
Power Load Forecasting based on Multi-task
Gaussian Process

Yulai Zhang ∗ Guiming Luo ∗ Fuan Pu ∗

∗ Tsinghua National Laboratory for Information Science and Technology,
School of Software,

Tsinghua University, Beijing, 100084, China,
(email:{zhangyl08@mails, gluo@mail, pfa12@mails}.tsinghua.edu.cn).

Abstract: The power load data from nearby cities are significantly correlated because they share the
same hidden variables as well as the underlying noises. A multi-task Gaussian process method for non-
stationary time series prediction is introduced and applied to the power load forecasting problem in this
paper. The prediction accuracies are effectively improved due to the additional information provided
by the related data sets. A novel algorithm for prediction is developed to reduce the computational
complexity of the multi-task Gaussian Process method. The algorithm’s prediction precision and
efficiency are validated by a real world short-term power load data sets.

1. INTRODUCTION

Gaussian process is an important tool for regression and classi-
fication problems (Rasmussen and Williams [2006]) in many
fields. One of the most basic applications for regression is
predicting the unknown output for the given new input. In time
series prediction problems, history outputs are always used as
the input vectors, which is different from that of the regular
problems. In the past decades, a lot of progresses have been
made on the topic of time series prediction using Gaussian
process. Gaussian Process based algorithms for multiple step
prediction (Girard et al. [2003]), non-stationary time series pre-
diction (Brahim-Belhouari and Bermak [2004]), and non-linear
time series prediction (Wang et al. [2005]) have been proposed
in succession.

Multi-task learning, or transfer learning (Pan and Yang [2010]),
is a hot research topic in the recent years. Gaussian process
model is a competitive candidate for multi-task learning be-
cause the concept of covariance function in Gaussian Process,
which is originally adopted to describe the correlations between
the data points in single time series, can be easily used to
define the correlations between data points from different tasks
(Bonilla et al. [2008]).

On the other hand, the Gaussian process methods have also
been adopted by the research communities in electric power
industry (Chen et al. [2013]). Accurate power load forecast is
important to reduce the operational cost in the management of
the power system (Ranaweera et al. [1997]). Therefore, a lot
of main stream models and methods such as Artificial Neural
Networks (Bashir and El-Hawary [2009]) and Support Vector
Machine (Zhang et al. [2011]) niu2010powerhave been used to
solve this problem in the previous researches. Power load are
related to many hidden variables such as wind, sunlight and
holidays, etc. Some of these variables are difficult to obtain or
quantify. It is a reasonable assumption that the values of these
hidden variables are similar for the cities located in the same
region. Therefore, the power load data sets of these nearby
? This work was supported by the Funds NSFC61171121 and the Science
Foundation of Chinese Ministry of Education - China Mobile 2012.

cities should be highly correlated, and the multi-task learning
methods will increase the prediction accuracies.

In this paper, Gaussian process models will be used to perform
predictions for multiple time series. Since there are more da-
ta sets in the multi-task problems, computational complexity
becomes an important issue. Furthermore, in short term pow-
er load forecast, the calculation time of the prediction value
is limited by the sample interval. In fact it should be much
shorter than the sample interval, otherwise the forecasting will
be meaningless. In the previous multi-task Gaussian process
models in Bonilla et al. [2008], the parameters of the covari-
ance function of single tasks are connected by a task similarity
matrix. This leads to a complex structure for the multi-task co-
variance function. In this work we treat the data in the multiple
inputs and multiple outputs manner and minimized the number
of hyper-parameters by flattening the task similarity matrix in
the multi-task covariance function. Based on this model, a novel
algorithm for Gaussian Process inference with non-stationary
covariance function is also proposed.

In the rest of this paper, preliminaries including introductions
of the Gaussian process and its covariance functions are given
in section 2. In section 3, the multi-task Gaussian process
model for time series prediction and the inference algorithm are
presented. Section 4 shows the numerical results of the methods
on power load data sets from neighboring cities in the same
geographical region.

2. PRELIMINARIES

2.1 Gaussian Process

In this section, a brief introduction of the standard Gaussian
Process model is given.

