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Abstract: In controlling motion platforms,the servo motor and the feedback sensor are in
general, not co-located. Hence, there usually happens to be a mechanical anti-resonance in
controlling the system in velocity mode. This anti-resonance hinders the controller design as
the open-loop gain of the system is severely reduced. In this study, a novel approach based
on self-recurrent wavelet neural networks (SRWNNs) has been proposed in order to re-shape
the anti-resonance behavior of the open-loop plant in a robust manner. The approach has been
verified both using simulations and experiments.
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1. INTRODUCTION

Motion platforms with payloads are widely used in modern
defense systems (e.g. Fig. 1). In most of these systems
platform actuation is achieved by driving brushless electric
motors via power electronic components. These compo-
nents are controlled by processors using feedback informa-
tion from several sensors. The aim of control is generating
”the correct motor current” which will move the platform
with desired speed with respect to earth reference frame.
Hence, the control tries to suppress the disturbances (hull
motion, windage , sea waves etc.) while trying to obtain a
closed loop transfer function from reference command to
load speed equal to or at least very close to unity.

In modeling motion platforms for control purpose, the
system is usually divided into two parts as ”electrical”
and ”mechanical” subsystems. The electrical sub-system
does usually have a wider bandwidth and under certain
conditions it can simply be modeled as unity or as a simple
first-order low-pass filter Ari [2013]. The mechanical part
of the motion platform is usually modeled as a multi-
body system with elastic connections in between. Usually
mechanical model with three inertias is sufficient for the
purpose of control, while models with two inertias are also
common.

A typical three inertia model with elastic connections
is shown in Fig. 2. Control of such mechanical systems
have been widely studied during past 40 years. In what
follows, a few of these studies are mentioned: In Yuki
[1993] resonance ratio control concept is introduced. In this
concept, an observer is used in order to sense the reaction
torque information between the rigid bodies; and then, this
information is employed in order to produce additional mo-
tor torque via observer feedback. In Zhang [1999] a linear
system model consisting of two rigid inertias connected via

Fig. 1. An example of a stabilized motion platform:
Pedestal Mount Stinger Launching System - PMS
ATILGAN R© (Photo Courtesy of Aselsan Inc.)

a spring that represents the finite stiffness of the overall
structure is employed. PI and PID controllers for such a
system are designed by analyzing the closed-loop system
pole locations in terms of controller and plant parameters.
In this study, it is shown that controller parameters cannot
independently adjust all the pole locations, instead one
must compromise between damping and natural frequen-
cies of the poles while tuning the PI controller. In Zhang
[1999] the same authors consider the extension of their
method to a three-inertia system model. The relationship
between system parameters (inertia distribution, stiffness
etc.) and controller complexity is investigated and param-
eter plane method is employed in order to determine a
regulatory PI controller’s parameters in terms of system
parameters and closed-loop performance specifications. In
Ji [1995] a full-state feedback LQR controller was pro-
posed for the speed control of a two-mass system, where
the states are observed by employing a Kalman Filter.
In O’Sullivan [2006], in order to perform resonance ra-
tio control (RRC) surface-acoustic wave (SAW) torque
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Fig. 2. Typical 3 mass model schematic of a motion
platform.

