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Abstract: This paper considers a minimax control problem over multiple packet dropping
channels. The channel losses are assumed to be Bernoulli processes, and operate under the
transmission control protocol (TCP); hence acknowledgments of control and measurement drops
are available at each time. Under this setting, we obtain an output feedback minimax controller,
which are implicitly dependent on rates of control and measurement losses. For the infinite-
horizon case, we first characterize achievable H∞ disturbance attenuation levels, and then show
that the underlying condition is a function of packet loss rates. We also address the converse
part by showing that the condition of the minimum attainable loss rates for closed-loop system
stability is a function of H∞ disturbance attenuation parameter. Hence, those conditions are
coupled with each other. Finally, we show the limiting behavior of the minimax controller under
the disturbance attenuation parameter.
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1. INTRODUCTION

Networked control captures scenarios where controllers,
sensors, and the plant are connected over a network with
communication constraints, where their communication
links could be lossy and/or hampered by the limited
capacity (Hespanha et al. (2007)). Our goal in this paper
is to study one such class of systems where there are
packet losses on links that carry sensor information to
the controller and control signals to the plant along with
adversarial inputs.

Specifically, we study a problem of H∞ control (mini-
max control) over multiple unreliable communication links
where the links provide acknowledgments of control and
measurement drops, and losses are modeled by Bernoulli
processes. This problem is also known as control over TCP-
like lossy networks (Imer et al. (2006)). The paper provides
a complete generalization of the results obtained recently
by Moon and Başar (2013a, 2014) where the single packet
drop case was considered.

Linear-quadratic-Gaussian (LQG) control problems over
single or multiple packet drop channels were already con-
sidered in numerous prior works in the literature. Imer
et al. (2006) considered the single TCP-like packet drop-
ping problem under the perfect measurement case. It was
shown there that separation holds and the stability of the
closed-loop system depends on the unstable modes of the
system and the loss rate. Schenato et al. (2007) considered
the noisy measurement LQG system by showing that the
optimal controller in Imer et al. (2006) and the Kalman
filter in Sinopoli et al. (2004) including the control input
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can be designed independently. They also provided more
general upper and lower bounds on the stability margin.
Garone et al. (2012) generalized the previous LQG results
to multiple packet dropping channels.

In both the LQG case and its generalized H∞ control
problem, packet drops can be captured within the frame-
work of Markov jump linear systems (MJLSs), barring the
specific information structure along with the acknowledg-
ment scheme that pertains to packet dropping networks;
see Pan and Başar (1995) and Costa et al. (2005) for a
comprehensive treatment of H∞ control of continuous-
and discrete-time MJLSs, respectively, with perfect and
imperfect state information, but perfect Markov chain
state information.

For the special structure of a single packet dropping net-
work, and again for the H∞ control problem, most of the
results in the literature have used the MJLS framework
as the starting point, and have utilized LMIs and the
bounded real lemma (Seiler and Sengupta (2005); Geromel
et al. (2009); Ishii (2008)), with the downside being that,
in contradistinction with the problem studied in this pa-
per, they all work with full information on the Markov
chain. This makes that approach not applicable to the
problem in this paper where the TCP-type communica-
tion channel does not provide instantaneous packet loss
information; further, the LMI-based MJLS approach is
suboptimal (Schenato et al. (2007)) due to the assumption
of stationarity.

In a series of papers by Moon and Başar (2013a,b, 2014),
we have studied problems of minimax control and esti-
mation over a single TCP-like packet dropping network.
We have shown that i) the H∞ optimum disturbance
attenuation level is a function of control and measurement
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channel loss rates; ii) the critical packet dropping rate for
closed-loop stability is a function of the H∞ disturbance
attenuation parameter; iii) separation does not hold; and
iv) under a particular limit of the disturbance attenuation
parameter, the minimax controller as well as the critical
values of the loss rates converge to the corresponding ones
in the LQG case. This paper extends these results to
multiple packet dropping channels, and thus in a way also
extends the LQG results of Garone et al. (2012) to the
H∞ control problem.

The structure of the paper is as follows. In Section 2,
we formulate the minimax control problem over multiple
TCP-like lossy networks. The finite-horizon case is con-
sidered in Section 3. The analysis of the infinite-horizon
problem is in Section 4. A numerical example is included in
Section 5. We end the paper with the concluding remarks
of Section 6.