Consider a regression problem with the data set {(xt, yt)|t =
1, ..., N}. We are going to construct a predictor that satisfies

yt = f(xt) + et (1)

where xt is the feature vector at time t , and yt is the cor-
responding scalar output. et is the additive white noise with

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 3651



Gaussian distribution et ∼ N(0, σ2
n). Assume that the mean

of the output process is zero, the distribution of the time series
Y = [y1, y2, ..., yN ]T can be written as:

Y ∼ N(0,K(X,X) + σ2
nI)

where X = [x1, x2, ..., xN ]T and K is called the Gram matrix.
The elements of K is Kij = k(xi, xj) where k(·, ·) is the
covariance function which satisfies k(a, b) = k(b, a). The ex-
plicit expressions of the covariance functions will be discussed
in next subsection. I is the identity matrix. The discussion
of Gaussian process with non-white noises can be found in
Murray-Smith and Girard [2001]. The identity matrix will be
substituted by a matrix whose entries are the parameters of the
ARMA process.

For a new input x∗, the joint distribution of the output without
disturbed noises, and the history training data is[

Y
f∗

]
∼ N

(
0,

[
K(X,X) + σ2

nI k̄(x∗, X)
k̄T (x∗, X) k(x∗, x∗)

])
(2)

where
k̄(x∗, X) = [k(x∗, x1), k(x∗, x2), ..., k(x∗, xN )]

T
.

We write ŷ∗ instead of f∗ in prediction task. According to
the joint Gaussian distribution, the expectation value and the
variance of the target variable can be written as:

ȳ∗ = E(ŷ∗) = k̄T (x∗, X)(K(X,X) + σ2
nI)−1Y (3)

V ar(ŷ∗) = k(x∗, x∗)

− k̄T (x∗, X)(K(X,X) + σ2
nI)−1k̄(x∗, X) (4)

Note that for the prediction problems of time series , the feature
vector is

xt = [yt−1, ..., yt−D].

D is the feature length selected by the users.

In this paper, we only consider one step ahead prediction. For
the multiple steps ahead time series prediction problems, if the
predicted values in the previous steps are used as the elements
of the feature vector, the input vector will be considered as
random variables. See Girard et al. [2003] for more details.

2.2 Covariance Functions

The covariance function is a core concept in the Gaussian
process model. It calculates the relatedness between two data
points in the feature space. For non-stationary time series,
the linear trend covariance function (Brahim-Belhouari and
Bermak [2004]) is:

kns(xi, xj) = xi
Txj (5)

where xi is the feature vector of the model at time i ,and xTi xj
is the inner product of the feature vector xi and xj .

The weighted version of the linear trend covariance function
can be written as:

kns ard(xi, xj) = xi
TLxj (6)

where L is a D by D diagonal matrix whose diagonal elements
are l1, ..., lD. These are called hyper parameters in Gaussian
Process model.

The hyper parameters in the matrix L can be learned from
the data by solving an optimization problem. This is called

the Automatic Relevance Determination (ARD). The hyper
parameter vector can be written as:

θ = [l1, ..., lD]

Note that the features with small weight li will make a small
contribution to the prediction results.

In order to learn the optimal values of the hyper parameters in
the covariance function, the most likelihood estimation (MLE)
based iterative methods, such as conjugate gradient, can be used
here. The likelihood can be written as:

log p(y|X,Y, θ) =−1

2
Y T (K + σ2

nI)Y

− 1

2
log |K + σ2

nI| −
n

2
log 2π (7)

θ̂ = arg max(log p(y|X,Y, θ)) (8)

Note that for noisy models, the variance of the additive noise σ2
n

is also estimated by this optimization programming procedure.

In addition, in multi-task circumstances, the length of the
parameter vector will be multiplied and seriously affects the
efficiency of the ARD calculation.

3. MULTI-TASK GP MODEL AND ALGORITHM

In multi-task learning problems, the observed input and output
data sequences from different tasks are connected by the hidden
variables as depicted in Figure 1. Therefore additional informa-
tion can be obtained from data sets of the neighboring tasks.
Furthermore, these tasks may also share the same underlying
noises. From this point of view, larger number of the observa-
tions from different tasks can also decrease the influences of the
disturbed noises.

The model of multi-task Gaussian Process is given in Section
3.1 and the inference algorithm is in Section 3.2.