transducers are employed as feedback elements. PI, PID
and RRC controller performances are compared and it
is shown that ,in terms of disturbance rejection, PID
and RRC controllers are identical. In order to improve
performance of RRC controller a new alternative termed
as RRC+ is proposed. In this method, derivative of the
measured motor shaft torque is employed as a feedback
term in the controller. In Ellis [2000] several methods that
could be used for control of a resonant system has been
investigated. These methods are usage of a low-pass filter,
a notch filter or a bi-quad filter for the suppression of the
resonance; and compliant-body and rigid body observers
for acceleration feedback (corresponding to RRC), active
resonance damping and center of mass control. Among
the filters, the low-pass filter is stated to be lagging the
phase at lower frequencies and the notch and the bi-
quad filters are found to be non-robust. Usage of clsoed
loop observers (with forms similar to a Luenberger Ob-
server) for acceleration feedback was found to be the best
method among the considered ones in terms of closed-loop
bandwidth. In Ellis [2001], observer design is analyzed
in more detail and FRF of closed-loop performances are
given, expressing that acceleration feedback obtained from
a closed-loop observer is both more robust and it allows
higher closed-loop bandwidth. In Szabat [2007] it is sum-
marized that the two-mass lumped system state-feedbacks
can be grouped in three different categories. With only one
feedback, a classical PI controller can only control one free
parameter of the closed loop system dominant pole: either
damping or natural frequency. In order to control both
damping and resonant frequency at least two feedbacks
from two different categories must be employed. There
also have been more ”modern” approaches employed for
multi-body system control similar to H∞,neural networks,
fuzzy control, model predictive control. But very common
drawbacks of these methods are design complexity and/or
parameter convergence problems. The examples for multi-
body elastic system control may be extended further.
There are also several studies on modeling and control
of non-linear effects dominating such systems (backlash,
friction etc.). However, since we have a limited space, we
leave further literature survey to the reader and focus on
our control approach.

This paper is organized as follows: In section 2, the
system model is revisited and the major properties of the
model in terms of its parameters are given. In section 3,
The details of the controller architecture employed in the
study are given. Section 4 gives the simulation results.
Section 5 is dedicated to experimental evaluation of the
performance of the proposed architecture. The paper ends
with conclusions.

2. SYSTEM MODEL

The schematic of a typical system model for a three-mass
system is shown in Fig. 2. The parameters used in this
figure are summarized in Table 1.

Table 1. Parameters of the 3-mass system given
in Fig. 2

PARAMETER UNIT REMARKS

Tm Nm Input Motor Torque

Td Nm Equivalent Disturbance Torque

θm rad Motor Shaft Position

θg rad Second Mass Position

θl rad Third Mass Position

cm Nm.s/rad Motor Shaft Bearing Viscosity

cg Nm.s/rad Second Mass Bearing Viscosity

cl Nm.s/rad Third Mass Bearing Viscosity

csi Nm.s/rad ith Joint Viscosity

ksi Nm/rad ith Joint Stiffness

Jm kgm2 First Mass Inertia

Jg kgm2 Second Mass Inertia

Jl kgm2 Third Mass Inertia

2.1 Transfer Function Evaluation

One can easily derive a linear MIMO model for such
a system by writing down the equations of motion for
each body, taking the Laplace transforms of the resulting
equations, and finally solving for inertia speeds in terms of
input torques (being the motor and disturbance torques).
This process results in the following MIMO transfer func-
tion model:

[
Ωm(s)
Ωg(s)
Ωl(s)

]
=

s

∆

(D2 − CE) BD
−BE AD
−BD (AC −B2)

[Tm(s)
Td(s)

]
(1)

with

A = Jms
2 + (cm + cs1)s+ ks1 (2)

B = cs1s+ ks1 (3)

C = Jgs
2 + (cg + cs1 + cs2)s+ ks1 + ks2 (4)

D = cs2s+ ks2 (5)

E = Jls
2 + (cl + cs2)s+ ks2 (6)

∆ = B2E +AD2 −ACE (7)

and Ωm(s),Ωg(s), Ωl(s), Td(s) and Tm(s) representing
Laplace transforms of ωm(t), ωg(t), ωl(t),Td(t) and Tm(t)
respectively.

In most of the previous studies the concern had usually
been the control of the motor speed ωm (Yuki [1993],Zhang
[1999] etc.) or the control of the load speed ωl (Ellis
[2001],Szabat [2007] etc.). However, our concern is control-
ling the second mass speed (i.e. ωg). This is since, in most
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Fig. 3. Typical Frequency Response Function (FRF) plot
for the second mass speed output of a 3 mass system.

of the motion platforms, the sensor used for measuring the
angular speed is placed in between the motor (or actuator)
and the load. Representing the motor as the first mass
(Jm) and representing the load as the third mass (Jl) the
most appropriate way of representing the dynamics of the
sensor speed is to place another mass (Jg) between these
two masses.