2. PROBLEM FORMULATION

Consider the following discrete-time linear system

xk+1 = Axk +BΥkuk +Dwk, k = 0, 1, 2, ... (1a)

yk = ΠkCxk + Evk, (1b)

where xk ∈ Rn is the state; uk ∈ Rm is the control;
wk ∈ Rp and vk ∈ Rq are the disturbance input and
the measurement noise, respectively, which are assumed
to be arbitrary signals in `2; yk ∈ Rq is the output; A,
B, C, D, E are time invariant matrices with appropriate
dimensions; and k is the time index. We also assume that
E is nonsingular, and define V := EET .

The stochastic processes, Υk = diag{α1
k, ..., α

m
k } and

Πk = diag{β1
k, ..., β

q
k}, are sequences of matrices of

i.i.d. stochastic processes where each component is a 0-1
Bernoulli processes with following mean values:

Ῡ = diag{ᾱ1, ..., ᾱm}, Π̄ = diag{β̄1, ..., β̄q},
where ᾱi ∈ [0, 1] and β̄j ∈ [0, 1] for all i and j, which
of course completely describe them. Note that we have
two packet dropping networks, with m and q channels,
respectively. We assume that the channels are pairwise
independent, but they need not be identically distributed.

We define the information that is available to the controller
by {

I0 := {y0, β0}
Ik := {y0:k, u0:k−1, Υ0:k−1, Π0:k}, k ≥ 1,

(2)

where y0:k := (y0, ..., yk) and the same notation applies to
u0:k−1, Υ0:k−1, and Π0:k. Such an information structure
is known as the TCP-like information structure due to
full information on previous control link conditions. If
(2) does not have Υ0:k−1, it is called UDP-like (Imer
et al. (2006); Schenato et al. (2007)). On the other hand,
MJLS formulations, as in Costa et al. (2005), consider
information when the current value, Υk, is also included
in (2).

Let | · |S denote an appropriate weighted Euclidean norm
or seminorm, weighted by the symmetric matrix S (with
S > 0 or S ≥ 0). Let U and W be sets of control
and disturbance policies, respectively. We also let ω :=
(x0, ν, {vk}) ∈ Ω := Rn ×W × V where ν ∈ W and V is
the appropriate space for {vk}. Our main objective in this

paper is to find a controller that minimizes the following
cost function:

� T Nµ �:= sup
ω∈Ω

JN (µ, ν)1/2

(FN )1/2
, (3)

where

FN = E
{
|x0 − x̃0|2Q0

+

N−1∑
k=0

|wk|2 + |vk|2
}

JN (µ, ν) = E
{
|xN |2QN +

N−1∑
k=0

|xk|2Q + |Υkuk|2R
}
,

where x̃0 is a known bias term which stands for the initial
estimate of x0; Q,QN ≥ 0; and R,Q0 > 0. Note that
µ ∈ U and ν ∈ W consist of sequences of functions that
map the information structure (2) into the controller and
the disturbance spaces of Rm and Rp, respectively, namely
uk = µk(Ik) and wk = νk(Ik) 1 for all k. This optimization
problem can be viewed as a modified version of the
deterministic H∞ control problem (Başar and Bernhard
(1995)). In (3), the stochastic parameters of control and
measurement drops are implicitly included to capture the
lossy nature of the dynamical system (1).

By invoking the formulation of the corresponding soft-
constrained game (Başar and Bernhard (1995)), the cost
function of the zero-sum dynamic game that is parameter-
ized by the disturbance attenuation parameter γ is given
by

JNγ (µ, ν) (4)

= E
{
|xN |2QN − γ

2|x0 − x̃0|2Q0
+

N−1∑
k=0

|xk|2Q

+ |Υkuk|2R − γ2|wk|2 − γ2|yk −ΠkCxk|2V −1

}
,

where the measurement equation (1b) is used with vk =
E−1(yk −ΠkCxk).

This completes the problem formulation of minimax con-
trol under multiple TCP-like packet dropping networks.
Note that (4) is a zero-sum dynamic game in which the
controller minimizes the cost function, while the unknown
disturbance maximizes the same cost function. We need
to characterize the saddle point of this, whenever it exists,
where the existence will depend on the value of γ as well
as the loss rates.

