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Abstract: This work deals with state feedback compensation of disturbance inputs in
continuous-time switched linear systems, with the requirement that the closed-loop systems be
exponentially stable under switching signals with a sufficiently large dwell-time. Constructive
conditions for the problem to be solvable are shown, on the assumption that the given switched
linear system has zero initial state. The effects of nonzero initial states are inspected. The
theoretical background consists of both classic and novel ideas of the geometric approach,
enhanced with notions specifically oriented to switched linear systems.
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1. INTRODUCTION

In the last few decades, switched systems have effectively
been employed in solving control problems that involve
systems with different modes of operation: e.g., LQR opti-
mal control (Balandat et al., 2012),H2 control (Mahmoud,
2009), H∞ control (Deaecto et al., 2011), output regula-
tion (Zattoni et al., 2013), model matching (Conte et al.,
2014), and disturbance decoupling (Otsuka, 2010; Conte
and Perdon, 2011; Zattoni and Marro, 2013) are typical
synthesis problems recently formulated for switched sys-
tems. As to disturbance decoupling, the abovementioned
papers are focused on the requirement that the closed-
loop system be quadratically stable. In (Otsuka, 2010;
Conte and Perdon, 2011), quadratic stability of the closed-
loop system is sought for a suitable switching law. In
(Zattoni and Marro, 2013), quadratic stability is requested
for arbitrary switching signals. However, quadratic stabil-
ity is quite a demanding specification. As is well-known
(e.g., Lin and Antsaklis, 2009), quadratic stability under
arbitrary switching is only a sufficient condition for asymp-
totic stability and could be rather restrictive. Moreover, it
has also been shown that switched systems may not be
asymptotically stable under arbitrary switching, but may
enjoy this property for some classes of switching signals,
satisfying specific constraints. In addition, restrictions on
the switching signals may arise from physical constraints
on the systems or may be inferred from some knowledge
of the switching rules. For these reasons, in this work,
we will investigate the problem of disturbance decoupling
with exponential stability under restricted switching.

Notation: R, R+, Z+, and C
− stand for the sets of real

numbers, nonnegative real numbers, nonnegative integer
numbers, and complex numbers with negative real part,
respectively. Matrices and linear maps are denoted by

upper-case letters, like A. The image, the kernel, and the
spectrum of A are denoted by imA, kerA, and λ(A),
respectively. The transpose of A is denoted by A�. Vector
spaces and subspaces are denoted by calligraphic letters,
like V. The quotient space of a subspace V over a subspace
W⊆V is denoted by V/W. The restriction of a linear map
A to an A-invariant subspace J is denoted by A|J . The
inverse image of a subspace V through a linear map B
is denoted by B−1V. The symbol � denotes union with
repetition count. The symbols I and O respectively stand
for an identity matrix and a zero matrix with appropriate
dimensions.

2. PROBLEM STATEMENT

Let Σσ(t) be a continuous-time switched linear system
defined by

Σσ(t) ≡
{
ẋ(t) = Aσ(t) x(t) +Bσ(t) u(t) +Hσ(t) h(t),
e(t) = Eσ(t) x(t),

(1)
where t∈R

+ is the time variable, x∈X =R
n is the state,

u∈R
p is the control input, h∈R

m is the disturbance
input, and e∈R

q is the output, with p,m, q≤n. Let the
modes of Σσ(t) be the linear time-invariant systems of the
set {Σi, i∈I}, where I = {1, 2, . . . , N} and

Σi ≡
{
ẋ(t) = Ai x(t) +Bi u(t) +Hi h(t),
e(t) = Ei x(t),

i ∈ I, (2)

with Ai, Bi, Hi, Ei constant real matrices of suitable
dimensions. Let Bi, Hi, Ei be full-rank matrices. Let
the sets of the admissible control input signals and of
the admissible disturbance input signals be respectively
defined as the sets of piecewise-continuous functions u(t)
and h(t), with t∈R

+, taking finite values in R
p and R

m.

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 164



Let the switching signal σ(t) be defined as a measurable
and not a-priori known map σ :R+ →I, t→ i, so that the
active mode at the time t∈R

+ is Σi, with i=σ(t). The
switching signal σ(t) is assumed to be subject to time-
domain restrictions as specified below. Let t�, with �∈Z

+,
be the sequence of the switching times. The positive real
constant τ , defined as τ = inf�∈Z+ {t�+1 − t�}, is assumed
to be greater than or equal to a finite positive real con-
stant τd. The set of all switching signals σ(t) with τ no
smaller than τd is denoted by Sτd and the finite positive
real constant τd is called dwell-time. Hence, the time-
domain restriction on σ(t) can be concisely expressed as
σ(t)∈Sτd .

