
PLC Implementation of a Nonlinear
Model Predictive Controller
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Abstract: This paper describes the implementation of an efficient model predictive control
(MPC) approach on a standard programmable logic controller (PLC). PLCs are commonly
used in industrial automation but are typically limited in view of computational performance
and memory. The MPC scheme in this contribution is well suited for nonlinear input constrained
systems with sampling times in the millisecond range and can also be applied to tracking control
problems. Experimental results for a laboratory crane demonstrate the real-time applicability
of the PLC implementation.
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1. INTRODUCTION

The solution of an optimal control problem (OCP) along
a moving horizon is the basis of model predictive control
(MPC) (Mayne et al., 2000; Camacho and Bordons, 2003;
Grüne and Pannek, 2011). This modern control method
has become popular in the recent years due to its ability to
handle nonlinear multiple input systems with constraints.
However, the computational effort that is typically re-
quired to solve the underlying OCP usually limits the
application of nonlinear MPC to sufficiently slow and/or
low-dimensional systems. This drawback makes it also
difficult to perform control tasks on hardware systems with
limited performance and memory. A typical example are
programmable logic controllers (PLCs) that are commonly
used in industrial automation. In general, rather simple
control strategies (such as PI control) are implemented on
a PLC due to the limited resources.

There exist several approaches demonstrating the real-
time applicability of nonlinear MPC. The algorithm de-
veloped in Ohtsuka (2004) employs a continuation method
in combination with the generalized minimum residual
(GMRES) method to solve an OCP in real-time. The prob-
lem formulation and the first-order optimality conditions
are discretized and the solution of the resulting nonlinear
algebraic equation is traced over the single MPC steps.
The real-time iteration (RTI) scheme developed in Diehl
et al. (2002) is based on the multiple shooting method
and uses a Newton-type framework. Reduced algorithmic
components of the RTI scheme are implemented within the
ACADO Toolkit (Houska et al., 2011) with an automatic
C code generation for real-time MPC. The MPC approach
presented in Graichen and Käpernick (2012) exploits the
structure of the optimality conditions and uses a gradient-
based algorithm with a fixed number of iterations in
order to obtain real-time applicability. Additionally, the
previous iteration of the control trajectory is used for re-
initialization in order to successively reduce the optimal-
ity error. Further MPC approaches aiming at real-time
feasibility are presented in DeHaan and Guay (2007) and
Zavala and Biegler (2009). The suboptimal MPC scheme
(DeHaan and Guay, 2007) is based on a descent condition
and accounts for constraints via an interior point formu-

lation, whereas the advanced-step MPC method (Zavala
and Biegler, 2009) predicts the future states in order to
solve the corresponding future OCP in advance.

There are also approaches with regard to implementing
and running a model predictive controller on a PLC.
Valencia-Palomo and Rossiter (2011) discussed a subop-
timal MPC approach based on parametric solutions with
reduced complexity for PLC applications. Four examples
of varying complexity were used to demonstrate the ca-
pabilities of the method. In Syaichu-Rohman and Sirius
(2011) a PLC implementation of an MPC was applied
for controlling the speed of a DC motor by means of a
fast algorithm to solve quadratic programs (QP). Rauová
et al. (2011) controlled a fan heater system on a PLC
using an MPC scheme based on a parametric programming
technique, which encodes the optimal control moves as
a lookup table. The applicability of different online opti-
mization approaches regarding the solution of a quadratic
program by a model predictive controller on a PLC was in-
vestigated by Huyck et al. (2012). However, the mentioned
approaches implemented linear model predictive controller
on the PLC systems.

To the authors’ knowledge, no results are published so
far concerning the implementation of a nonlinear MPC
scheme on a PLC and hence this subject is addressed
in this paper. The considered model predictive control
approach is based on a (projected) gradient algorithm
(Graichen and Käpernick, 2012) and can be used for con-
trolling nonlinear input constrained systems with sampling
times in the millisecond range. It allows a time and mem-
ory efficient calculation of single MPC steps and hence is
well suited for the implementation on low-performance sys-
tems such as PLCs. The control performance of the PLC
implementation is demonstrated for a model predictively
controlled laboratory crane with nonlinear dynamics.

