5 (19)

On(n—1)><n

where .4 (x) is a linear matrix annihilator! of the matrix

function IT(x), which is given by:

xol, —xil, 0, s 0,
0 1, —xol, .- 0,
/V(x) _ n X31n X2 (20)
0y, t 0, Xoly  —xp_1ly

In light of the representation of .7 -Vp,(x) in (14) and the
equality constraint in (19), by Lemma 1 we are able to derive
the following local mean square stabilization result for the
system (1):

Theorem 1. Consider the system (1) and let 2~ be a given
polytopic region defined by (5). Suppose there exist real ma-

trices L;, Q;, Yi[o], e Yi["], i=1,...,0, satisfying the following
LMIs:

Ei(vj) <0, j=1,...,n,, i=1,...,0, 21
where

®;(x) +He (L; Q(x))
Zx) = IR ~ (22)
A;OiN -0

Then, the control law u= Ky, (x)x, with K¢, (x) =Y;(x)Q; ' when

6, =i, where Y;(x) :Yi[O] +x1Yi[1] +... ernYl-["}, ensures that the
controlled system is locally exponentially mean square stable.

Proof. Firstly, it follows that Vg, (x) in (9) satisfies

A <Vilx) <Ai|lx]?, Vx€ERY, i=1,...,6 (23)

where A ; and A; are respectively the minimum and maximum

eigenvalues of P,.

Secondly, (21) implies that Q; >0, i =1,..., 0. Hence, the state
feedback gain Kg, (x)=Y;(x)Q;"' when 6,=i, is well defined and
it follows from (13).

Next, note that if the LMIs in (21) are feasible, then by convex-
ity they are also satisfied for all x € Z". Thus, consider (21) with
vi=x,Vxe 2. Applying Schur’s complement, these LMIs are
equivalent to

®;(x) +N'Qi A O; 'A[QiN +He (LiQ(x)) <0,
VxeZ,i=1,...,0

As the latter inequalities are strict, it follows that there exist
sufficient small scalars & >0, i=1,..., 0, such that
®;(x) +N'Qi A Q7 'ALQiN + He (L Q(x))

+ &N'Q;ON<0, YxeZ, i=1,...,0. (24)

Since for ng, in (15) we have Q(x)ng, = 0, then in view of
Lemma 1 the inequalities in (24) imply that

m’[q)i(x) +N'Q;A: Q7 'ALQiN +&N'Q; OiN | m; < 0,
Vxe Z,x#0,1n,#0, i=1,...,0. (25)

' A matrix .4 (x) is a linear matrix annihilator of a matrix function Y(x) if it
is linear in x and such that .4 (x)Y(x) = 0; this is an extension of the notion of
linear annihilator as proposed in Trofino [2000].
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Considering (14) and that Q; Nn; = x, (25) leads to

o Vi(x) < —gllx|}, YVxeZ, x#0, i=1,...,6. (26)

Now, taking into account (23) and (26), we get
o - Vi(x)

<-a, VxeZ, x#0, i=1,...,0,
Vit 7

where o := minjee { /4, }.

Applying Dynkin’s formula Kushner [1967] and the Gronwall-
Bellman’s lemma (Desoer and Vidyasagar [1975]) to the latter
inequality and using similar arguments as in the proof of
Theorem 1 in Ji and Chizeck [1990], it follows that:

E[ Vg, (x(1))|x0,60] < Vg, (x0)e™*, V1 >0, V6 €0, (27)
and for all xq in a neighborhood of the origin. Thus, the closed-

loop system is locally exponentially mean square stable. VVV

3.2 Stability Region

Assuming that the conditions of Theorem 1 hold, consider the
Lyapunov function Vg, (x) as in (9) that proves local exponential
mean square stability of the closed-loop system and let the sets:

Zi={xeR":Vi(x)< 1}, i=1,...,0, (28)

subjectto Z; C 4, i =1,...,0. Note that in view of (27), the
intersection %, of all %;, i.e.

%0 = ﬂ%,

i€c®

(29)
is a contractive and positively invariant set in the mean square
sense, that is:

E[Vi(x(?))|x0,60] <1, YVt >0, i=1,...,0,

. 21 _
lim E[[[x[]] =0,

and

forall xo € 2" and 6, € ©. In addition, it follows that E[x(¢) ] €
Ro, ¥t > 0 and lim;_.. E[||x||] = 0.

Thus, the set %, subject to the inclusion conditions %; C
Z,i=1,...,0, could be adopted as a stability region in
the mean square sense. Note that it is desirable to obtain a
stability region as large as possible, i.e., the largest possible
volume % inside 2Z". However, it turns out that the problem
of maximizing the volume of %y is numerically hard. To
overcome this difficulty, the stability region considered in this
paper is the largest ellipsoid
%’:{xeR":x'ngl}, P>0 (30)
contained in % and subjectto Z; C 2, i=1,...,0.