Let Fσ(t) denote a switched state feedback, associated with

the set {Fi ∈R
p×n, i∈I}. Hence, the closed-loop system

is described by the continuous-time switched linear system

Σ̂σ(t) ≡
{
ẋ(t) = (Aσ(t) +Bσ(t) Fσ(t))x(t) +Hσ(t) h(t),
e(t) = Eσ(t) x(t),

(3)
with the modes

Σ̂i ≡
{
ẋ(t) = (Ai +Bi Fi)x(t) +Hi h(t),
e(t) = Ei x(t),

i ∈ I. (4)

Let the following assumption hold:

A 1. x(0)= 0.

Assumption A 1 is a standing assumption in perfect decou-
pling problems. However, as will be observed in Remark 37,
if the initial state is different from zero, zero output can
still be guaranteed, provided that the initial state belongs
to a certain subspace, which will be determined precisely.
Moreover, as will be pointed out in Remark 38, if the
initial state is different from zero and does not belong to
the abovementioned subspace, asymptotic decoupling can
be achieved in place of perfect decoupling, provided that
suitable stability conditions are satisfied.

The problem of disturbance decoupling, with the require-
ment that the closed-loop system be exponentially stable
under dwell-time switching, is stated as follows.

Problem 1. Given the continuous-time switched linear sys-
tem Σσ(t), defined by (1), with the modes {Σi, i∈I},
defined by (2), find a switched state feedback Fσ(t), as-
sociated with the set {Fi, i∈I}, such that, on Assump-
tion A 1, the following requirements are satisfied:

R 1. the output e(t) be equal to zero for all t∈R
+, for any

admissible disturbance h(t), with t∈R
+;

R 2. the system Σ̂σ(t), defined by (3), with the modes

{Σ̂i, i∈I}, defined by (4), be exponentially stable
over Sτd , for some finite positive real constant τd.

3. GEOMETRIC APPROACH FOR SWITCHED
LINEAR SYSTEMS

The purpose of this section is to gather the notions of
the geometric approach that will be used to solve Prob-
lem 1. For the reader’s convenience, some basic concepts
are reviewed (Basile and Marro, 1992; Wonham, 1985).
Novel geometric objects, like the reachability subspaces
constrained to the maximal robust controlled invariant
subspace, and new geometric ideas, like those of inter-

nal and external exponential stabilizability of the maxi-
mal robust controlled invariant subspace under dwell-time
switching, are also introduced.

The definitions and properties surveyed below refer to
the continuous-time switched linear system Σσ(t), defined
by (1), with the modes {Σi, i∈I}, defined by (2). Short
notations for images and null spaces of input and output
matrices, respectively, are used: Bi = imBi, Hi = imHi,
and Ei =kerEi, with i∈I. The subspace E ⊆X is defined
by E =

⋂
i∈I Ei. A subspace J ⊆X is said to be a robust

Ai-invariant subspace if Ai J ⊆J , for all i∈I. A subspace
V ⊆X is said to be a robust (Ai,Bi)-controlled invariant
subspace if Ai V ⊆V +Bi, for all i∈I. A subspace V ⊆X is
a robust (Ai,Bi)-controlled invariant subspace if and only
if there exists a set of linear maps {Fi, i∈I}, such that
(Ai +Bi Fi)V ⊆V, for all i∈I.
As was first shown in (Basile and Marro, 1987), the set
of all robust (Ai,Bi)-controlled invariant subspaces con-
tained in a given subspace E is an upper semilattice, with
the sum as binary operation and the inclusion as partial
ordering relation. The maximum of the set of all robust
(Ai,Bi)-controlled invariant subspaces contained in the
subspace E is called the maximal robust (Ai,Bi)-controlled
invariant subspace contained in E and is denoted by V∗

R.
A double-recursion algorithm for computing V∗

R was also
given in (Basile and Marro, 1987, Algorithm 1).

The remainder of this section is split into two parts.
Section 3.1 is aimed at introducing the notions of internal
switched dynamics and internal exponential stabilizability
under dwell-time switching of the maximal robust con-
trolled invariant subspace. The purpose of Section 3.2
is introducing the notions of external switched dynamics
and external exponential stabilizability under dwell-time
switching of the same subspace.