3.1 Multi-task GP model

Given a M time series of length N , we focus on the prediction
at time t, the training data can be represented as:

Yt =


y
(1)
t−1 y

(2)
t−1 . . . y

(M)
t−1

y
(1)
t−2 y

(2)
t−2 . . . y

(M)
t−2

...
...

. . .
...

y
(1)
t−n y

(2)
t−n . . . y

(M)
t−n


Yt is a n-by-M matrix. Note that we write Y instead of Yt
whenever this causes no confusion. Let yt−i be the ith row of
Y . And let Y (j) be the jth column of Y , which is the data from
the single task j.

Similarly, the input vector can be written as:

Xt =


x
(1)
t−1 x

(2)
t−1 . . . x

(M)
t−1

x
(1)
t−2 x

(2)
t−2 . . . x

(M)
t−2

...
...

. . .
...

x
(1)
t−n x

(2)
t−n . . . x

(M)
t−n


where

x
(m)
i = [y

(m)
i−1 , y

(m)
i−2 , ..., y

(m)
i−D]

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3652



Hidden 

Variables

Input of 

task 1

Output of 

task 1

Input of 

task 2

Input of 

task 3
...

Output of 

task 2

Output of 

task 3
...

Fig. 1. Input variables, output variables, and hidden variables in
the multi-task learning problem.

Xt is a n-by-D×M matrix, D is the feature length selected by
users. We also write X instead of Xt whenever this causes no
confusion. Let xt−i be the be the ith row of X .

Note that the length of training data for prediction at time t is
n and n � N , N is the length of the whole time series and is
continuous to increase in the precess of the prediction. n can be
taken as the length of the training data’s window on the whole
history data sequence.

Next, for jth task, the covariance function can be written as the
sum of the single task covariance functions,

k(xp, xq, θj) =

M∑
m=1

x(m)
p Lm(θj)x

(m)
q (9)

Since Lm, m = 1, ..,M are diagonal matrices. The hyper
parameter can be written as:

θj = [θTj1, θ
T
j2, ..., θ

T
jM ]T

where θji is a D-by-1 vector, thusLm(θj) is aD-by-D diagonal
matrix for task j and θj is a M ×D-by-1 vector.

The values of the hyper-parameters can be obtained by Equa-
tion (7) and (8). Note that Gaussian Process is non-parametric
model, so the calculation of hyper parameters is equivalent to
the model structure selection step in the parametric models. The
optimation calculation has to be done just once for each task
before the prediction steps.

The predictor of the expectations and the variances for the task
j at a new step can be obtained in the similar way as in (3) and
(4). They are written in Equations (10) and (11) where some
parameters are omitted for simplicity.

ȳ
(j)
t = E(ŷ

(j)
t ) = k̄T (xt, X)(K(X,X) + σ2

nI)−1Y (j) (10)

V ar(ŷt
(j)) = k(xt, xt)

− k̄T (xt, X)(K(X,X) + σ2
nI)−1k̄(xt, X)(11)

3.2 Inference Algorithm

The computational complexity is an important issue in the
multi task problems. The major time cost in Gaussian Process
inference comes from the matrix inversion operation in (10)

and (11). Furthermore, when the data sets is large, the inverse
matrix will be singular.

By using the matrix inversion lemma:
(A+BCD)−1 = A−1 −A−1B(DA−1B + C−1)−1DA−1

the the inverse operation in Equation (10) and (11) can be
converted to be operated on a smaller matrix. The inverse
matrix in Equation (10) and (11) can be written as:

(K(X,X) + σ2
nI)−1 = (XLXT + σ2

nI)−1

=
1

σ2
n

I − 1

σ2
n

X(σ2
nL
−1 +XTX)−1X (12)

where L is a M × D-by-M × D diagonal matrix whose
diagonal elements are the corresponding diagonal elements of
L1, L2, ..., LM in (9).

Following the equation (12), the computational complexity is
reduced from o(n3) to o((D × M)3). Note that M × D is
equivalent to the number of hyper- parameters. It is a valid
assumption that numbers of data should be much larger than
the numbers of parameters in most statistical learning problems.
Since we have D ×M � n, the computational complexity is
effective reduce by implementing Equation (12).