2. MODEL PREDICTIVE CONTROL

This section introduces the MPC scheme and briefly
describes the real-time MPC algorithm as the basis for
the PLC implementation.
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2.1 Problem formulation

In this paper, the following OCP formulation is considered
for the MPC design:

min
u(·)

J(u, xk) = V (x(tk + t))

+

∫ tk+T

tk

L(x(t), u(t)) dt (1a)

s.t. ẋ(t) = f(x(t), u(t)), x(tk) = xk (1b)

u(t) ∈ [u−, u+], t ∈ [tk, tk + T ], (1c)

where T > 0 denotes the prediction horizon and x ∈ Rn
and u ∈ Rm are the states and controls of the system,
respectively. The terminal cost V : Rn → R0

+ and the
integral cost L : Rn × Rm → R0

+ both being positive
definite functions as well as the vector field f : Rn×Rm →
Rn are all assumed to be continuously differentiable in
their arguments. The initial condition x(tk) = xk denotes
the measured (or observed) state of the system at sampling
instance tk = t0 + k∆t with sampling time ∆t. Condition
(1c) represents the input constraints.

For further considerations it is assumed that OCP (1)
possesses an optimal solution that is denoted by

u∗k(t) := u∗(t;xk), x∗k(t) := x∗(t;xk), t ∈ [tk, tk + T ], (2)

where the subindex k indicates the current sampling
instance tk. Typical MPC approaches aim at computing
the optimal solution (2) in each sampling instance and
inject the first part of the optimal control trajectory to
the system, i.e.

u(t) = u∗k(t), t ∈ [tk, tk + ∆t). (3)

In the next sampling instance tk+1 = tk + ∆t, OCP (1) is
solved again with the new state x(tk+1).

2.2 Real-time algorithm

The algorithm that is used in this paper for solving
(1) relies on the optimality conditions. To this end, the
Hamiltonian 1

H (x, u, λ) = L(x, u) + λTf(x, u) (4)

with the costates λ ∈ Rn is introduced. Given an optimal
solution (x∗k, u

∗
k), Pontryagin’s Maximum Principle (Kirk,

1970; Berkovitz, 1974) states that there exists a costate
trajectory λ∗k satisfying the following conditions:

ẋ∗k = f(x∗k, u
∗
k), x∗k(tk) = xk (5a)

λ̇∗k = −Hx(x∗k, u
∗
k, λ
∗
k), λ∗k(tk + T ) = Vx(x∗k(tk + T )) (5b)

u∗k = arg min
u∈[u−,u+]

H(x∗k, u, λ
∗
k), t ∈ [tk, tk + T ], (5c)

where Hx := ∂H/∂x and Vx := ∂V/∂x denote the partial
derivatives of the Hamiltonian H and the terminal cost V
w.r.t. the states x, respectively. The separated boundary
conditions in (5a), (5b) are due to the OCP formulation
(1) without terminal conditions.

The optimality conditions (5) can be solved by means of
the (projected) gradient method (Dunn, 1996; Graichen
and Käpernick, 2012). In view of (5), the following gradi-
ent steps are performed for solving OCP (1):

• Initialization of input trajectory u
(0)
k (t).

• Gradient iterations for j = 0, . . . , N :

1 In the following lines, the time argument is omitted where it is
convenient to maintain readability.

1) Forward integration of (5a) to obtain x
(j)
k (t).

2) Backward integration of (5b) to obtain λ
(j)
k (t).

3) Control update u
(j+1)
k (t) = ψ

(
u

(j)
k (t)−α(j)

k s
(j)
k (t)

)
with search direction

s
(j)
k (t) = Hu

(
x

(j)
k (t), u

(j)
k (t), λ

(j)
k (t)

)
(6)

and projection function

ψ (u(t)) =

u
− if u(t) < u−

u(t) if u(t) ∈ [u−, u+]
u+ if u(t) > u+.