3.1 Internal Switched Dynamics and Internal Exponential
Stabilizability Under Dwell-Time Switching of the Maximal
Robust Controlled Invariant Subspace

In this work, the notion of maximal robust controlled
invariant subspace contained in a given subspace is referred
to the modes of a switched linear systems. Hence, switched
dynamics can be induced on that subspace and stabiliz-
ability issues can be raised for those dynamics. This section
is centred on the definition of internal switched dynam-
ics and the property of exponential stabilizability under
dwell-time switching of such dynamics. The exponential
stabilizability under dwell-time switching of the internal
dynamics of V∗

R depends on the properties of the fixed
internal dynamics of V∗

R with respect to each system of the
set {Σi, i∈I}. In order to analyze this aspect in detail, the
reachability subspace constrained to V∗

R — henceforth de-
noted by RV∗

R
,i — is introduced for each system Σi. Hence,

the assignable and fixed internal dynamics of V∗
R with

respect to Σi can easily be singled out, since the assignable
internal dynamics of V∗

R with respect to Σi coincides with
the internal dynamics of RV∗

R
,i. Based on this fact and on

a sufficient condition for a switched linear dynamics to be
exponentially stable under dwell-time switching (Morse,
1996), a sufficient condition for the internal switched dy-
namics of V∗

R to be exponentially stabilizable under dwell-
time switching is given. It is worth mentioning that the
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approach based on the constrained reachability subspaces
distinguishes this work from previous ones on disturbance
decoupling in switched linear systems (e.g., Conte and
Perdon, 2011), where a kind of left-invertibility assumption
was made. For the sake of brevity, the following statements
are presented without proof.

Standard mathematical arguments show that, for any
i∈I, the set of all (Ai,V∗

R)-conditioned invariant sub-
spaces containing Bi is a lower semilattice, with the in-
tersection as binary operation and the inclusion as partial
ordering relation. Hence, the following definition is well-
posed.

Definition 2. The minimum of the set of all (Ai,V∗
R)-

conditioned invariant subspaces containing Bi is called the
minimal (Ai,V∗

R)-conditioned invariant subspace contain-
ing Bi and is denoted by SV∗

R
,i.

Since Definition 2 differs from that of the minimal (Ai, Ei)-
conditioned invariant subspace containing Bi in the sub-
space Ei being replaced with V∗

R, the algorithm for com-
puting SV∗

R
,i can be derived from (Basile and Marro, 1992,

Algorithm 4.1-1) by the consistent modification.

Algorithm 3. For any i∈I, the subspace SV∗
R
,i is the

last term of the sequence S0
V∗

R
,i =Bi, Sj

V∗
R
,i =Ai (Sj−1

V∗
R
,i ∩

V∗
R)+Bi, with j=1, . . . , ki, where ki <n is the least inte-

ger such that Ski+1
V∗

R
,i =Ski

V∗
R
,i.

Definition 4. Let V ⊆V∗
R be an (Ai,Bi)-controlled invari-

ant subspace for some i∈I. The subspace V is said to be
self-bounded with respect to V∗

R if V ⊇V∗
R ∩Bi.

Proposition 5. Let the linear map Fi be such that
(Ai +Bi Fi)V∗

R ⊆V∗
R for some i∈I. Then, (Ai +Bi Fi)V ⊆

V holds for any (Ai,Bi)-controlled invariant subspace
V ⊆V∗

R self-bounded with respect to V∗
R.

Proposition 6. Let V1,V2 ⊆V∗
R be (Ai,Bi)-controlled in-

variant subspaces self-bounded with respect to V∗
R for some

i∈I. Then, V =V1 ∩V2 is an (Ai,Bi)-controlled invariant
subspace self-bounded with respect to V∗

R.

Owing to Proposition 6, for any i∈I, the set of all (Ai,Bi)-
controlled invariant subspaces self-bounded with respect to
V∗
R is closed with respect to the intersection. Moreover, the

set of all (Ai,Bi)-controlled invariant subspaces contained
in a given subspace is an upper semilattice, with the sum
as binary operation and the inclusion as partial ordering
relation. Hence, the set of all (Ai,Bi)-controlled invariant
subspaces self-bounded with respect to V∗

R is a lattice
— henceforth denoted by ΦBi,V∗

R
— with the sum and

the intersection as binary operations and the inclusion as
partial ordering relation. The maximum of ΦBi,V∗

R
is V∗

R,
which is independent of i∈I. The next theorem provides
the minimum of ΦBi,V∗

R
, which depends on i∈I, in general.