When n is large, the direct representation of the inversion
matrix ofK(X,X)+σ2

nI may have serious round off problems.
The elements of the matrix K will increase with n, therefore
the element of the inverse matrix will be very small. Instead,
we always calculate the intermediate variable:

α =
1

σ2
n

{Y (j) −X(σ2
nL
−1 +XTX)−1XTY (j)} (13)

for the calculation of the new output and

β =
1

σ2
n

{k̄ −X(σ2
nL
−1 +XTX)−1XT k̄} (14)

for the calculation of the variance of the new output.

The matrix inversion in (13) and (14) can be solved by the
Cholesky decomposition. Let U be the upper triangle cholesky
decomposition matrix of an positive definite matrix A,

U = chol(A) (15)
where

A = UUT

The computational complexity of (15) is n3/6, where n is the
size of matrix A. A−1b can be calculated by solving AX = b:

A−1b = U−TU−1b (16)

The complexity of (16) is n2/2.

So in order to solve the inverse operation in Equation (13) and
(14), let

A = σ2
nL
−1 +XTX

b = XTY (j)

b′ = XT k̄
Note that L is a diagonal matrix whose inverse matrix can be
easily obtain with o(n) complexity by calculating 1/lii, lii is
the diagonal elements of L.

α and β can be written as:

α =
1

σ2
n

{Y (j) −XKα} (17)

β =
1

σ2
n

{k̄ −XKβ} (18)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3653



INPUT: X,Y, θ, σ2
n, x∗

OUTPUT: ȳ∗, var(ŷ∗)

1: for j = 1:M
2: L = diag(θ(j))
3: A = σ2

nL
−1 +XTX

4: b = XTY (j)

5: U = chol(A)
6: Kα = U−TU−1b
7: α = 1

σ2
n

(Y (j) −XKα)

8: k̄ = XLxT∗
9: y(j) = k̄α

10: b′ = XT k̄
11: Kβ = U−TU−1b′

12: β = 1
σ2
n

(k̄ −XKβ)

13: var(y(j)) = x∗Lx
T
∗ − k̄β

14: end for
15: ȳ∗ = [y(1), y(2), ..., y(M)]
16: var(ŷ∗) = [var(y(1)), var(y(2)), ..., var(y(M))]

Fig. 2. Algorithm1: Multi-task time series Prediction Algorithm
for Multi-task Gaussian Process with non-stationary linear
trend covariance function

where Kα = A−1b and Kβ = A−1b′ are calculated by (15)
and (16).

The algorithm is summarized as Algorithm 1 in the Figure 2.
The time complexity of line 5 in Algorithm 1 is (MD)3/6 ,
line 6 and line 11 is (MD)2/2 .

4. POWER LOAD DATA ILLUSTRATION

4.1 Data set and accuracy evaluation

The data sets in this work are chosen from major cities of
Jiangxi province in China. Electricity power load data are
sampled every 15 minutes for each city. Our target is to predict
the value of the electric power load in the next 15 minutes. In
Figure 3 and Figure 4, data sets from 3 cities are plotted in order
to demonstrate the relatedness of these data sets.

Figure 3 shows the short term power loads of these cities
in five days. And in Figure 4, we sampled the short term
data sequences once a day at the same clock. It shows that
the long term trends of these power load data sets are also
highly correlated. In addition the non-stationary properties of
the power load data can also be observed from Figure 4.

As shown in Figures 3 and 4, since the absolute values of
power load for the selected cities are not in the same range.
The normalize criteria should be used to evaluate the prediction
errors. Normalized mean square error is used in this paper.

NMSE =

∥∥∥∥ x̂(t)− x(t)

x̂(t)−mean(x(t))

∥∥∥∥2 (19)

where x̂(t) is the estimated value of x(t).

We did not adopt any of the pre-process technics such as s-
tandardizing the data sequence to have zero means and unit
variances or eliminating the non-stationary properties. On the

50 100 150 200 250 300 350 400 450 500
500

1000

1500
City 1

50 100 150 200 250 300 350 400 450 500
0

100

200
City 2 

50 100 150 200 250 300 350 400 450 500
100

200

300
City 3

Fig. 3. Comparison of the power load data from 3 nearby cities
(sample interval: 15minutes)

Table 1. Prediction errors of the multi-task GP and
single-task GP

Method NMSE for
city 1

NMSE for
city 2

NMSE for
city3

Multi-task
GP

0.0054 0.0052 0.0043

Single-task
GP

0.0072 0.0057 0.0050

contrary, these are essential information for the Gaussian Pro-
cess model prediction.

