

 Design of Continuous-time Controllers using Cartesian Genetic Programming

Branislav Kadlic. Ivan Sekaj. Daniel Pernecký


Institute of Control and Industrial Informatics

Faculty of Electrical Engineering and Information Technology

Slovak University of Technology, Bratislava, Slovak Republic

(e-mail: ivan.sekaj@stuba.sk)

Abstract: An evolutionary computation - based design/optimisation approach using the Cartesian Genetic

Programming is proposed for non-linear continuous-time process control. It is a simplification of a more

general Genetic Programming – based design, which is powerful, but more computationally demanding.

The approach is able to produce effective and non-intuitive controllers in the form of a network of

interconnected elementary building blocks, which minimize the defined performance index. Each

building block performs mathematic operations between its inputs, next it contains gain and an

elementary dynamic part as integrator, derivative or unity gain. The proposed design method is

demonstrated on water turbine control design, and the results are compared with the genetic algorithm-

based PID controller design.

Keywords: cartesian genetic programming, continuous-time control, controller structure design, control

performance optimization, non-linear systems.



1. INTRODUCTION

In continuous-time process control, we have to design

controllers for different types of systems with complex

structures and specific dynamics. For that reason it is

necessary to use various control algorithms. Modern control

theories are able to solve complex tasks, however sometimes

the applied approaches do not give satisfactory results. This

appears often in cases when the system to be controlled has a

nontrivial structure, complex dynamic behaviour, it contains

nonlinearities, more inputs/outputs and it is affected by noise

or disturbances. The design process may be complicated and

many times analytical methods may not be able to yield

satisfactory results. In contrast to these, evolutionary-based

search techniques are often able to find good solutions, to

generate new control laws and also non-intuitive solutions.

Many authors have applied various evolutionary computation

methods for control design applications. It is possible to

classify the known approaches which are using evolutionary

algorithms (EA) into two groups. In the first group the EA's

are used as a powerful optimisation/search tool in analytically

formulated control design methods. The parameters of

controllers (or any dynamic system) are designed

mathematically, based on the stability theory or other

analytically formulated conditions e.g. Kawabe et al., (1996),

Krohling & Rey (2001), Sekaj & Veselý (2005). The second

group of methods applies simulation-based closed-loop

evaluation of the model as in Khatib (1999), Mitsukura et al

(1999), Sweriduk et al. (1999), Sekaj (1999), Herrero et al.

(2002), Lewin (2005), Yang (2005), Sekaj (2011). Survey of

evolutionary-based control system designs can be found in

Lewin (2005) or Sekaj (2011).

If the task is to search/optimize parameters of an a-priori

known, respectively fixed defined structure of an object,

Genetic algorithms (or Evolution strategies, Differential

evolution, PSO, etc.) can be used e.g. Eiben (2003). On the

other hand, if the structure of the designed object is unknown,

an extension of these approaches is possible using Genetic

programming (GP) e.g. Koza (1992), Banzhaf et al. (1999),

Koza et al. (2000). GP is also able to solve complex tasks in

process control and to produce powerful and non-intuitive

results e.g. Sekaj (2007). A possible way, which is here

described uses the control algorithm representation based on

an interconnected network consisting of the following

elementary continuous-time dynamic function blocks:

integrator, derivative unit, amplifier (multiplication by a

constant), summation and multiplication unit (Fig. 1) where

A, B and D are real constants.

Fig. 1. Elementary building blocks of a GP-based controller

The objective is to find the optimal control network

consisting of such types of elementary function blocks and

their interconnection, which minimizes a selected

performance criterion (as described in part 2.3).

In another approach, which is also presented in Sekaj (2007)

a discrete-time recurrent control algorithm has been designed

in the form of a function of selected time-delayed input

variables. The following set of variables has been used:

 ={e(k), e(k-1), ..., e(k-m), y(k), y(k-1), ..., y(k-n), u(k-1),

u(k-2), ..., u(k-p),r(k),c}

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 6982

where k is the control step, e is control error, y is the

controlled value, u is control value, r is the reference value, c

are real constants. The aim is to find the optimal form of the

controller function

F()=?

such that the cost function (as in part 2.3) is minimized. The

function F contains operators +, -, * and arguments, which

are arbitrary items of the vector .