Since the perfect state information is not available, we
need to establish an estimator policy that provides the
worst-case estimated state that corresponds to the past
worst-case disturbance. Moreover, we need to characterize
the smallest value of γ which solves the original distur-
bance attenuation problem (3), and the range of values of
Ῡ and Π̄ for the closed-loop system to be stable, in the
sense to be clarified shortly.

3. FINITE-HORIZON MINIMAX CONTROL

3.1 Stochastic Minimax State Estimator Design

In this section, we establish a stochastic minimax estima-
tor under the information structure (2).

1 Note that an underlying assumption is that the worst-case distur-
bance has access to the same information as the controller.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

111



Lemma 1. Consider the zero-sum dynamic game in (4)
subject to (1) and (2) with k ∈ [0, N − 1], ᾱi ∈ [0, 1],
β̄j ∈ [0, 1] for all i and j, and a fixed γ > 0. Then:

(i) A stochastic minimax state estimator (SMSE) exists if
and only if

ρ(ΣkQ) < γ2 almost surely (a.s.) ∀k ∈ [0, N − 1], (5)

where ρ(·) is spectral radius of (·) and Σk is generated
by the following stochastic Riccati equation (SRE) (or
stochastic error covariance matrix) with Σ0 = Q−1

0 :

Σk+1 (6)

= A
(
Σ−1
k − γ

−2Q+ CTΠkV
−1ΠkC

)−1
AT +DDT .

(ii) The SMSE is generated by

x̄0 = x̃0

x̄k+1 = Ax̄k +BΥkuk (7)

+ATk
(
γ−2Qx̄k + CTΠkV

−1(yk −ΠkCx̄k)
)
,

where the estimator gain Tk can be written as

Tk = (Σ−1
k − γ

−2Q+ CTΠkV
−1ΠkC)−1. (8)

Proof. The proof is based on dynamic programming by
introducing the quadratic cost-to-come (worst past cost)
function under the information structure (2) (Başar and
Bernhard (1995)). The detailed proof is similar to that of
the single packet drop case, see Moon and Başar (2013b,
2014). 2

Fact 2. Both (6) and (7) are forward-moving stochastic
equations depending on past values of Πk and Υk, and
condition (5) is sample path dependent. 2

3.2 Minimax Controller Design

In this section, we obtain a minimax controller for the
dynamical system (1) under the information structure (2).

Lemma 3. Consider the zero-sum dynamic game in (4)
subject to (1) and (2) with k ∈ [0, N − 1], ᾱi ∈ [0, 1],
β̄j ∈ [0, 1] for all i and j, and a fixed γ > 0. Then:

(i) There exists a minimax controller if and only if (5)
holds a.s. for all k, and

φk(Sk) > 0, ∀k ∈ [0, N − 1] (9a)

ρ(DTZk+1D) < γ2, ∀k ∈ [0, N − 1] (9b)

ρ(ΣkZk) < γ2, a.s. ∀k ∈ [0, N − 1], (9c)

where Zk and φk(Sk) are defined in (ii).

(ii) Zk with ZN = QN is generated by the following
generalized Riccati equation:

Zk = ATZk+1A+Q+ PTukφk(Sk)Puk (10)

− PTwkMkPwk − 2PTukῩTBTZk+1A

+ 2PTwkD
TZk+1A− 2PTukῩTBTZk+1DPwk ,

where

Puk =
(
φk(Sk) + |DTZk+1BῩ|2

M−1
k

)−1

Kk (11a)

Pwk =
(
Mk + |ῩTBTZk+1D|2φ−1

k
(Sk)

)−1

Lk (11b)

Kk = ῩTBT (I + Zk+1DM
−1
k DT )Zk+1A (11c)

Lk = DT (I − Zk+1BῩφ−1
k (Sk)ῩTBT )Zk+1A (11d)

Mk = (γ2I −DTZk+1D) (11e)

Sk = (R+BTZk+1B), (11f)

where φk(X) can be obtained by solving

φk(X) := E{ΥT
kXΥk}. (12)

(iii) The minimax controller and the worst-case distur-
bance can be written as

u∗k = µ∗k(Ik) = −Puk x̂k (13)

w∗k = ν∗k(Ik) = Pwk x̂k, (14)

where x̂k is the worst-case estimated state that can be
obtained by

x̂k = (I − γ−2ΣkZk)−1x̄k, (15)

where x̄k is generated by the SMSE in Lemma 1.