Theorem 7. For any i∈I, the minimum of ΦBi,V∗
R

is the
subspace SV∗

R
,i ∩ V∗

R, denoted by RV∗
R
,i and called the

reachability subspace constrained to V∗
R.

Hence, Theorem 7 has introduced the reachability sub-
space constrained to V∗

R for each mode of the set
{Σi, i∈I}. The objective of the following statements is
to show that, for any i∈I, the internal dynamics of RV∗

R
,i

is assignable and matches the internal assignable dynamics
of V∗

R with respect to Σi.

Lemma 8. Consider the continuous-time linear time-
invariant systems of the set {Σi, i∈I} and the max-
imal robust (Ai,Bi)-controlled invariant subspace con-
tained in E , V∗

R. For any i∈I, consider the min-
imal (Ai,V∗

R)-conditioned invariant subspace contain-
ing Bi, SV∗

R
,i, and the constrained reachability sub-

space RV∗
R
,i. Perform the state-space basis transfor-

mation T ′
i = [T ′

1,i T ′
2,i T ′

3,i T ′
4,i ], with imT ′

1,i =RV∗
R
,i,

im [T ′
1,i T

′
2,i ] =V∗

R, im [T ′
1,i T

′
3,i ] =SV∗

R
,i, and the control-

input-space basis transformation Ui = [U1,i U2,i ], with

imU1,i =B−1
i V∗

R. Then, with respect to the new coordi-
nates,

A′
i = (T ′

i )
−1Ai T

′
i =

⎡
⎢⎢⎢⎣
A′

11,i A′
12,i A′

13,i A′
14,i

O A′
22,i A′

23,i A′
24,i

A′
31,i A′

32,i A′
33,i A′

34,i

O O A′
43,i A′

44,i

⎤
⎥⎥⎥⎦ , (5)

B′
i = (T ′

i )
−1Bi Ui =

⎡
⎢⎢⎢⎣
B′

11,i B′
12,i

O O

O B′
32,i

O O

⎤
⎥⎥⎥⎦ , (6)

H ′
i = (T ′

i )
−1Hi =

⎡
⎢⎢⎢⎣
H ′

1,i

H ′
2,i

H ′
3,i

H ′
4,i

⎤
⎥⎥⎥⎦ , (7)

E′
i =Ei T

′
i =

[
O O E′

3,i E′
4,i

]
. (8)

Lemma 9. Consider the continuous-time linear time-
invariant systems of the set {Σi, i∈I} and the maximal
robust (Ai,Bi)-controlled invariant subspace contained in
E , V∗

R. Let the set {Fi, i∈I} be such that

(Ai +Bi Fi)V∗
R ⊆ V∗

R, ∀ i ∈ I. (9)

For any i∈I, refer to the coordinates introduced in
Lemma 8 and let

F ′
i =U−1

i Fi T
′
i =

[
F ′
11,i F ′

12,i F ′
13,i F ′

14,i

F ′
21,i F ′

22,i F ′
23,i F ′

24,i

]
(10)

be partitioned accordingly. Then, with respect to the new
coordinates, A′

F,i =A′
i +B′

i F
′
i has the structure shown

in (11).

Definition 10. For any i ∈ I, the restricted linear map
(Ai+Bi Fi)|RV∗

R
,i
is called the internal dynamics of RV∗

R
,i.

Definition 11. For any i ∈ I, the restricted linear map
(Ai +Bi Fi)|V∗

R
is called the internal dynamics of V∗

R with
respect to the system Σi.

Remark 12. For any i ∈ I, the restricted linear map (Ai+
Bi Fi)|RV∗

R
,i
is represented by the matrix

X ′
R,i =A′

11,i +B′
11,i F

′
11,i +B′

12,i F
′
21,i,

with respect to the coordinates introduced in Lemma 8.