2.2 Some Remarks on Frequency Domain Behaviour

When we investigate the frequency response function

Ggm(jω) =
Ωg(jω)

Tm(jω)
(8)

we see that its behavior is dependent on the values of
the system parameters given in Table 1. The mechanical
modes of the system are functions of stiffness and inertia
values, while mode damping values are highly dependent
on viscosity terms. For a typical motion platform (i.e.
with Jl >> Jm and ks2 << ks1) the frequency response
function defined in (8) is similar to the one given in Fig. 3.
If we investigate this figure, it is easily seen that we have
an anti-resonance at a lower frequency than resonances. In
order to deal with this anti-resonance, the controller must
have a very high gain at least in the close neighborhood
of this frequency. On the other hand, in order to have
a large enough gain margin, the open-loop FRF must
be far less than 0 dB whenever the phase lag is −180◦.
Hence the controller must suppress the resonances shown
in Fig. 3. Finally, in order not to have a spillover effect,
which may be defined as the instability caused by higher
frequency modes which are not modeled, the controller
must suppress the high frequency content. In order to
achieve such a performance several notch or bi-quad filter
designs are proposed (Ellis [2000]). Moreover the anti-
resonance effect can simply be dealt with poles placement
(Ellis [2001]) by employing the method of Truxal and
Guillemin. However, it is very well known that, without
using additional sensors (not practical for our case) and
take precautions for avoiding instability, these methods
are simply not robust and makes the system unstable in
practice. Hence, we need a control architecture which gives
high gains in the vicinity of the anti-resonance frequency;
suppresses the response about the resonance frequencies
and adapts itself accordingly in the case that these critical
frequencies somehow shift during operation.

Fig. 4. Recurrent Neural Network in State-Space Model
form. (Veitch [2005])

3. PROPOSED CONTROL ARCHITECTURE

3.1 SRWNN Structure Used

Wavelet Neural Networks (WNNs) are neural networks
in which neurons’ activation functions are wavelets. The
main advantage of WNNs with respect to the standard
NNs is that they converge faster. Moreover, employing
concepts from MRA, WNNs are able to mimic dynamic
system behaviour with very high performance when used
in recurrent form as given in Fig. 4. Such a neural network
is literally termed as a ”Self-Recurrent Wavelet Neural
Network”.

The SRWNN structure used in this study was proposed
in Yoo [2005]. As seen in Fig. 5 this structure consists of
mainly four layers:

• Layer 1: The input layer.It consists of Ni nodes
representing inputs to the SRWNN.

• Layer 2: The mother wavelet layer. It consists of
Nw wavelon groups each having Ni wavelons cor-
responding to every element of the input vector of
the SRWNN. kth wavelon of the jth wavelon group
performs the following calculation

φjk(zjk) = φ(
ujk −mjk

djk
) (9)

where

zjk =
ujk −mjk

djk
, ujk(n) = xk(n) + φjk(n− 1)θjk

(10)
In (9) and (10), xk denotes the kth element of the
input vector; mjk, djk and θjk denote the transla-
tion, dilation and feedback gain of the wavelon jk ,
respectively.

• Layer 3: The product layer. It consists of Nw product
elements. jth product element merges the correspond-
ing mother wavelet group activation as

Φj(x) =

Ni∏
k=1

φ(zjk) (11)

• Layer 4: The output layer: Consists of a summer and
calculates the output as

y =

Nw∑
j=1

wjΦj(x) +

Ni∑
k=1

akxk (12)

where wj is the weight of the jth wavelon group,
and ak is the weight of the kth input vector ele-
ment. Note that, in (12) the second sum denotes a
linear component between the input and the output,
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Fig. 5. SRWNN internal structure proposed in Yoo [2005]

which behaves similar to a proportional controller.
In Alizadeh [2013] this part is not used, but the
SRWNN itself replaces the proportional part of a PID
controller.