The main drawback of the mentioned GP-based approaches is

the high (extremely high) computation effort/time needed to

obtain a solution. Design of simple SISO controllers can take

days of computation time.

For that reason in this contribution, an alternative approach is

presented which is based on Cartesian Genetic Programming

(CGP) e.g. Miller (2011). The basic idea of CGP is to

introduce some limitations/simplifications in the task

definition in comparison to GP, which allows obtaining

acceptable performance under much lower computation

requirements. In our approach the building blocks in CGP are

located in an orthogonal grid.

The proposed approach is demonstrated in the evolution of a

controller of a hydro-turbine.

2. CONTROLLER DESIGN BASED ON CARTESIAN

GENETIC PROGRAMMING

2.1 Problem formulation

The goal of the proposed CGP is the design of a controller of

a non-linear dynamic system which is constructed using the

searching/optimization of interconnections and

parametrisation of simple building blocks. Each building

block consists of a serial connection of 3 elementary units

(Fig.2). The inputs of the block are processed using

arithmetic operators (op): summation, subtraction,

multiplication or division, which define the mathematical

relations between all input signals of the particular block.

Next, the signal is multiplied by a gain and finally it is

processed by an elementary dynamic operator: integrator,

derivative or unit gain. More such building blocks are

organized in a column, where the output of each block can be

connected to an arbitrary other input of another building

block (Fig. 10). Input signals of the controller (i.e. control

error, controlled value, etc.) can be connected to inputs of

each building block. The output of the last building block

represents the output of the entire interconnected controller

network. Such a network can be considered as an orthogonal

grid, where each node of the grid contains an elementary

operator. The interconnection of the nodes is not arbitrary (as

in case of GP), but it is limited to the above mentioned rules.

Thank to such simplifications the computation time of CGP

in comparison to GP is shorter. The goal of the controller

design is to find such (sub)optimal network of building

blocks, which maximize the control performance (minimizes

cost function) in a defined control loop.

 2.2 Representation of the individual in the CGP

An individual in CGP is a potential solution, which

represents the complete information of a controller including

its internal structure and its parameters. Each individual is a

member of the population. The population contains a set of

individuals and represents the main data structure of the

CGP.

Each individual contains N interconnected building blocks.

Each building block consists of elementary units (the

mathematical operations and constants), which are generated

by the evolutionary algorithm (EA). Also the

interconnections between the controller inputs, the building

blocks and the controller outputs are generated and evolved

by the EA. Their number is limited to M. N and M are a-priori

defined values and they depend on the complexity of the

controlled system. They should be estimated by the designer.

Note, that if N or M is larger than needed, the algorithm

generates less than N blocks or M interconnections

respectively or they remain unused. If N or M is smaller than

needed, the performance of the controller will be insufficient.

Each individual is represented by a string in the following

form: [bt, bg, ic, oc, mc].

bt - vector of N block types (1-unit gain, 2-integrator, 3-

derivative)

bg – vector of N gain values of each module (real values)

ic – vector of M input connection points (order number of

previous connected modules)

oc – vector of M appropriate output connection points (order

number of next connected modules)

mc – vector of M mathematic operations, one for each

connection (1-summation, 2-subtraction, 3-multiplication)

The length of each individual is L=N+N+M+M+M items. It

is a string of L real numbers.

Remark: If using GP for interconnection design of the

elementary building blocks (operators) no such strict

limitations are considered. This allows generating practically

unlimited structures. The only limitation in GP is the number

of building blocks or the size of the interconnected network

respectively.

Fig. 2. Controller building block in the proposed CGP

2.3 Cost function

The control design objective is to provide required dynamic

behaviour of the controlled process, usually represented in

terms of the well-known performance measures: maximum

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6983

overshoot, settling time, decay rate, steady state error or

various integral performance indices.

Without loss of generality let us consider a simple feedback

loop (Fig. 3) where y is the controlled value, u is the control

value, ref is the reference and e is the control error (e=r-y).