(7)

The control update requires the computation of a suitable

step size α
(j)
k in each gradient iteration. An efficient

strategy to determine the step size provides the explicit
line search approach originally presented in (Barzilai and
Borwein, 1988) and adapted for the optimal control case
in (Käpernick and Graichen, 2013). The main idea is to
minimize the difference between two consecutive control
updates for the unconstrained case and with the same step
size. This results in the explicit formulation

α
(j)
k =

∫ tk+T

tk

(
∆u

(j)
k

)T
∆s

(j)
k dt∫ tk+T

tk

(
∆s

(j)
k

)T
∆s

(j)
k dt

=:

〈
∆u(j),∆s

(j)
k

〉
〈

∆s
(j)
k ,∆s

(j)
k

〉 (8)

with ∆u
(j)
k := u

(j)
k −u

(j−1)
k and ∆s

(j)
k := s

(j)
k −s

(j−1)
k . The

approach is well suited for the PLC implementation since
the computation of the step size (8) only requires to store
the previous iteration of the control trajectory as well as
the gradient and to perform two separate integrations.

In order to maintain real-time feasibility of the overall
MPC algorithm, a fixed number of gradient iterations N
is performed. Hence, in contrast to applying the optimal
solution u∗k(t) (cf. (3)), the control that is injected to the
system is given by

u(t) = u
(N)
k (t), t ∈ [tk, tk + ∆t). (9)

The last iteration is additionally used in the next sampling
instance to re-initialize the controls. Convergence and
stability analyses regarding the projected gradient method
as well as the (prematurely stopped) MPC scheme can be
found in (Dunn, 1996) and (Graichen and Kugi, 2010),
respectively.

3. PLC IMPLEMENTATION AND EXPERIMENTAL
RESULTS

The presented MPC scheme is implemented on a standard
PLC and used for controlling a laboratory crane. To
this end, the crane setup and implementation details are
introduced prior to the experimental results.

3.1 Laboratory crane setup

Figure 1 shows the schematics of the laboratory crane. The
two-dimensional configuration basically consists of a cart
that moves along a rail and a mounted rope with a load
of 0.5 kg which can also be altered in length.

The states x ∈ R6 of the system are the cart position
x1 = r, the rope length x3 = l and the angle x5 = ϑ to
the vertical direction as well as the corresponding velocities
x2 = ṙ, x4 = l̇ and x6 = ϑ̇. The cart and rope accelerations
u1 = aC and u2 = aR serve as control inputs. A nonlinear
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Fig. 1. Laboratory crane schematics.

model of the crane setup (Käpernick and Graichen, 2013)
follows to

ẋ = f(x, u)=


x2
u1
x4
u2
x6

− 1
x3

(g sinx5 + u1 cosx5 + 2x4x6)

 , (10)

where g denotes the gravitational constant. In addition,
the dynamics (10) is subject to the input constraints

u1 ∈ [−3,+3]m/s2, u2 ∈ [−3,+3]m/s2. (11)

3.2 PLC and implementation details

The real-time MPC algorithm described in Section 2.2
is implemented on a Festo PLC of type CECX-X-C1
that is equipped with a PowerPC CPU with 400 MHz and
64 MB memory. 2 Two I/O modules CECX-A-4A4E-V
and CECX-C-2G2 are used for control and communication
purposes. The PLC is programmed using a customized
version of the development environment Codesys. 3

The PLC implementation of the model predictive con-
troller is performed by means of the Simulink PLC Coder.
This toolbox allows generating separate function modules
directly from Matlab/Simulink blocks. The code gener-
ation for the MPC module provides structured text that
is subsequently integrated in the main PLC routine. A
cyclic operation mode with tcycle = 2 ms is chosen for
the PLC corresponding to ensure an MPC sampling time
of ∆t = 2 ms. Even though such a low sampling time
is not necessary in view of the crane dynamics (10) in
combination with the intended transition times (cf. Section
3.3 and 4.3), it highlights the numerical performance of
the gradient algorithm running on the PLC system. The
entire implementation procedure is additionally illustrated
in Figure 2.