Remark 13. For any i∈I, the restricted linear map
(Ai +Bi Fi)|V∗

R
is represented by the matrix

X ′
V,i =

[
X ′

R,i A′
12,i +B′

11,i F
′
12,i +B′

12,i F
′
22,i

O A′
22,i

]
,

with respect to the coordinates introduced in Lemma 8.
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A′
F,i = A′

i +B′
i F

′
i =

⎡
⎢⎢⎢⎢⎢⎣

A′
11,i +B′

11,i F
′
11,i

+B′
12,i F

′
21,i

A′
12,i +B′

11,i F
′
12,i

+B′
12,i F

′
22,i

A′
13,i +B′

11,i F
′
13,i

+B′
12,i F

′
23,i

A′
14,i +B′

11,i F
′
14,i

+B′
12,i F

′
24,i

O A′
22,i A′

23,i A′
24,i

O O A′
33,i +B′

32,i F
′
23,i A′

34,i +B′
32,i F

′
24,i

O O A′
43,i A′

44,i

⎤
⎥⎥⎥⎥⎥⎦
. (11)

Proposition 14. For any i ∈ I, the spectrum λ((Ai +
Bi Fi)|RV∗

R
,i
) is assignable.

Proposition 15. For any i ∈ I, the spectrum λ((Ai +
Bi Fi)|V∗

R
/RV∗

R
,i
) is fixed.

Definition 16. The switched linear dynamics (Aσ(t) +
Bσ(t) Fσ(t))|V∗

R
, associated with the set of restrictions

{(Ai +Bi Fi)|V∗
R
, i∈I}, is called the internal switched dy-

namics of V∗
R.

Definition 17. The subspace V∗
R is said to be internally

exponentially stabilizable over Sτ̃d , with τ̃d denoting a
finite positive real constant, if there exists a set {Fi, i∈I},
such that V∗

R is a robust (Ai +Bi Fi)-invariant subspace
and the switched dynamics (Aσ(t) +Bσ(t) Fσ(t))|V∗

R
, asso-

ciated with the set of restrictions {(Ai +Bi Fi)|V∗
R
, i∈I},

is exponentially stable over Sτ̃d .

Proposition 18. There exists a sufficiently large, finite pos-
itive real constant τ̃d such that the subspace V∗

R is inter-
nally exponentially stabilizable over Sτ̃d if

λ(A′
22,i) ⊂ C

−, ∀ i ∈ I, (12)

with A′
22,i defined as in Lemma 8.

3.2 External Switched Dynamics and External Stabilizability
Under Dwell-Time Switching of the Maximal Robust
Controlled Invariant Subspace

This section deals with the definition of the external
switched dynamics of the maximal robust controlled in-
variant subspace and the property of exponential stabi-
lizability under dwell-time switching of such dynamics.
The exponential stabilizability under dwell-time switching
of the external switched dynamics of V∗

R depends on the
properties of the fixed external dynamics of V∗

R with re-
spect to each system of the set {Σi, i∈I}. In particular,
the assignable external dynamics of V∗

R with respect to
the system Σi coincides with the dynamics induced on
the quotient space (V∗

R +Ri) /V∗
R, where Ri denotes the

reachable subspace of the pair (Ai, Bi) or, equivalently,
the minimal Ai-invariant subspace containing Bi. Based on
this fact and on the sufficient condition for a switched lin-
ear dynamics to be exponentially stable under dwell-time
switching already exploited in the previous section (Morse,
1996), a sufficient condition for the external switched dy-
namics of V∗

R to be externally exponentially stabilizable
under dwell-time switching is given. As in Section 3.1, the
statements are presented without proof.

Lemma 19. Consider the continuous-time linear time-
invariant systems of the set {Σi, i∈I} and the max-
imal robust (Ai,Bi)-controlled invariant subspace con-
tained in E , V∗

R. For any i∈I, consider the reach-
able subspace Ri. Perform the state-space basis trans-
formation T ′′

i = [T ′′
1,i T ′′

2,i T ′′
3,i ], where imT ′′

1,i =V∗
R and

im
[
T ′′
1,i T

′′
2,i

]
=V∗

R +Ri, and the control-input-space ba-

sis transformation Ui = [U1,i U2,i ], with imU1,i =B−1
i V∗

R.
Then, with respect to new coordinates,

A′′
i = (T ′′

i )
−1Ai T

′′
i =

⎡
⎢⎣
A′′

11,i A′′
12,i A′′

13,i

A′′
21,i A′′

22,i A′′
23,i

O O A′′
33,i

⎤
⎥⎦ , (13)

B′′
i = (T ′′

i )
−1Bi Ui =

⎡
⎣
B′′

11,i B′′
12,i

O B′′
22,i

O O

⎤
⎦ , (14)

H ′′
i = (T ′′

i )
−1Hi =

⎡
⎢⎣
H ′′

1,i

H ′′
2,i

H ′′
3,i

⎤
⎥⎦ , (15)

