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Abstract: An evolutionary computation - based design/optimisation approach using the Cartesian Genetic 

Programming is proposed for non-linear continuous-time process control. It is a simplification of a more 

general Genetic Programming – based design, which is powerful, but more computationally demanding. 

The approach is able to produce effective and non-intuitive controllers in the form of a network of 

interconnected elementary building blocks, which minimize the defined performance index. Each 

building block performs mathematic operations between its inputs, next it contains gain and an 

elementary dynamic part as integrator, derivative or unity gain. The proposed design method is 

demonstrated on water turbine control design, and the results are compared with the genetic algorithm-

based PID controller design.  
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1. INTRODUCTION 

In continuous-time process control, we have to design 

controllers for different types of systems with complex 

structures and specific dynamics. For that reason it is 

necessary to use various control algorithms. Modern control 

theories are able to solve complex tasks, however sometimes 

the applied approaches do not give satisfactory results. This 

appears often in cases when the system to be controlled has a 

nontrivial structure, complex dynamic behaviour, it contains 

nonlinearities, more inputs/outputs and it is affected by noise 

or disturbances. The design process may be complicated and 

many times analytical methods may not be able to yield 

satisfactory results. In contrast to these, evolutionary-based 

search techniques are often able to find good solutions, to 

generate new control laws and also non-intuitive solutions.   

Many authors have applied various evolutionary computation 

methods for control design applications. It is possible to 

classify the known approaches which are using evolutionary 

algorithms (EA) into two groups. In the first group the EA's 

are used as a powerful optimisation/search tool in analytically 

formulated control design methods. The parameters of 

controllers (or any dynamic system) are designed 

mathematically, based on the stability theory or other 

analytically formulated conditions e.g. Kawabe et al., (1996), 

Krohling & Rey (2001), Sekaj & Veselý (2005). The second 

group of methods applies simulation-based closed-loop 

evaluation of the model as in Khatib (1999), Mitsukura et al 

(1999), Sweriduk et al. (1999), Sekaj (1999), Herrero et al. 

(2002), Lewin (2005), Yang (2005), Sekaj (2011). Survey of 

evolutionary-based control system designs can be found in 

Lewin (2005) or Sekaj (2011). 

If the task is to search/optimize parameters of an a-priori 

known, respectively fixed defined structure of an object, 

Genetic algorithms (or Evolution strategies, Differential 

evolution, PSO, etc.) can be used e.g. Eiben (2003). On the 

other hand, if the structure of the designed object is unknown, 

an extension of these approaches is possible using Genetic 

programming (GP) e.g. Koza (1992), Banzhaf et al. (1999), 

Koza et al. (2000). GP is also able to solve complex tasks in 

process control and to produce powerful and non-intuitive 

results e.g. Sekaj (2007). A possible way, which is here 

described uses the control algorithm representation based on 

an interconnected network consisting of the following 

elementary continuous-time dynamic function blocks: 

integrator, derivative unit, amplifier (multiplication by a 

constant), summation and multiplication unit (Fig. 1) where 

A, B and D are real constants.  

 

 

Fig. 1.  Elementary building blocks of a GP-based controller 

 

The objective is to find the optimal control network 

consisting of such types of elementary function blocks and 

their interconnection, which minimizes a selected 

performance criterion (as described in part 2.3).  

In another approach, which is also presented in Sekaj (2007) 

a discrete-time recurrent control algorithm has been designed 

in the form of a function of selected time-delayed input 

variables. The following set of variables has been used:   

 ={e(k), e(k-1), ..., e(k-m), y(k), y(k-1), ..., y(k-n), u(k-1),  

u(k-2), ..., u(k-p),r(k),c} 
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where k is the control step, e is control error, y is the 

controlled value, u is control value, r is the reference value, c 

are real constants. The aim is to find the optimal form of the 

controller function 

F()=? 

such that the cost function (as in part 2.3) is minimized. The 

function F contains operators +, -, * and arguments, which 

are arbitrary items of the vector .  

The main drawback of the mentioned GP-based approaches is 

the high (extremely high) computation effort/time needed to 

obtain a solution. Design of simple SISO controllers can take 

days of computation time. 