Let an appropriate simulation model of the controlled object

be available. The closed-loop performance will be assessed

using the simple integral performance index "integral of

absolute control error" defined as


T

AE dtteI
0

)((1)
(1)

where T is the simulation time. The discrete form of this

performance index is





S

k

kAE eTI
ks

1
,

 (2)
(2)

where Ts,k is the simulation step size, k is the simulation step

and S is the number of simulation steps.

If it is necessary to reduce the overshoot or to damp

oscillations, it is recommended to insert in the integral

additional terms, which include absolute values of the first or

also the second derivatives of the control error

  

T

dtteteteJ
0

)()()(
 (3) (3)

and to increase weight coefficients  and  to increase the

oscillation dumping. The weight constants can be determined

according the specific needs of the designer experimentally

(minimising of steady state error or overshoot, damping of

oscillations, etc.) under consideration of the dynamics of the

particular controlled system. Besides (1), (2) and (3) also

other possible control performance criterions (e.g. energy

minimisation, reference signal tracking, robustnes measures)

are in Sekaj (2011).

Fig. 3. Block scheme of the closed loop

ref – reference value, e – control error,

u – control value, y – controlled value

The controller design is actually an optimisation task – a

search for such a controller structure and its parameters from

the defined parameter space that minimises the performance

index. The cost function evaluation consists of two steps. The

first step is the closed-loop time-response simulation, the

second one is the performance index evaluation (Fig. 4).

Remark about the closed-loop stability: Due to the applied

performance index minimization (of type (1), (2), (3), etc.),

the closed-loop stability is an implicit attribute of each

solution. During the evolution, unstable individuals are

eliminated because of their high value of performance index

and the solution is directed into a stable parameter region.

However, it is possible to include a stability test into each

performance evaluation. Unstable individuals can

additionally obtain high penalty values and they will be

eliminated during the evolution.

2.4 Evolutionary algorithm

The evolutionary algorithm used is a conventional genetic

algorithm (GA) e.g. Goldberg (1989), Eiben (2007) and

others. For our needs the GA is based on following steps:

1. Initialization of population (set of individuals,

between 30-50), randomly (random blocks and

interconnections are generated),

2. cost function (fitness) calculation of each individual

of the population = simulation + performance index

evaluation,

3. if termination conditions are met (in our case -

predefined number of generations) then end, else

continue in step 4,

4. parent selection, more fit individuals have higher

probability to be selected, in our case the stochastic

universal sampling was used, 70% of individuals of

the population were selected,

5. modification of parents by crossover and mutation =

children,

6. new population completion (children + selected

unchanged individuals),

7. continue in step 2.

The block scheme describing the controller evolution is

shown in Fig. 4.

Fig. 4. Block scheme of the GA-based controller design

Note, that each mutation in the CGP design represents one

from the set of following operations: random change of a

mathematic operation to another operation, random change of

a constant to another random value, random change of an

interconnection, addition or removing of a building block,

addition or removing of an input to the block. Crossover

represents a random exchange of attributes of two

individuals.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6984

3. CASE STUDY

3.1 The controlled system

The proposed design procedure has been demonstrated in the

example of the hydraulic turbine power control. The model

and an analysis of possible control strategies of this non-

linear system are frequently discussed in literature e.g.

Kundur (1994), Malik (1995), Garipov (2007) and others.

The turbine model parameters vary significantly in a wide

range with unpredictable load variations. Various control

algorithms have been proposed for control, which are based

on multi model approach, adaptive methods, gain scheduling

or robust methods, etc.

The model of the turbine and the penstock are determined by

three equations relating to the velocity of the water in the

penstock, the turbine mechanical power and the acceleration

of water column. Water velocity in the penstock is given by

HGkU u (4)

where U is the water velocity, G is gate opening, H is

hydraulic head at gate, ku is a proportionality constant. The

turbine mechanical power is proportional to the product of

pressure and flow

HUkP pm  . (5)

Acceleration of the water column due to a change in head at

turbine is described by Newton’s second law of motion and

can be expressed in the form

),(0HHaA
dt

dU
LA g   (6)

where H0 is the initial steady-state value of H, A is the pipe

area, L is the length of the penstock, ρ is the mass density, ag

is the acceleration due to gravity. The plant model is shown

in Fig. 5. The equations (4)-(6) are in a normalized form,

inelastic water column is assumed, e.g Kundur (1994).