3.3 Experimental results

In the following experimental studies, the control task is
to perform three successive setpoint changes starting from
an initial state

x0 = [0 m, 0 m/s, 0.3 m, 0 m/s, 0 rad, 0 rad/s]T (12)

to the individual setpoints

xSP,1 = [0.5 m, 0 m/s, 0.8 m, 0 m/s, 0 rad, 0 rad/s]T (13a)

xSP,2 = [−0.5 m, 0 m/s, 0.8 m, 0 m/s, 0 rad, 0 rad/s]T (13b)

xSP,3 = [0 m, 0 m/s, 0.3 m, 0 m/s, 0 rad, 0 rad/s]T. (13c)

This sequence corresponds to moving and lifting the load
of the laboratory crane by 0.5 m, maneuvering the cart
2 See http://www.festo.com/cat/en-gb_gb/products_CECX for
more information on the PLC (checked on 18 March 2014).
3 See http://www.codesys.com/products/codesys-engineering.
html for more information on Codesys (checked on 18 March 2014).

Fig. 2. PLC implementation procedure of the MPC.

over the distance 1 m, and finally moving the crane back
to its initial position. The terminal and integral part of
the cost (1a) are chosen quadratically

V (x) =
∥∥∆x

∥∥2

P
, L(x, u) =

∥∥∆x
∥∥2

Q
+
∥∥u∥∥2

R
(14)

with the weighted norm
∥∥∆x

∥∥2

P
:= ∆xTP∆x and ∆x :=

x− xSP,i denoting the distance to the setpoints (13). The
weighting matrices in (14) as well as the sampling time
and prediction horizon are set to

P = diag (100, 1, 100, 1, 100, 1) (15a)

Q = diag (100, 1, 100, 1, 100, 1) (15b)

R = diag
(
10−5, 10−5

)
(15c)

and
∆t = 2 ms, T = 1 s, (16)

where the small input weights (15c) indicate an aggressive
behavior of the controls. The integration of both the
system dynamics (5a) and the adjoint dynamics (5b)
is performed by means of the Euler method with 16
discretization points. The number of gradient iterations
is N = 2.

Figure 3 shows the experimental results for the successive
setpoint changes (12)-(13) of the laboratory crane. It
can be seen that a good control performance with a
transition time around 3 s - 4 s can be achieved. The second
setpoint change xSP,1 → xSP,2, where the load is moved to
the opposite direction, additionally reveals that the rope
length is also altered by the controller to counteract the
load swinging.

The computation time for a single MPC step with N = 2
gradient iterations on the PLC amounts approximately to
1 ms - 1.5 ms. Thus, the chosen sampling time ∆t = 2 ms is
the lowest possible value for running the model predictive
controller on the PLC.

4. MODEL PREDICTIVE TRACKING CONTROL

The experimental results in the last section revealed
that a good control quality can already be achieved by
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Fig. 3. Experimental results for the the model predictively controlled crane.

means of the classical MPC formulation (1). However,
the performance can still be further increased using the
MPC in a tracking control context within a two-degree-
of-freedom (2DOF) control scheme as illustrated in Figure
4. The feedforward control in the 2DOF scheme is used
to provide suitable reference trajectories (xref(t), uref(t))
for the states as well as the controls. Additionally, the
feedback part stabilizes the system along the reference
trajectories and compensates for model uncertainties and
disturbances.

4.1 Flatness-based trajectory planning

An elegant way to perform a trajectory planning is pro-
vided by the theory of differential flatness (Fliess et al.,
1995; Lévine, 2009; Hagenmeyer and Zeitz, 2004). Given
a nonlinear system ẋ = f(x, u), an output z ∈ Rm of the
form

z = φ(x, u1, . . . , u
(γ1)
1 , . . . , um, . . . , u

(γm)
m ) (17)

is called a flat output if all states x and controls u can be
parametrized by means of z and its time derivatives, i.e.