Three groups of experiments have been done and demonstrated
in the following subsections. In section 4.2, we compare the
prediction errors of the multi-task method and the single task
method (Rasmussen and Nickisch [2010]). We show that the
data sequences provide additional information for the other
tasks in the prediction. Next in section 4.3, a group of methods
are compared with the proposed method on accuracy and run-
ning time. Time cost, which is important for short-term online
prediction, is reduced. Finally in section 4.4, a simulation with
data sequences from 9 cities is represented.

The experiments are done by MATLAB on Intel Core i7-4770K
CPU @3.50GHz.

4.2 Comparison between single task Gaussian Process and
multi-task Gaussian Process

In this experiment we use the data sets of three cities as shown
in Figure 3 and 4. There are 6000 data points for each sequence.
And 1000 points are used for hyper-parameter estimating and
5000 steps are used for prediction method validation. Other
parameters are D = 10, M = 3, n = 1000.

The errors are listed in Table 1. The prediction errors of the
multi-task cases are significantly smaller than their correspond-
ing single-task cases.

The multi-task cases also have smaller variances as shown
in Figure 5. Variance of the predictor can be taken as the
confidence of the prediction, which is calculated by the joint
Gaussian distribution. It is different from the prediction error,

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3654



20 40 60 80 100 120 140 160 180
500

1000

1500
City 1

20 40 60 80 100 120 140 160 180

100

150

200
City 2 

20 40 60 80 100 120 140 160 180
100

200

300
City 3

Fig. 4. Comparison of the power load data from 3 nearby cities
(sample interval: 24hours)

100 200 300 400
400

600

800

1000

1200
City 1

100 200 300 400
50

100

150

200
City 2 

100 200 300 400
100

150

200

250
City 3 

100 200 300 400
160

180

200

220
 Var(y) of City 1

100 200 300 400
5

5.5

6

6.5

7
Var(y) of City 2 

100 200 300 400
20

22

24

26
Var(y) of City 3 

Fig. 5. First 400 data points of the prediction are plotted. Left
column: comparison of the prediction value of multi-task
GP and single-task GP (Green line: true value, Blue line:
prediction of single task GP, Red line: prediction of multi-
task GP); Right column: comparison of the variance of the
prediction of multi-task GP and single task GP (Blue line:
prediction variances obtained by the single task GP; Red
line: prediction variances obtained by the multi-task GP).

Table 2. Comparison of the prediction errors and
time cost of Multi-task GP (Algorithm1), Standard
Single-task GP, Multi-task GP (Bonilla), Multi-

task AR, Single-task AR

Method Average
NMSE

Running time
for prediction
(second per
step)

Multi-task GP
(Algorithm1)

0.00496 7.968e-3

Standard Single-
task GP

0.00596 5.801e-1

Multi-task GP
(Bonilla)

0.00496 6.507e-1

Multi-task
AR

0.01452 2.325e-3

Single-task
AR

0.01797 2.970e-3

Table 3. Comparison of the hyper parameter learn-
ing time of Multi-task GP model in section 3.1,

Multi-task GP model(Bonilla)

Multi-task GP
model in sec-
tion 3.1

Multi-task
GP model in
(Bonilla)

Hyper-parameter
learning time

18.17s 210.70s

which is calculated by the true value and the predicted value
using (19).

4.3 Methods comparison

In this section, we compare the average NMSE and time cost of
5 different methods. The data sets and parameters are the same
with that of section 4.2. Note that the running time for single
task methods are the sum of all tasks.

The algorithm for the auto-regression (AR) model in this ex-
periment is the recursive least square (RLS) algorithm in Ljung
[2007]. The orders of the AR models equals to the parameter
n in Gaussian process model. The Multi-task GP (Bonilla)
method is in Bonilla et al. [2008].

The Algorithm 1 in section 3 greatly reduces the computation-
al complexity for the multi-task Gaussian Process with non-
stationary covariance function meanwhile the accuracy is as
good as the complex model. In addition, smaller number of
hyper-parameters reduces the time cost on hyper parameter
estimation greatly. The comparison of the learning time cost
of the hyper-parameters is represented in Table 3. Note that the
comparison uses the same optimization algorithm. The multi-
task model with task similarity matrix in Bonilla et al. [2008]
has much complex structures, whereas the flattened model in
section 3.1 runs much faster without losing transferred infor-
mation from other tasks.