For that reason in this contribution, an alternative approach is 

presented which is based on Cartesian Genetic Programming 

(CGP) e.g. Miller (2011). The basic idea of CGP is to 

introduce some limitations/simplifications in the task 

definition in comparison to GP, which allows obtaining 

acceptable performance under much lower computation 

requirements. In our approach the building blocks in CGP are 

located in an orthogonal grid.  

The proposed approach is demonstrated in the evolution of a 

controller of a hydro-turbine.  

  

2. CONTROLLER DESIGN BASED ON CARTESIAN 

GENETIC PROGRAMMING 

2.1  Problem formulation 

The goal of the proposed CGP is the design of a controller of 

a non-linear dynamic system which is constructed using the 

searching/optimization of interconnections and 

parametrisation of simple building blocks. Each building 

block consists of a serial connection of 3 elementary units 

(Fig.2). The inputs of the block are processed using 

arithmetic operators (op): summation, subtraction, 

multiplication or division, which define the mathematical 

relations between all input signals of the particular block. 

Next, the signal is multiplied by a gain and finally it is 

processed by an elementary dynamic operator: integrator, 

derivative or unit gain. More such building blocks are 

organized in a column, where the output of each block can be 

connected to an arbitrary other input of another building 

block (Fig. 10). Input signals of the controller (i.e. control 

error, controlled value, etc.) can be connected to inputs of 

each building block. The output of the last building block 

represents the output of the entire interconnected controller 

network. Such a network can be considered as an orthogonal 

grid, where each node of the grid contains an elementary 

operator. The interconnection of the nodes is not arbitrary (as 

in case of GP), but it is limited to the above mentioned rules. 

Thank to such simplifications the computation time of CGP 

in comparison to GP is shorter. The goal of the controller 

design is to find such (sub)optimal network of building 

blocks, which maximize the control performance (minimizes 

cost function) in a defined control loop.  

 

 

 2.2  Representation of the  individual in the CGP 

 

An individual in CGP is a potential solution, which 

represents the complete information of a controller including 

its internal structure and its parameters. Each individual is a 

member of the population. The population contains a set of 

individuals and represents the main data structure of the 

CGP.  

 

Each individual contains N interconnected building blocks. 

Each building block consists of elementary units (the 

mathematical operations and constants), which are generated 

by the evolutionary algorithm (EA). Also the 

interconnections between the controller inputs, the building 

blocks and the controller outputs are generated and evolved 

by the EA. Their number is limited to M. N and M are a-priori 

defined values and they depend on the complexity of the 

controlled system. They should be estimated by the designer. 

Note, that if N or M is larger than needed, the algorithm 

generates less than N blocks or M interconnections 

respectively or they remain unused. If N or M is smaller than 

needed, the performance of the controller will be insufficient. 

 

Each individual is represented by a string in the following 

form: [bt, bg, ic, oc, mc].  

 

bt - vector of N block types (1-unit gain, 2-integrator, 3-

derivative) 

bg – vector of N gain values of each module (real values) 

ic – vector of M input connection points (order number of 

previous connected modules)  

oc – vector of M appropriate output connection points (order 

number of next connected modules) 

mc – vector of M mathematic operations, one for each 

connection (1-summation, 2-subtraction, 3-multiplication) 

 

The length of each individual is L=N+N+M+M+M items. It 

is a string of L real numbers.  

 

Remark: If using GP for interconnection design of the 

elementary building blocks (operators) no such strict 

limitations are considered. This allows generating practically 

unlimited structures. The only limitation in GP is the number 

of building blocks or the size of the interconnected network 

respectively.  

 

 

 
 

Fig. 2. Controller building block in the proposed CGP  

 

2.3  Cost function   

The control design objective is to provide required dynamic 

behaviour of the controlled process, usually represented in 

terms of the well-known performance measures: maximum 
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overshoot, settling time, decay rate, steady state error or 

various integral performance indices.  

 

Without loss of generality let us consider a simple feedback 

loop (Fig. 3) where y is the controlled value, u is the control 

value, ref is the reference and e is the control error (e=r-y). 