E′′
i =Ei T

′′
i =

[
O E′′

2,i E′′
3,i

]
. (16)

Lemma 20. Consider the continuous-time linear time-
invariant systems of the set {Σi, i∈I} and the maximal
robust (Ai,Bi)-controlled invariant subspace contained in
E , V∗

R. Let the set {Fi, i∈I} be such that (9) holds. For
any i∈I, refer to the coordinates introduced in Lemma 19
and let

F ′′
i = U−1

i Fi T
′′
i =

[
F ′′
11,i F ′′

12,i F ′′
13,i

F ′′
21,i F ′′

22,i F ′′
23,i

]
(17)

be partitioned accordingly. Then, with respect to new
coordinates, A′′

F,i =A′′
i +B′′

i F ′′
i has the structure shown

in (18).

Definition 21. For any i∈I, the restricted linear map
(Ai +Bi Fi)|X/V∗

R
is called the external dynamics of V∗

R

with respect to the system Σi.

Remark 22. For any i∈I, the restricted linear map
(Ai +Bi Fi)|X/V∗

R
is represented by the matrix

X ′′
V,i =

[
A′′

22,i +B′′
22,i F

′′
22,i A′′

23,i +B′′
22,i F

′′
23,i

O A′′
33,i

]

with respect to the coordinates introduced in Lemma 19.

Proposition 23. For any i∈I, the spectrum λ((Ai +
Bi Fi)|(V∗

R
+Ri)/V∗

R
) is assignable.

Proposition 24. For any i∈I, the spectrum λ((Ai +
Bi Fi)|X/(V∗

R
+Ri)) is fixed.

Definition 25. The switched linear dynamics (Aσ(t) +
Bσ(t) Fσ(t))|X/V∗

R
, associated with the set of restrictions

{(Ai +Bi Fi)|X/V∗
R
, i∈I}, is called the external switched

dynamics of V∗
R.

Definition 26. The subspace V∗
R is said to be externally ex-

ponentially stabilizable over Sτ̄d , with τ̄d denoting a finite
positive real constant, if there exists a set {Fi, i∈I}, such
that V∗

R is a robust (Ai +Bi Fi)-invariant subspace and the
switched dynamics (Aσ(t) +Bσ(t) Fσ(t))|X/V∗

R
, associated
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A′′
F,i = A′′

i +B′′
i F ′′

i =⎡
⎢⎣
A′′

11,i +B′′
11,i F

′′
11,i +B′′

12,i F
′′
21,i A′′

12,i +B′′
11,i F

′′
12,i +B′′

12,i F
′′
22,i A′′

13,i +B′′
11,i F

′′
13,i +B′′

12,i F
′′
23,i

O A′′
22,i +B′′

22,i F
′′
22,i A′′

23,i +B′′
22,i F

′′
23,i

O O A′′
33,i

⎤
⎥⎦ . (18)

with the set of restrictions {(Ai +Bi Fi)|X/V∗
R
, i∈I}, is

exponentially stable over Sτ̄d .

Proposition 27. There exists a sufficiently large, finite pos-
itive real constant τ̃d such that the subspace V∗

R is exter-
nally exponentially stabilizable over Sτ̄d if

λ(A′′
33,i) ⊂ C

−, ∀ i ∈ I, (19)

with A′′
33,i defined as in Lemma 19.

4. PROBLEM SOLUTION

In this section, a constructive procedure for solving Prob-
lem 1 is presented. The following conditions will be shown
to be sufficient for the design of the switched state feed-
back. The former condition is also proven to be necessary
for structural decoupling (i.e., Problem 1 with the sole
Requirement R 1). Arguments explaining why the latter
conditions are not necessary for decoupling with stability
are provided. Consider the continuous-time switched linear
system Σσ(t), with the modes {Σi, i∈I}, the maximal
robust (Ai,Bi)-controlled invariant subspace contained in
E , V∗

R, and the imagesHi of the disturbance input matrices
Hi, with i∈I. The structural condition is

C 1. Hi ⊆ V∗
R, ∀ i ∈ I.

The stabilizability conditions are

C 2. V∗
R is internally exponentially stabilizable over Sτd ,C 3. V∗
R is externally exponentially stabilizable over Sτd ,

where τd denotes a finite positive real constant.

In order to give Conditions C 1, C 2, and C 3 a character-
ization functional to the synthesis of the switched state
feedback, a state-space basis transformation common to
all the systems of the set {Σi, i∈I} is applied.