3.2 Modified Adaptive Learning Rates (MALR)

The SRWNN structure given in Fig. 5 is an adaptive
structure, whose weight vector is defined as

W = [a m d θ w] (13)

W is adapted according to the gradient descent algorithm,
which is described by

W (n+ 1) = W (n) − η̄∇WJ (14)

where η̄ is the diagonal matrix of learning rates,η̄ =
diag(ηa, ηm, ηd, ηθ, ηw), and ∇WJ denotes the gradient of
the cost function J with respect to the weights vector W .
Cost function is usually quadratic and it’s in the form

J(n) =
1

2
[yd(n) − y(n)]2 =

1

2
e2(n) (15)

where yd(n) is the desired output at time step n. The above
definition of cost function results in

∇WJ = −e(n)∇W y (16)

where the term ∇W y can be easily evaluated by applying
the chain rule for each weight vector entry. The details of
the results are given in Yoo [2005].

A set of adaptive upper bounds η∗ for learning rates have
been proposed in Yoo [2005]. However, the approach used
in finding the bounds is for making sure the convergence of
SRWNN at all times, rather than the speed of convergence.
Hence we slightly modified the adaptive learning rate
algorithm as given below:

η(n) =

{
η∗, if n > n∗

ηK , if n < n∗
(17)

Fig. 6. SRWNN based iterative adaptive controller (SR-
WNN IAC) structure similar to the one in Yoo [2007].

where η∗ is the adaptive learning rate, calculated as in Yoo
[2005]. i.e. ,at the beginning of the adaptation process, by
keeping higher learning rates, the process of learning is
accelerated. The values for ηK and n∗ might be determined
experimentally.

3.3 Control Architecture

SRWNN structure has been used in various architec-
tures for control purpose. These include predictive control
(Yoo [2005]),indirect adaptive control (Yoo [2007]),as the
proportional part of a standard PID controller(Alizadeh
[2013]). In this study, we use the indirect adaptive control
architecture (Yoo [2007]) with modified learning rate up-
date algorithms. The general structure of indirect adaptive
control is shown in Fig. 6.

The majority of similar studies (e.q. Kowalska [2007]) use
a second order linear system model as the reference for
the closed-loop. In this study, we keep in mind that, for
a linear pole-placement approach, for the controller to be
realizable, the pole excess of the closed-loop system must
be larger than or equal to the pole excess of the plant itself.
Since our plant has 3 excessive poles, we use a reference
model with three excessive poles. We put triple poles to
a frequency higher than the anti-resonance (see Fig. 3),
and set the DC gain to unity by adding a constant to the
numerator, which results in

GR(s) =
603

(s+ 60)3
(18)

Another issue in this control architecture is that the
gradient given in (16) cannot be used directly since we
have the cost function given as

J(n) =
1

2
[ω∗gr(n) − ωg(n)]2 =

1

2
e2C(n) (19)

By applying chain rule we can write

∇WJ = −eC(n)
∂ωg
∂Tm

∇WTm (20)

where the ∇WTm term can be easily found by the chain
rule, as stated before. However, the sensitivity term given
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Fig. 7. Step Response with the original ALR algorithm
(top) and the Modified ALR algorithm (bottom).

Fig. 8. Step Response when stiffness values are reduced by
50%. The Truxal-Guillemin design(top) and SRWNN
IAC (bottom).

by
∂ωg

∂Tm
cannot be calculated directly. For this reason, we

utilize the approach given in Yoo [2007] and incorporate
an SRWNN identifier into the architecture, in which the

term
∂ωg

∂Tm
can be calculated by the chain rule easily (see

Fig. 6 and Yoo [2007] for details).