Proof. Due to the certainty equivalence principle (Başar
and Bernhard (1995)), we first need to obtain the state
feedback minimax controller by assuming that the con-
troller has access to full state information and the past
control packet loss information, namely, x0:k, u0:k−1, and
Υ0:k−1 for all k. Then, with the value function of Vk(xk) =
E{xTk Zkxk|Ik} where ZN = QN , the control law and
the worst-case disturbance in parts (ii) and (iii) can be
obtained by a value function iteration under the condition
specified in (9a) and (9b) (Moon and Başar (2013b, 2014);
Başar and Bernhard (1995)). Then under (9c), the worst-
case estimated state in (15) can be obtained by

x̂k = arg max
xk

E{Vk(xk) +Wk(xk)|Ik}

= arg max
xk

E{|xk|Zk − γ2|xk − x̄k|2Σ−1
k

+ lk|Ik},

where Wk(xk) is given in Lemma 1. This completes the
proof of the lemma. 2

Fact 4. The condition (9a) holds trivially for all k when
we use the single packet drop model in Moon and Başar
(2013a). 2

We now state the main theorem of this section.

Theorem 5. Consider the stochastic dynamical system (1)
with the cost function of (4) and the information structure
(2). Suppose γ is fixed such that (5), (9a), (9b), and (9c)
hold for all k. Then:

(i) The minimax controller (13) exists with the SMSE
and the worst-case estimated state (15).

(ii) Under (13), the disturbance attenuation level of γ is
achieved, that is, � T Nµ∗γ �≤ γ.

(iii) There is no separation of control and estimation due
to the spectral radius condition (9c).

(iv) As γ → ∞, the minimax controller with the SMSE
converges to the solution of the corresponding LQG
system. 2

Note that γ has to satisfy the spectral radius condition
(9c), which is related to (10) and (5). Therefore, we
cannot design the minimax controller and the SMSE
independently.

Fact 6. It was shown in Garone et al. (2012) that the
LQG system features separation, i.e., the controller and
the estimator can be designed independently. This fact and
parts (iii) and (iv) in Theorem 5 imply that the separation
holds in Theorem 5 when γ →∞. 2

Fact 7. For the finite-horizon problem, the smallest value
of γ that satisfies all conditions in Theorem 5 solves the
original disturbance attenuation problem formulated in
(3). 2
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4. INFINITE-HORIZON MINIMAX CONTROL

In this section, we analyze the limiting behavior of the
minimax controller and the SMSE in Section 3 when
k,N → ∞ of the cost function (4) without the terminal
constraint. We also show the relationship of γ, Ῡ, and Π̄ to
the existence and stabilizability of the minimax controller.
We first provide the infinite-horizon version of the results
of Section 3.

• The generalized algebraic Riccati equation (GARE)
is

Z̄ := Z̄(γ, Ῡ) (16)

= AT Z̄A+Q+ PTu φ(R+BT Z̄B)Pu − PTwMPw

− 2PTu ῩTBT Z̄A+ 2PTwD
T Z̄A

− 2PTu ῩTBT Z̄DPw,

where Pu, Pw, S, M , and φ(·) are the infinite-horizon
versions of (11) with respect to Z̄, respectively.
• The infinite horizon version of the minimax controller

and the worst-case disturbance can be written as

uk = −Pux̂k (17)

wk = Pwx̂k. (18)

• The worst-case estimated state is

x̂k = (I − γ−2ΣkZ̄)−1x̄k, (19)

where x̄k is generated by the SMSE in (7).
• The infinite-horizon version of the set of existence

conditions is

φ(R+BT Z̄B) > 0 (20)

ρ(DT Z̄D) < γ2 (21)

ρ(ΣkZ̄) < γ2, a.s. ∀k. (22)

Note that Ῡ and Π̄ are m×m and q×q matrices of control
and measurement packet loss rates, respectively. Since the
SMSE is time varying and random due to the SRE, the
infinite-horizon version of the results of Lemma 1 is not
generally available.