Lemma 28. Consider the continuous-time linear time-
invariant systems of the set {Σi, i∈I} and the maximal
robust (Ai,Bi)-controlled invariant subspace contained
in E , V∗

R. Perform the state-space basis transformation
T = [T1 T2 ], where imT1 =V∗

R. Then, with respect to new
coordinates,

A∗
i = T−1Ai T =

[
A∗

11,i A∗
12,i

A∗
21,i A∗

22,i

]
, (20)

B∗
i = T−1Bi =

[
B∗

1,i

B∗
2,i

]
, (21)

H∗
i = T−1Hi =

[
H∗

1,i

H∗
2,i

]
, (22)

E∗
i =Ei T =

[
O E∗

2,i

]
, (23)

for all i∈I.
Lemma 29. Consider the continuous-time linear time-
invariant systems of the set {Σi, i∈I} and the maximal
robust (Ai,Bi)-controlled invariant subspace contained in

E , V∗
R. Let the set {Fi, i∈I} be such that V∗

R is a robust
(Ai +Bi Fi)-invariant subspace. Refer to the coordinates
introduced in Lemma 28 and let

F ∗
i = Fi T =

[
F ∗
1,i F ∗

2,i

]
, (24)

be partitioned accordingly, for all i∈I. Then, with respect
to new coordinates,

A∗
F,i =A∗

i +B∗
i F

∗
i =[

A∗
11,i +B∗

1,i F
∗
1,i A∗

12,i +B∗
1,i F

∗
2,i

O A∗
22,i +B∗

2,i F
∗
2,i

]
, (25)

for all i∈I.
Remark 30. The set of restricted linear maps {(Ai +
Bi Fi)|V∗

R
, i∈I}, associated with the restricted switched

dynamics (Aσ(t) +Bσ(t) Fσ(t))|V∗
R
, is represented by the set

of matrices {A∗
11,i +B∗

1,i F
∗
1,i, i∈I}, with respect to the

coordinates introduced in Lemma 28.

Remark 31. The set of restricted linear maps {(Ai +
Bi Fi)|X/V∗

R
, i∈I}, associated with the restricted switched

dynamics (Aσ(t) +Bσ(t) Fσ(t))|X/V∗
R
, is represented by the

set of matrices {A∗
22,i +B∗

2,i F
∗
2,i, i∈I}, with respect to

the coordinates introduced in Lemma 28.

Conditions C 1, C 2, and C 3 are expressed in coordinate-
free terms. The following propositions provide respectively
equivalent statements, referred to the coordinates intro-
duced in Lemma 28.

Proposition 32. Consider the continuous-time linear time-
invariant systems of the set {Σi, i∈I}, the maximal ro-
bust (Ai,Bi)-controlled invariant subspace contained in E ,
V∗
R, and the images Hi of the disturbance input matrices

Hi, with i∈I. Let r=dimV∗
R. Refer to the coordinates

introduced in Lemma 28. Then, Condition C 1 holds if and
only if matrices Λi ∈R

r×m, with i∈I, exist, such that[
H∗

1,i

H∗
2,i

]
=

[
Λi

O

]
, ∀ i ∈ I. (26)

Proposition 33. Consider the continuous-time switched
linear system Σσ(t), with the modes {Σi, i∈I}, and the
maximal robust (Ai,Bi)-controlled invariant subspace con-
tained in E , V∗

R. Refer to the coordinates introduced in
Lemma 28 and let the set {F ∗

i , i∈I} be partitioned as in
Lemma 29. Condition C 2 holds if and only if there exists
a set {F ∗

1,i, i∈I}, such that

A∗
21,i +B∗

2,i F
∗
1,i = 0, ∀ i ∈ I, (27)

and the switched dynamics (Aσ(t)+Bσ(t) Fσ(t))|V∗
R
, associ-

ated with the set {A∗
11,i +B∗

1,i F
∗
1,i, i∈I}, is exponentially

stable over Sτd . Moreover, condition C 3 holds if and only
if there exists a set {F ∗

2,i, i∈I}, such that the switched dy-
namics (Aσ(t) + Bσ(t) Fσ(t))|X/V∗

R
, associated with the set

{A∗
22,i +B∗

2,i F
∗
2,i, i∈I}, is exponentially stable over Sτd .