4. SIMULATIONS

Table 2. Performance Comparison

Algorithm SRWNN SRWNN 3rd Order PI
MALR ALR Reference

tconv

convergence time 0.83s 4.3s N/A N/A

ts
settling time 0.18s 0.18s 0.13s 0.72s

tr
rise time 0.14s 0.14s 0.07s 0.54s

MO

max. overshoot 8% 1% 0 0

tIconv

identifier
convergence time 1.2s 2.1s N/A N/A

During simulations a three mass system linear model is
employed as the plant. A square wave speed command
reference has been applied to the system. SRWNN struc-
tures with Nw = 4 has been utilized for both the identifier
and the controller. The results for step response is shown in
Fig. 7. In this figure, it is seen that when the SRWNN IAC
is utilized with the standard adaptive learning algorithm,
it takes around 4.3 seconds for the system to follow the
command. But with the modified learning rate algorithm

Fig. 9. Test setup on which experiments have been con-
ducted.

it takes 0.83 seconds. The numerical figures from the sim-
ulations and experiments has been summarized in Table
2.

The robustness performance of the SRWNN IAC is tested
by reducing the stiffness values by a factor of 0.5 during
the simulation. As expected, the pole placement (Truxal-
Guillemin) design shows under damped oscillatory behav-
ior; while SRWNN IAC controller adapts itself equally well
to the new stiffness values as given in Fig. 8.

5. EXPERIMENTS

The setup used during the experiments is given in Fig. 9.
This is basically a rotating platform mounted on a stand.
It is utilized with a servo motor with 1.4 kW rated power,
an Aselsan Herkul R© series servo controller capable of
delivering up to 14 kWs of instantaneous electrical power
to the motor, a gyroscope for inertial speed measurement,
an auxiliary encoder for position measurement. Moreover,
there are two mechanical interfaces for additional weight
plates in order to simulate the load of the motion platform.
A PC utilized with MATLAB-RTWT R© and capable of
communicating with Herkul servo controller is employed
for implementation of the controller by hardware in the
loop approach.

During the experiments an SRWNN structure with Nw =
4 has been employed for both identifier and the controller
parts, as in the simulations, with 2 inputs for SRWNN,
this sum ups to a total of 30 learning parameters for
both SRWNN structures. The comparison between the
ALR and the proposed MALR learning rate updates are
given in Fig. 10. It is easily observed that the SRWNNI
converges to the system output at about 2.1 seconds for
ALR, and 1.2 seconds for the MALR case (see Table
2). Note also from the same figure that the system is
quite non-linear giving a non-exponential speed output
for a square torque input, however SRWNNI structure is
complicated enough to capture these non-linearities and
find the system sensitivity correctly. The performance of
the controller is compared with a high performance PI
speed controller as well. The PI controller is tuned so as
to have a gain margin of only 2 dBs, making it non-robust
but with a high command tracking performance. As seen
in Fig. 11 and Table 2, the SRWNN adaptive controller
structure outperforms the high performance PI controller
in step response with 4 times faster rise time and settling
time, and it almost makes the overall system mimic the
reference system behaviour. This comes with a trade off of
8% overshoot, however this overshoot may be avoided by
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Fig. 10. Experimental result showing the convergence
performance of the SRWNN identifier with ALR (top
two plots) and MALR (bottom two plots).

Fig. 11. Experimental results for the comparison of pro-
posed SRWNN IAC and high performance PI con-
troller.

shaping the command in a real system. In addition, notice
that: The SRWNN controller saturates the motor torque
very rapidly in the case of a step command and uses all
the available acceleration of the system in an efficient way;
hence using the torque loop bandwidth much more better
than the PI controller. We can also state that the main
reason for the SRWNN IAC cannot do better in making
the system mimic the 3rd order reference system is the
actuator saturation (i.e. acceleration limit available).

6. CONCLUSION

In conclusion, the problem of controlling the speed of the
second mass in a elastically connected three mass system
has been addressed in this paper. A Self-Recurrent Wavelet
Neural Network (SRWNN) based controller architecture
has been proposed for the solution of the problem so
as to achieve a robust performance, while increasing the
system bandwidth beyond the anti-resonance frequency of

the open-loop system. High performance of the proposed
architecture has been verified by both simulations and
experiments.
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