As we have seen, the existence conditions obtained in
Section 3 need to be characterized in terms of the fixed
point of the GARE in (16). Therefore, we first show the
existence of a fixed point of (16).

Lemma 8. Suppose (A,B) is controllable, and (A,Q1/2) is
observable. Define

Γ1(Ῡ) := {γ > 0 : (20) and (21) hold,

Z̄ > 0 solves (16).}
γ∗1 (Ῡ) := inf{γ ∈ Γ1(Ῡ)}.

Assume that for any Ῡ, Γ1(Ῡ) is nonempty and γ > γ∗1(Ῡ).
Then {Zk,N} → Z̄ for each fixed k, as N → ∞ where
{Zk,N} is generated by the Riccati equation (10) and Z̄ is
a fixed point of (16) that satisfies (20) and (21).

Proof. First observe that the Riccati equation (16) gen-
erates a monotone sequence as k = N,N − 1, ..., 0. From
the definition, for a fixed γ, there is a fixed point of (16)
that satisfies (20) and (21). This fixed point is in fact an
upper bound on the Riccati equation (10), i.e., Z̄ ≥ Zk,N
for all k. To see this, consider (as in Başar and Bernhard
(1995))

inf
µ∈U

sup
ν∈W

J∞γ (µ, ν)

≥ inf
µ∈U

E

{ ∞∑
k=N

|xk|2Q + |Υkuk|2R

+

N−1∑
k=0

|xk|2Q + |Υkuk|2R − γ2|ν∗k |2
}

≥ xT0 Z0x0,

where ν∗k is the worst-case disturbance of (14), and we
used the state feedback cost function in Moon and Başar
(2013a). Then it is a simple matter to show that a sequence
which is nondecreasing and bounded from above converges
to the fixed point of (16). Uniqueness follows from the
observability assumption as in the deterministic minimax
control problem in Başar and Bernhard (1995). 2

For the SMSE, since the SRE is governed by {Πk}, it
does not admit any fixed points unless β̄i = 1 for all
i. Therefore, the infinite-horizon version of the existence
condition of the SMSE is analogous to its finite-horizon
version:

Γ2(Π̄) := {γ > 0 : (5) holds a.s. for all k.}
γ∗2(Π̄) := inf{γ ∈ Γ2(Π̄)}.

It is easy to see that for a given Π̄, if Γ2(Π̄) is nonempty
and γ > γ∗2(Π̄), then (5) holds a.s. for all k.

In Garone et al. (2012), it was shown that the LQG
controller requires the boundedness of E{Pk} where Pk
is the error covariance matrix of the Kalman filter, since
its upper bound constitutes an upper bound of the average
cost of the LQG problem. Since this result coincides with
our case when γ → ∞, the boundedness of E{Σk} is
necessarily required.

Let Θq be a collection of subsets of {1, 2, ..., q} and let the
matrix ∆I

q be

∆I
q := diag

{
1 i ∈ I ∈ Θq

0 else.

It is easy to check that ∆I
q has the same dimension as of

Πk. The measurement loss rate that corresponds to ∆I
q is

defined by

∆̄I
q(Π̄) :=

(∏
i∈I

β̄i

)(∏
i/∈I

1− β̄i
)
.

Note that this variable is determined by Π̄. One such
example is as follows: suppose q = 3 and I ′ = {1, 2} ∈ Θ3.

Then ∆I′

3 = diag{1, 1, 0} and ∆̄I′

3 (Π̄) = β̄1β̄2(1 − β̄3).
Note also that by using the definitions of ∆ and ∆̄, the
existence condition (20) can be written as

φ(R+BT Z̄B) =
∑
I∈Θm

∆̄I
m(Ῡ)∆I

m(R+BTZB)∆I
m.

The boundedness of E{Σk} can be stated as follows.

Lemma 9. Suppose γ > γ∗2 (Π̄) is finite for a given Π̄.
Suppose (A,D) is controllable and (A,C) is observable.
Define

Γ3(Π̄) := {γ > 0 : ρ(Σ̄Q) < γ2}
γ∗3 (Π̄) := inf{γ : γ ∈ Γ3(Π̄)},

where Σ̄ is a fixed point of the following algebraic Riccati
equation:
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Σ̄ =
∑
I∈Θq

∆̄I
q(Π̄)Σ̄I (23)

Σ̄I := A
(
Σ̄−1 − γ−2Q+ CT∆I

qV
−1∆I

qC
)−1

AT +DDT .