Fig. 5. Block diagram of the Hydraulic turbine

If we assume an inelastic water column the transfer function

W(s) will be in form

sT
sW

w

1
)( (7)

where Tw is the water starting time at rated load. It has a fixed

value for a given penstock and is given by

rg

r
w

AHa

LG
T  (8)

where Hr and Qr are the rated values of the hydraulic head

and gate and the turbine flow rate respectively. The following

data related to the turbine, penstock and generator of a hydro

generating unit are considered: penstock length is 700 m,

rated hydraulic head is 180 m, piping area is10.25 m
2
, water

flow rate at rated load is 75 m
3
 / s, gate opening at rated load

is 0.96 p.u., gate opening at no load is 0.04 p.u., turbine

rating is 150 MW, generator rating is 140 MVA and water

starting time at rated load is Tw= 2.9 s.

3.2 CGP design results

In Fig. 6 and 7 the obtained regulation process of the turbine

power using the controller obtained by the CGP procedure is

compared with a conventional PID controller, which

parameters were optimized using a genetic algorithm. The

control values of both controllers are shown in Fig. 8. In Fig.

9 the graphs of the cost function minimization according (3)

(α=0.1, β=0) during the evolution computation are shown.

Finally the obtained controller using the CGP approach is

depicted in Fig. 10. Six building blocks have been used. The

signals turbine speed and the reference value remain unused

by the CGP algorithm.

The computation time of these example on a PC (AMD

Ahtlon II X4 630, 4-core, 2.8 GHz, memory 4GB) takes

approximately 78 hours. The used program environment was

Matlab, Release 2010b, Mathworks (2010).

Fig. 6. Comparison of the process values (power) using CGP

controller (solid) and PID controller designed using GA

(dashed).

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6985

Fig. 7. Comparison of the process values (power) using CGP

controller (solid) and PID controller designed using GA

(dashed) – detail.

Fig. 8. Comparison of the control values (u) using CGP

controller (solid) and PID controller designed using GA

(dashed).

Fig. 9. Comparison of the cost function evolution graphs of

the CGP controller (solid) and PID controller using GA

(dashed).

 4. CONCLUSIONS

Evolutionary computation methods are suitable and very

effective tools for the design/optimization of control

algorithms and control systems. If a fixed number of

parameters of an a-priori defined control structure is to be

optimized, the suitable way is to use Genetic Algorithms (or

other evolutionary-based numerical optimization approaches

e. g. Evolution Strategies, Differential Evolution, PSO, etc.).

When the evolution of the internal controller structure is also

required, a more general approach such as Genetic

Programming can be used. It is able to produce practically

unlimited controller structures. But the main drawbacks of

GP are the extremely time demanding computation procedure

and problems with control of growth of the generated

structures. In this paper a new Cartesian Genetic

Programming approach has been presented. Here additional

limitations related to the controller structure and its size allow

reduction of the unacceptable computation effort. The results

have proved that a CGP is a powerful tool which is capable

of finding very good but also non-intuitive solutions. The

only conditions of using this approach are the existence of an

appropriate simulation model of the controlled system and

sufficient computation capacity. In this paper only a simple

feedback closed-loop example has been presented. The

proposed CGP-based design approach can be used for design

of complex MIMO systems and controller design tasks with

any type of non-linearity.

Fig. 10. Structure of the controller designed by the CGP

ACKNOWLEDGEMENT

This project was supported by the Slovak research and grant

agency, grant No. VEGA 1/0178/13 and VEGA 1/2256/12.

REFERENCES

Banzhaf, W., Nordin, P., Keller, R. E., Francone, F. D.