In light of (28) and (29), a sufficient condition to ensure Z C
X is given by:

1 .
P—-Q; >0,i=1,...,0,
which clearly implies that Z C %;, Vi € ©.

€29

Defining P=0Q!, by Schur’s complement (31) is equivalent to
the following set of LMIs

{Q" Q} >0, i=1,...,0.

32
0 0 (32)

On the other hand, the inclusions %; C Z', i=1,...,0, are
equivalent to (see Boyd et al. [1994]):

176;Qi6‘j20, jzl,...,nf, iil,...,G, (33)

where ¢;, j=1,...,ny are the vectors defining the faces of 2~
as given in (6).

As for maximizing the size of %, since the volume of % is
proportional to y/det(Q), this maximization can be achieved by

solving the convex problem of minimizing —log(det(Q)) (see,
e.g., Boyd et al. [1994]).

The above arguments lead to the following theorem that
presents a method based on an LMI optimization problem to
determine a stability region &% with maximized volume for a
given polytopic state-space domain 2.

Theorem 2. Consider the system (1) and let 2~ be a given

polytopic region defined by either (5) or (6). Suppose there exist
real matrices Q and L;, Q;, Yi[o], e Yi["], i=1,...,0, solving

the following LMI optimization problem:

—logdet(Q)

: (34)
subject to (21), (32), (33).

Then, the control law u= Ky, (x)x, with Kg, (x) =Y;(x)Q; ' when

6, =i, where Y;(x) :Yi[o] +x Yi[ 1 +... +ani["], ensures that the
controlled system is locally exponentially mean square stable.
Moreover, the set Z defined in (30) with P=Q~! is such that
for any initial state xo € #Z and 6y € ©, we have E[x(t) | € .
V¢t >0 and lim;o E[||x]|]] = 0, with % being as defined
in (29).

Remark 1. Notice that since & is a subset of %, it follows
that Z is not necessarily a contractive and positive invariant
set (in the mean square sense). Nevertheless, any state trajec-
tory starting with xp inside % and for any 6y € © satisfies
limy .. E[||x(t) |*] = 0.

4. AN EXAMPLE

Consider a Markov jump nonlinear quadratic system as in (1)
with two operating modes and the following matrices:

Ax) = 0.2x; 0
=10 14020
—1+0.2x; -1
A —
2(x) { 0 —09+0.2x } ’
0 1
pin= 2} oo [1]
A -3 3
| 6 —6]
Note that as the following Markov jump linear system:
X =Aq (0)x

with A;(+), i= 1,2 as above is not mean square stable, it turns
out that the equilibrium point x =0 of the nonlinear system
under consideration is not locally mean square stable. On the
other hand, it can be readily verified that the Markov jump
linear system as below is mean square stabilizable
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)'CZAQI(O)X—F BQI(O)M.

In this example, the objective is to design a nonlinear quadratic
control law as in (4) which guarantees the local exponential
mean square stability of the closed-loop system while maxi-
mizing the stability region % of the equilibrium point x=0 for
a given polytope 2" in the state-space containing the origin. To
this end, we consider 2" to be a square, that is:

X ={xeR?:|xj|<p,i=12},

where p is a positive scalar defining the size of 2.

(35)

In the following, we apply Theorem 2 to derive a stabilizing
quadratic state feedback controller for the given system with
p =2 in (35), which has led to the following results:

b p_ [0341 0.000 ~ [0.250 0.000
PP T 10,000 02510 27 10.000 0250
Ki(x) = 0.000 ’+ 0.137 /><10—7 0.0007’
W= 5756 " 0.000 210200
Ko(x) = -57.70)’ 0.162 ’+ 0.0377’
2@ =1 1000 | ~*[0.000| T*]0.000|"

The stability region & along with the sets %; (both in solid line)
and %, (in dotted line) as defined in (28) and (30) are shown
in Fig. 1. Note in this case that & coincides with Z| = %y =
B\ NHs.

Fig. 1. Stability region &% and the sets % and %, for p = 2.

Notice that we can iteratively apply Theorem 2 aiming to
enlarge the size of 2 and consequently the size of %. More
specifically, we can increase p until the conditions in (21), (32)
and (33) are no longer feasible to maximize the size of 2" In
light of that, we have obtained the results shown in Fig. 2 for a
maximal p =7.

5. CONCLUDING REMARKS

This paper has investigated the problem of state feedback local
stabilization of open-loop unstable Markov jump nonlinear
quadratic systems. Specifically, we have derived a condition

—_4}

61 SN e
i i i ‘N i i i
-6 -4 -2 0 2 4 6
T

Fig. 2. Stability region % and the sets % and %, for p = 7.

for local exponential mean square stabilization in terms of
state-dependent LMIs which are required to be satisfied at
the vertices of a given polytopic region of the state-space
containing the zero equilibrium point of the closed-loop system.
In addition, a convex optimization procedure in terms of LMIs
has been proposed for designing a local stabilizing nonlinear
quadratic control law while ensuring a maximized stability
region for the closed-loop system inside the given polytopic
region.
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