x = Ψx

(
z1, . . . , z

(β1−1)
1 , . . . , zm, . . . , z

(βm−1)
m

)
(18a)

u = Ψu

(
z1, . . . , z

(β1)
1 , . . . , zm, . . . , z

(βm)
m

)
, (18b)

where β1, . . . , βm denote the differentiation order. The
flatness-based trajectory planning allows constructing a

Fig. 4. Two-degrees-of-freedom control scheme.

reference trajectory zref(t) within a finite time interval
t ∈ [0, τ ] and then deriving the related controls uref(t)
and states xref(t) by means of the parametrization (18).
In this regard, the computed trajectories can be used to
perform a setpoint change with the finite transition time
τ . In addition, a suitable choice of the transition time
indirectly facilitates to satisfy the constraints.

In view of the crane dynamics (10), it can be shown that
the position of the load (cf. Figure 1)

z1 = r + l sinϑ = x1 + x3 sinx5 (19a)

z2 = l cosϑ = x3 cosx5 (19b)

is a flat output (Fliess et al., 1995). The parametrization
of the states (18a) is given in the following way:

x1 = z1 +
z̈1z2

g − z̈2

x2 =
(g − z̈2)

(
z̈1ż2 + z

(3)
1 z2 + ż1 (g − z̈2)

)
+ z̈1z2z

(3)
2

(g − z̈2)
2

x3 =


− arccos

(
g−z̈2√

z̈2
1+(g−z̈2)2

)
if z̈1 > 0

+ arccos

(
g−z̈2√

z̈2
1+(g−z̈2)2

)
if z̈1 ≤ 0

x4 = − z̈1z
(3)
2 + z

(3)
1 (g − z̈2)

z̈2
1 + (g − z̈2)

2 (20)

x5 =
z2

√
z̈2

1 + (g − z̈2)
2

g − z̈2

x6 =
(g − z̈2)

(
ż2

(
z̈2

1 + (g − z̈2)
2
)

+ z̈1z
(3)
1 z2

)
+ z̈2

1z2z
(3)
2

(g − z̈2)
2
√
z̈2

1 + (g − z̈2)
2

.

The control parametrization (18b) easily follows by differ-
entiation of x2 and x4 and hence the differentiation order
is β1 = β2 = 4. A reference trajectory zref(t) for the flat
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Fig. 5. Experimental results for the 2DOF control scheme with flatness-based trajectory planning.

output (19) is constructed by the polynomial

zref(t) = z0 + (zτ − z0)

2σ+1∑
j=σ+1

cj

(
t

τ

)j
, t ∈ [0, τ ] (21)

with the polynomial order σ = 4 (corresponding to the
differentiation order of zref(t) at t = {0, τ}) and the related
coefficients

cj =
(−1)j−σ−1(2σ + 1)!

jσ!(j − σ − 1)!(2σ + 1− j)!
. (22)

Next, the reference trajectories xref(t) and uref(t) for t ∈
[0, τ ] are determined using the parametrization (18) in
combination with the constructed trajectory zref(t) and
its time derivatives. The computed trajectories are then
provided to both the MPC and the laboratory crane as
illustrated in Figure 4.

4.2 Error dynamics and tracking formulation

In view of the 2DOF control scheme in Figure 4, the
MPC is used to counteract the deviation from the refer-
ence trajectory xref(t) by means of the additional control
correction ∆u(t). To this end, the time-varying tracking
error for the state

∆x(t) := x(t)− xref(t) (23)

is considered in the following. The resulting control that is
injected to the system comprises the correction ∆u(t) and
the feedforward control uref(t) (cf. Figure 4), i.e.

u(t) = uref(t) + ∆u(t). (24)

The related error dynamics regarding the tracking error
(23) and the control action (24) follows to

∆ẋ(t) = ẋ(t)− ẋref(t)

= f (∆x(t)+xref(t),∆u(t)+uref(t))−ẋref(t)

=: g(∆x(t),∆u(t)),

(25)

where it is assumed that the state reference trajectory
xref(t) is sufficiently smooth. The original MPC scheme (1)

can then be reformulated to account for the error dynamics
(25) in the following way:

min
∆u(·)