Let an appropriate simulation model of the controlled object 

be available. The closed-loop performance will be assessed 

using the simple integral performance index "integral of 

absolute control error" defined as 


T

AE dtteI
0

)(                                                                  (1) 
(1) 

  

where T is the simulation time. The discrete form of this 

performance index is 





S

k

kAE eTI
ks

1
,

                                                               (2) 
(2) 

where Ts,k is the simulation step size, k is the simulation step 

and S is the number of simulation steps.  

 

If it is necessary to reduce the overshoot or to damp 

oscillations, it is recommended to insert in the integral 

additional terms, which include absolute values of the first or 

also the second derivatives of the control error 

  

T

dtteteteJ
0

)()()( 
                                        (3)                                                              (3) 

and to increase weight coefficients  and  to increase the 

oscillation dumping. The weight constants can be determined 

according the specific needs of the designer experimentally 

(minimising of steady state error or overshoot, damping of 

oscillations, etc.) under consideration of the dynamics of the 

particular controlled system. Besides (1), (2) and (3) also 

other possible control performance criterions (e.g. energy 

minimisation, reference signal tracking, robustnes measures) 

are in Sekaj (2011). 

 

 
 

Fig. 3.   Block scheme of the closed loop 

ref – reference value, e – control error,  

u – control value, y – controlled value 

 

The controller design is actually an optimisation task – a 

search for such a controller structure and its parameters from 

the defined parameter space that minimises the performance 

index. The cost function evaluation consists of two steps. The 

first step is the closed-loop time-response simulation, the 

second one is the performance index evaluation (Fig. 4). 
 

 

Remark about the closed-loop stability: Due to the applied 

performance index minimization (of type (1), (2), (3), etc.), 

the closed-loop stability is an implicit attribute of each 

solution. During the evolution, unstable individuals are 

eliminated because of their high value of performance index 

and the solution is directed into a stable parameter region. 

However, it is possible to include a stability test into each 

performance evaluation. Unstable individuals can 

additionally obtain high penalty values and they will be 

eliminated during the evolution. 

 

2.4  Evolutionary algorithm 

The evolutionary algorithm used is a conventional genetic 

algorithm (GA) e.g. Goldberg (1989), Eiben (2007) and 

others. For our needs the GA is based on following steps: 

1. Initialization of population (set of individuals, 

between 30-50), randomly (random blocks and 

interconnections are generated), 

2. cost function (fitness) calculation of each individual 

of the population = simulation + performance index 

evaluation, 

3. if termination conditions are met (in our case - 

predefined number of generations) then end, else 

continue in step 4, 

4. parent selection, more fit individuals have higher 

probability to be selected, in our case the stochastic 

universal sampling was used, 70% of individuals of 

the population were selected, 

5. modification of parents by crossover and mutation = 

children, 

6. new population completion (children + selected 

unchanged individuals), 

7. continue in step 2. 

 

The block scheme describing the controller evolution is 

shown in Fig. 4. 

 

 

 
Fig. 4.  Block scheme of the GA-based controller design 

 

Note, that each mutation in the CGP design represents one 

from the set of following operations: random change of a 

mathematic operation to another operation, random change of 

a constant to another random value, random change of an 

interconnection, addition or removing of a building block, 

addition or removing of an input to the block. Crossover 

represents a random exchange of attributes of two 

individuals. 
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3. CASE STUDY 

3.1  The controlled system  

The proposed design procedure has been demonstrated in the 

example of the hydraulic turbine power control. The model 

and an analysis of possible control strategies of this non-

linear system are frequently discussed in literature e.g. 

Kundur (1994), Malik (1995), Garipov (2007) and others. 

The turbine model parameters vary significantly in a wide 

range with unpredictable load variations. Various control 

algorithms have been proposed for control, which are based 

on multi model approach, adaptive methods, gain scheduling 

or robust methods, etc. 