(1999). Genetic Programming: An introduction. Morgan

Kaufmann, San Francisco

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6986

Eiben, A.E., Smith, J.E. (2003). Introduction to Evolutionary

Computing. Springer

Garipov, E., Puleva,T., Haralanova, E. (2010). Modeling and

simulation of hydraulic turbine power control., Proc. Int.

Conf. on Modeling and Simulation (MS’10 Prague),

Chech Republic.

Goldberg, D. E. (1989). Genetic Algorithms in Search,

Optimisation and Machine Learning. Addisson-Wesley

Herrero, J.M., Blasco, X., Martínez, M., Salcedo, J.V. (2002).

Optimal PID Tuning with Genetic Algorithms for Non

Linear Process Models. In Proceedings on the 15
th

World

Congress of IFAC, Barcelona, July 21-26

Kawabe, T., Tagami, T., Katayama, T. (1996). A Genetic

Algorithm based Minimax Optimal Design of Robust I-

PD Controller. In UKACC Int. Conference on Control

’96, Conf. Publication No. 427, IEE, pp.436-441

Khatib, W., Silva, V., Chipperfield, A., Fleming, P. (1999).

Multidisciplinary Optimisation with Evolutionary

Computing for Control Design. In Proceedings on the 14
th

World Congress of IFAC. Beijing, July 5-9

Koza, J.R. (1992). Genetic Programming. Cambridge, MA,

MIT Press

Koza, J.R., Yu, J., Keane, M.A., Mydlowec, W. (2000).

Evolution of a controller with a free variable using

genetic programming. In Proceedings on the European

Conference EuroGP 2000. Edinburgh, Scotland, UK,

Lecture Notes in Computer Science, Volume 1802.

Berlin, Germany: Springer-Verlag, pp. 91–105, April

2000

Krohling, R.A., Rey, J.P. (2001). Design of Optimal

Disturbance Rejection PID Controllers Using Genetic

Algorithms. In IEEE Trans. On Evolutionary

Computation, Vol.5, No.1

Kundur, P. (1994). Power system stability and control.

McGraw-Hill, Inc.

Lewin, D.R. (2005). Evolutionary Algorithms in Control

System Engineering. In Proceedings on the 16
th

 World

Congress of IFAC, July 3-8, Prague

Malik, O., Zeng, Y.(1995). Design of a robust adaptive

controller for a water turbine governing system. IEEE

Transaction on EC, Vol.10, No2, pp.354-359

MathWorks, (2010). Matlab Relase 2010b.

 www.mathworks.com

Miller. J.F. (ed.). (2011). Cartesian Genetic Programming.

Springer

Mitsukura, Y., Yamamoto, T., Kaneda, M., Fujii, K. (1999).

Evolutionary Computation in Designing a PID Control

System. In Proceedings on the 14
th

 IFAC World

Congress, Beijing, 5-9 july, P.R.China, pp. 497-502

Sekaj, I. (1999). Genetic Algorithm-based Control System

Design and System Identification. In Proceedings on the

Int. Conference Mendel’99, June 9-12, Brno, Czech

Republic, pp.139-144

Sekaj, I., Veselý, V. (2005). Robust output feedback

controller design: Genetic Algorithm approach. In IMA

Journal of Mathematical Control and Information, 22, pp.

257-263

Sekaj,I., Perkácz, J. (2007). Genetic Programming Based

Controller Design. In Proceedings of the IEEE Congress

on Evolutionary Computation'07. Singapore, September

25-28

Sekaj, I. (2011). Control algorithm design based on

evolutionary algorithms. In: Chugo, D., Yokota, S.(ed.).

Introduction to Modern Robotics. iConcept Press, Hong

Kong. (http://www.iconceptpress.com

/books/introduction-to-modern-robotics)

Sweriduk, G.D., Menon, P.K., Steinberg, M.L. (1999).

Design of a pilot-activated recovery system using genetic

search methods. In: Optimal Synthesis

Yang, Z.Y., Chan, C.W., Xue, M.S., Luo, G.J. (2005). On-

line Temperature Control of an Oven Based on Genetic

Algorithms. In Proceedings on the 16
th

 World Congress

of IFAC, Prague, July 3-8

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6987