Then:

(i) E{Σk} ≤ Σ̄k =
∑
I∈Θq ∆̄I

q(Π̄)Σ̄Ik, where

Σ̄
I

k+1 := A
(
Σ̄−1
k − γ

−2Q+ CT∆I
qV
−1∆I

qC
)−1

AT

+DDT .

(ii) If Γ3(Π̄) is nonempty and γ > max{γ∗2 (Π̄), γ∗3 (Π̄)},
then Σ̄k → Σ̄ as k → ∞. Finally, under this
condition, the SMSE exists and E{Σk} ≤ Σ̄ for all k.

Proof. Part (i) can be shown by induction and applying
Jensen’s inequality to the expected value of the SRE (6),
which is a concave function in Σk for all k (Moon and
Başar (2013b)). For part (ii), note that from definition, Σ̄
is a solution to (23) satisfying ρ(Σ̄Q) < γ2. Then the proof
of the convergence of Σ̄k to Σ̄ is analogous to that of the
single packet drop problem considered in Moon and Başar
(2013b). This completes the proof. 2

Fact 10. Note that under Lemma 9, we have E{Pk} ≤
E{Σk} ≤ Σ̄ where Pk is the error covariance matrix in
Garone et al. (2012), since Pk ≤ Σk a.s. for all k. Moreover
as γ → ∞, the upper bound coincides with the upper
bound of E{Pk} in Garone et al. (2012). 2

Finally, we introduce the infinite-horizon version of the
spectral radius condition (9c):

Γ4(Ῡ, Π̄) := {γ > 0 : γ > γ∗1 (Ῡ), γ > γ∗2(Π̄),

γ > γ∗3(Π̄), (22) holds a.s. for all k.}
γ∗4(Ῡ, Π̄) := inf{γ ∈ Γ4(Ῡ, Π̄)}.

By convention, if Γ4(Ῡ, Π̄) is empty, then γ∗4(Ῡ, Π̄) is
infinite; for example, if ᾱi = β̄i = 0 for all i and
A is unstable, then Γ4(Ῡ, Π̄) is empty. Therefore, for
fixed Ῡ and Π̄, if γ > γ∗4(Ῡ, Π̄) and is finite, then all
existence conditions are satisfied. Note that from the
above construction, we have characterized the minimum
achievable disturbance attenuation level that leads to
satisfaction of existence conditions. We now state the main
theorem of this section.

Theorem 11. Consider the dynamical system (1) with the
infinite-horizon version of the cost function (4). Suppose
(A,B) and (A,D) are controllable, and (A,Q1/2) and
(A,C) are observable. For fixed Ῡ and Π̄, suppose γ∗4 (Ῡ, Π̄)
is finite and γ > γ∗4(Ῡ, Π̄). Then:

(i) The GARE (16) admits a unique fixed point that
satisfies (20) and (21).

(ii) The SMSE and the worst-estimated state (19) exist.
(iii) The minimax controller can be obtained by (17) with

the SMSE and (19).
(iv) The infinite-horizon version of the minimax con-

troller (17) achieves the disturbance attenuation level
of γ, that is, � T ∞µ∗γ �≤ γ.

(v) Separation does not hold.
(vi) As γ →∞, the solution converges to that of the LQG

problem. 2

Now, assume that we have all the conditions of Theorem
11 satisfied. Consider the closed-loop system

xk+1 = Axk −BΥkPu(I − γ−2ΣkZ̄)−1x̄k

+DPw(I − γ−2ΣkZ̄)−1x̄k, (24)

where x̄k is generated by the SMSE in (7). Note that the
closed-loop system (24) with the SMSE is time varying due
to the estimator gain (8) and the SRE. In fact, the process
of the SRE is not Markov, and its number of realizations
grows by 2qk depending on the sequence of measurement
drops. Therefore, the closed-loop system cannot be seen as
a finite or infinite Markov jump system as in Costa et al.
(2005) and Costa and Fragoso (1995).