J∆(∆u,∆xk) =
1

2

∥∥∆x(tk + T )
∥∥2

P∆

+
1

2

∫ tk+T

tk

∥∥∆x(t)
∥∥2

Q∆
+
∥∥∆u(t)

∥∥2

R∆
dt (26a)

s.t. ∆ẋ(t) = g(∆x(t),∆u(t)), ∆x(tk) = ∆xk (26b)

∆u(t) ∈
[
∆u−(t),∆u+(t)

]
, t ∈ [tk, tk + T ] (26c)

with the initial tracking error ∆xk = xk − xref(tk) at
sampling time tk and the time-varying input constraints
∆u±(t) = u± − uref(t). The tracking based OCP (26) is
repetitively solved at each sampling instance where the
reference trajectories xref(t) and uref(t) must additionally
be shifted by the sample time ∆t and provided to the MPC
formulation (26).

Note that in the nominal case the crane exactly tracks
the state reference xref(t) due to the feedforward control.
Consequently, the tracking error ∆x(t) as well as the
control correction ∆u(t) will be zero corresponding to a
trivial optimal solution of (26) in the nominal case.

4.3 Experimental results for the 2DOF control scheme

According to the successive setpoint changes (12)-(13), the
initial and final values for the reference trajectory zref(t)
of the flat output (cf. (21)) are

z0,1 = [ 0.0, 0.3]m, zτ,1 = [ 0.5, 0.8]m, τ1 = 1.6 s (27a)

z0,2 = [ 0.5, 0.8]m, zτ,2 = [−0.5, 0.8]m, τ2 = 1.95 s (27b)

z0,3 = [−0.5, 0.8]m, zτ,3 = [ 0.0, 0.3]m, τ3 = 1.6 s, (27c)

where the transition times τi are chosen to satisfy the input
constraints (11). The weights in the tracking formulation
(26) are adapted to
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P∆ = diag (10, 1, 10, 1, 10, 1) (28a)

Q∆ = diag (10, 1, 10, 1, 10, 1) (28b)

R∆ = diag
(
10−2, 10−2

)
. (28c)

Since the MPC has only corrective functionality in terms
of the 2DOF control scheme (cf. Figure 4), the prediction
horizon can be shortened to

T = 0.3 s. (29)

The experimental results for the two-degrees-of-freedom
control scheme with flatness-based trajectory planning
are shown in Figure 5. A considerable improvement of
the control performance can be observed resulting in an
excellent control quality. The input constraints are also
satisfied due to the choice of the transition times τi in
combination with the time-varying input constraints (26c).

5. CONCLUSION

Programmable logic controllers (PLCs) are typically used
in industrial automation for simple controller designs due
to limited computational performance and memory. The
MPC scheme discussed in this paper allows to deal with
these limited hardware resources by means of an effi-
cient gradient-based algorithm which was demonstrated
by implementing and running a nonlinear model predictive
controller on a standard PLC. The MPC scheme is well
suited for handling nonlinear input constrained systems
with sampling times in the millisecond range. The perfor-
mance and applicability of the PLC implementation was
illustrated for a laboratory crane setup with a sampling
time of ∆t = 2 ms. In addition to the classical MPC setup,
a two-degrees-of-freedom control scheme with a flatness-
based trajectory planning and a model predictive tracking
controller was presented.

A video of the model predictively controlled labo-
ratory crane with the two-degrees-of-freedom scheme
can be found on http://www.youtube.com/watch?v=-
_yMXq4PLJo. Moreover, the gradient-based MPC algo-
rithm is implemented in the open source software GRAMPC
(GRAdient based MPC – [græmp si:]) that is available un-
der http://sourceforge.net/projects/grampc. It also
includes an interface to Matlab/Simulink with an ad-
ditional GUI in Matlab in order to provide a convenient
and interactive MPC design procedure.

Future work concerns the incorporation of state con-
straints. Moreover, the used MPC approach shall be more
improved in terms of computational efficiency in order to
allow the implementation and run on a wider range of
hardware systems with limited performance and memory.
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