 

The model of the turbine and the penstock are determined by 

three equations relating to the velocity of the water in the 

penstock, the turbine mechanical power and the acceleration 

of water column. Water velocity in the penstock is given by 

 

HGkU u         (4) 

 

where U is the water velocity, G is gate opening, H is 

hydraulic head at gate, ku is a proportionality constant. The 

turbine mechanical power is proportional to the product of 

pressure and flow 

 

HUkP pm  .       (5) 

 

Acceleration of the water column due to a change in head at 

turbine is described by Newton’s second law of motion and 

can be expressed in the form 

 

),( 0HHaA
dt

dU
LA g        (6) 

 

where H0 is the initial steady-state value of H, A is the pipe 

area, L is the length of the penstock, ρ is the mass density, ag  

is the acceleration due to gravity. The plant model is shown 

in Fig. 5. The equations (4)-(6) are in a normalized form, 

inelastic water column is assumed, e.g Kundur (1994). 

 

 
Fig. 5. Block diagram of the Hydraulic turbine 

 

 

If we assume an inelastic water column the transfer function 

W(s) will be in form 

 

sT
sW

w

1
)(        (7) 

 

where Tw is the water starting time at rated load. It has a fixed 

value for a given penstock and is given by  

 

rg

r
w

AHa

LG
T        (8) 

 

where Hr and Qr are the rated values of the hydraulic head 

and gate and the turbine flow rate respectively. The following 

data related to the turbine, penstock and generator of a hydro 

generating unit are considered: penstock length is 700 m, 

rated hydraulic head is 180 m, piping area is10.25 m
2
, water 

flow rate at rated load is 75 m
3
 / s, gate opening at rated load 

is 0.96 p.u., gate opening at no load is 0.04 p.u., turbine 

rating is 150 MW, generator rating is 140 MVA and water 

starting time at rated load is Tw= 2.9 s. 
 

3.2  CGP design results  

In Fig. 6 and 7 the obtained regulation process of the turbine 

power using the controller obtained by the CGP procedure is 

compared with a conventional PID controller, which 

parameters were optimized using a genetic algorithm. The 

control values of both controllers are shown in Fig. 8. In Fig. 

9 the graphs of the cost function minimization according (3) 

(α=0.1, β=0) during the evolution computation are shown. 

Finally the obtained controller using the CGP approach is 

depicted in Fig. 10. Six building blocks have been used. The 

signals turbine speed and the reference value remain unused 

by the CGP algorithm.  

 

The computation time of these example on a PC (AMD 

Ahtlon II X4 630, 4-core, 2.8 GHz, memory 4GB) takes 

approximately 78 hours. The used program environment was 

Matlab, Release 2010b, Mathworks (2010). 

 

 
Fig. 6. Comparison of the process values (power) using CGP 

controller (solid) and PID controller designed using GA 

(dashed). 
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Fig. 7. Comparison of the process values (power) using CGP 

controller (solid) and PID controller designed using GA 

(dashed) – detail. 

 

 
Fig. 8. Comparison of the control values (u) using CGP 

controller (solid) and PID controller designed using GA 

(dashed). 

 
Fig. 9.  Comparison of the cost function evolution graphs of 

the CGP controller (solid) and PID controller using GA 

(dashed). 

 

                              4. CONCLUSIONS 

Evolutionary computation methods are suitable and very 

effective tools for the design/optimization of control 

algorithms and control systems. If a fixed number of 

parameters of an a-priori defined control structure is to be 

optimized, the suitable way is to use Genetic Algorithms (or 

other evolutionary-based numerical optimization approaches 

e. g. Evolution Strategies, Differential Evolution, PSO, etc.). 

When the evolution of the internal controller structure is also 

required, a more general approach such as Genetic 

Programming can be used. It is able to produce practically 

unlimited controller structures. But the main drawbacks of 

GP are the extremely time demanding computation procedure 

and problems with control of growth of the generated 

structures. In this paper a new Cartesian Genetic 

Programming approach has been presented. Here additional 

limitations related to the controller structure and its size allow 

reduction of the unacceptable computation effort. The results 

have proved that a CGP is a powerful tool which is capable 

of finding very good but also non-intuitive solutions. The 

only conditions of using this approach are the existence of an 

appropriate simulation model of the controlled system and 

sufficient computation capacity. In this paper only a simple 

feedback closed-loop example has been presented. The 

proposed CGP-based design approach can be used for design 

of complex MIMO systems and controller design tasks with 

any type of non-linearity. 

 

 

 
 

 

Fig. 10.  Structure of the controller designed by the CGP  
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