It is worth mentioning that if a given γ does not satisfy the
condition in Theorem 11, then the minimax controller and
the SMSE do not exist; therefore, it is not possible to sta-
bilize the closed-loop system and achieve the performance
level of γ.

The stability of the closed-loop system (24) can be
achieved when β̄i = 1 for all i. In that case, there is a
stationary estimator gain; hence the closed-loop system
(24) with the minimax estimator is mean-square stable,
that is, E{|zk|2} → 0 as k → ∞ where zk = [xTk , x̄

T
k ]T .

The proof is a direct modification of the single packet drop
problem in Moon and Başar (2013a).

Fact 12. Note that the H∞ optimum disturbance attenua-
tion level of γ∗4 (Ῡ, Π̄) is a function of control and measure-
ment loss rates. Moreover, γ∗4(Im×m, Iq×q) where Im×m
(resp. Iq×q) is the m ×m (resp. q × q) identity matrix is
the optimum level, which is equivalent to the deterministic
minimax control problem. The case when Ῡ and Π̄ are zero
matrices is analogous to the open loop control problem;
therefore, γ∗4 is not finite when A is unstable. 2

We now discuss the converse part. To characterize the
minimum attainable loss rates, define

Λ1(γ) := {Ῡ : (20) and (21) hold, Z̄ > 0 solves (16).}
Ῡc(γ) := inf{Ῡ, ᾱi, ∀i : Ῡ ∈ Λ1}
Λ2(γ) := {Π̄ : (5) holds a.s. for all k and ρ(Σ̄Q) < γ2}
Π̄c(γ) := inf{Π̄, β̄i, ∀i : Ῡ ∈ Λ2},

where γ > γ∗4(Im×m, Iq×q). Note that the infimization has
to be taken over m control loss rates and q measurement
loss rates. Moreover the above sets are empty when γ <
γ∗4 (Im×m, Iq×q). Now, for any Ῡ < Ῡc(γ) and Π̄ < Π̄c(γ)
where < is componentwise inequality, we have all existence
conditions holding.

However, unlike the single packet drop problem, Ῡc(γ)
and Π̄c(γ) are hard to be characterized, since we have
m + q different rates that have to be considered while
checking existence conditions. One alternative would be
to fix all but one or two, and analyze the stability region
with respect to those parameters. Another possibility is to
have all ᾱi’s and β̄j ’s the same, and along with γ, conduct
the analysis in the 3-dimensional parameter space.

5. NUMERICAL EXAMPLE: EXISTENCE
CONDITIONS

We examine the existence conditions of Section 4 for the
batch reactor system considered in Garone et al. (2012).
The plant is modeled as a 2 input-2-output system. The
system matrices of A, B, and C are as in Garone et al.
(2012), and the other parameters are taken as follows
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Fig. 2. Boundedness of E{Σk}.

D =
√

2I4×4, V = 0.001I2×2, R = I2×2, Q = I4×4.

Figure 1 shows the existence region of the minimax con-
troller in Theorem 11. As can be seen, a smaller value of γ
leads shrinkage of the existence region. This is because the
system should need more reliable communication links if
the disturbance attenuation is more important. A similar
result is also achieved for the region of the boundedness
of E{Σk} as shown in Fig 2. A detailed discussion on the
relationship between the loss rates and γ can be found
in Moon and Başar (2013a, 2014). It is worth mentioning
that as γ → ∞, the two regions converge to that of the
LQG problem in Garone et al. (2012).

6. CONCLUDING REMARKS

In this paper, we have considered the minimax control
problem over multiple TCP-like packet dropping networks.
The communication channel is modeled as the Bernoulli-
type packet losses. We have obtained the output feedback
minimax controller. We have characterized the minimum
disturbance attenuation level that can be achieved by
the minimax controller. Moreover, we have obtained the
minimum attainable control and measurement loss rates
above which the minimax controller exists and is able
to stabilize the system under some specific conditions.
Finally, we have shown that as the disturbance attenuation
parameter becomes unbounded, every result obtained in

this paper specializes to corresponding results in the LQG
case treated by Garone et al. (2012). Hence, there is a
parallel with what is found in the deterministicH∞ control
case.
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