Theorem 34. Consider the continuous-time switched lin-
ear system Σσ(t), with the modes {Σi, i∈I}. Let As-
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sumption A 1 hold. Let Conditions C 1, C 2, and C 3 hold.
Consider the switched closed-loop system Σ̂σ(t), with the

modes {Σ̂i, i∈I}. Let the switched state feedback Fσ(t) be

chosen according to Proposition 33. Then, Σ̂σ(t) satisfies
the Requirements R 1 and R 2 of Problem 1.

Proof. First, it will be shown that Requirement R 1 of
Problem 1 is met. Refer to the coordinates introduced
in Lemma 28 and let the state x(t)= [x1(t)

� x2(t)
� ]�,

with t∈R
+, be consistently partitioned. Hence, the modes

{Σ̂i, i∈I} are described by

Σ̂i ≡

⎧⎪⎨
⎪⎩

ẋ1(t) = (A∗
11,i +B∗

1,i F
∗
1,i)x1(t)+

(A∗
12,i +B∗

1,i F
∗
2,i)x2(t) + Λi h(t),

ẋ2(t) = (A∗
22,i +B∗

2,i F
∗
2,i)x2(t),

e(t) = E∗
2,i x2(t),

i ∈ I,

(28)
where (20)–(24), (26), (27) have been taken into account.
Assumption A 1 implies x1(0)= 0 and x2(0)= 0. Hence,
x2(t)= 0, for all t∈R

+, which implies e(t)= 0, for all
t∈R

+, for any admissible disturbance h(t), with t∈R
+.

In order to prove that Requirement R 2 is also met, note
that (28) can be written as

Σ̂i ≡
{
ẋ(t) = A∗

F,i x(t) +H∗
i h(t),

e(t) = E∗
i x(t),

i ∈ I, (29)

where A∗
F,i, H

∗
i , E

∗
i are respectively given by (25), (26),

(23), with F ∗
i determined according to Proposition 33, for

all i∈I. Hence, the switched dynamics AF,σ(t), associated
with the set {A∗

F,i, i∈I}, is exponentially stable over Sτd

as a consequence of Proposition 33. �

Remark 35. Condition C 1 is also necessary to solve the
structural decoupling problem. Indeed, Condition C 1
is equivalent to the necessary and sufficient condition
for structural decoupling given in (Otsuka, 2010, Theo-
rem 3.1). Necessity of Condition C 1 hinges on the fact that
if Condition C 1 is not met, no robust (Ai,Bi)-controlled
invariant subspace VR contained in E exists, such that
Hi ⊆VR, for all i∈I, since the set of all robust (Ai,Bi)-
controlled invariant subspaces contained in E is an up-
per semilattice and V∗

R is the maximal robust (Ai,Bi)-
controlled invariant subspace contained in E .
Remark 36. Conditions C 2 and C 3 are not necessary to
solve Problem 1. In fact, if there exists a robust (Ai,Bi)-
controlled invariant subspace VR ⊂V∗

R, such that Hi ⊆VR,
for all i∈I, then internal and external exponential stabi-
lizability of VR over Sτd , with τd denoting a finite positive
real constant, is sufficient to solve Problem 1, since the con-
structive procedure described in the proof of Theorem 34
can still be applied with V∗

R replaced by VR.

Remark 37. Equations (28) show that, if Assumption A 1
is not satisfied, zero output is still guaranteed, provided
that the initial state belongs to the subspace V∗

R. In fact,
if the initial state belongs to V∗

R, then x2(0)= 0. Hence,
x2(t)= 0, for all t∈R

+, which implies e(t)= 0, for all
t∈R

+, for any admissible disturbance h(t), with t∈R
+.

Remark 38. Equations (28) show that, if Assumption A 1
is not satisfied and the initial state does not belong to
V∗
R, disturbance decoupling is achieved as the time goes

to infinity. In fact, if the initial state is different from
zero and does not belong to V∗

R, then x2(0) �=0. Hence,
the component x2(t), with t∈R

+, evolves according to
the external switched dynamics (Aσ(t) +Bσ(t) Fσ(t))|X/V∗

R
,

which is exponentially stable over Sτd . Hence, x2(t) goes
to zero as t approaches infinity and so does e(t).

5. CONCLUSIONS

A constructive procedure for the synthesis of a switched
state feedback that achieves decoupling of inaccessible
signals and exponential stability of the closed-loop system
under dwell-time switching has been shown. The effects of
a nonzero initial state have been considered. The method-
ological background consists of both classic and novel
objects of the geometric approach, enhanced with notions
specifically oriented to switched linear systems.
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