4.4 Experiment with larger number of data sets

In this section, we use more data sets from 9 neighbouring cities
and the result is show in Table.4. The improvement percentages
are listed.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3655



Table 4. Comparison of the NMSE of the single
task GP and multi-task GP on larger number of

data sets

City NMSE
(single-
task)

NMSE
(Multi-
task)

Improvement
on prediction
errors

Nanchang 0.0072 0.0055 23.93%
Yichun 0.0091 0.0075 17.41%
Jingdezhen 0.0057 0.0053 6.74%
Jiujiang 0.0091 0.0075 17.41%
Shangrao 0.0193 0.0184 4.54%
Fuzhou 0.0050 0.0042 15.28%
Ganxi 0.0703 0.0611 13.05%
Ji’an 0.0212 0.0183 13.83%
Ganzhou 0.0162 0.0143 11.99%

Note that part of the data sets are already used in the experi-
ments in the above subsections. Some of the prediction errors
are not significantly improved comparing with the previous
multi-task experiments which contain smaller number of data
sets. This indicates that not all of these tasks get more informa-
tion from the newly added data sets, therefore the data sets can
be further clustered in to smaller groups. The conditions of a
successful multi-task learning is an essential issue. This will be
investigated as one of the future works.

5. CONCLUSIONS AND FUTURE WORK

In this work, we investigate the multi-task Gaussian Process
model and apply it to the problem of short-term electric power
load forecast. The improvement on the prediction accuracy
is due to the fact that the data sequences share the same
hidden variables, as depicted in Figure 1. A novel algorithm for
prediction of non-stationary time series using Gaussian Process
regression with linear trend covariance function is proposed
and greatly reduces the time cost of the multi-task regression
problem.

One of the future works is how to cluster similar tasks. Obvious-
ly, unrelated time series will not provide additional information
to improve the prediction accuracies. When to used multi-task
method is as important as how to use it. Several researches have
been raised on this issue (Rosenstein et al. [2005]) recently.
However, this problem may be asymmetric. Though the data
set of task A contributes to the task B, the improvement in the
converse direction cannot be guaranteed. This point also indi-
cates the slight difference between transfer learning and multi-
task learning. The former focus on the improvement of one
particular single task with the help of the other tasks, whereas
the latter focus on the improvement for all the tasks.

REFERENCES

Z. A. Bashir and M. E. El-Hawary. Applying wavelets to
short-term load forecasting using pso-based neural networks.
Power Systems, IEEE Transactions on, 24(1):20–27, 2009.

E. Bonilla, K. M. Chai, and C. Williams. Multi-task gaussian
process prediction. In Advances in Neural Information
Processing Systems, pages 153–160, 2008.

S. Brahim-Belhouari and A. Bermak. Gaussian process for non-
stationary time series prediction. Computational Statistics &
Data Analysis, 47(4):705–712, 2004.

N. Chen, Z. Qian, X. Meng, and I. T. Nabney. Short-term wind
power forecasting using gaussian processes. In Proceedings

of the Twenty-Third international joint conference on Artifi-
cial Intelligence, pages 2790–2796. AAAI Press, 2013.

A. Girard, J. Q. Candela, R. Murray-smith, and C. E. Ras-
mussen. Gaussian process priors with uncertain inputs–
application to multiple-step ahead time series forecasting. In
Advances in Neural Information Processing Systems, pages
529–536, 2003.

L. Ljung. System identification toolbox for use with matlab.
2007.

R. Murray-Smith and A. Girard. Gaussian process priors with
arma noise models. In Irish Signals and Systems Conference,
Maynooth, pages 147–152, 2001.

S. J. Pan and Q. Yang. A survey on transfer learning. Knowl-
edge and Data Engineering, IEEE Transactions on, 22(10):
1345–1359, 2010.

D. K. Ranaweera, G. Karady, and R. Farmer. Economic
impact analysis of load forecasting. Power Systems, IEEE
Transactions on, 12(3):1388–1392, 1997.

C. E. Rasmussen and H. Nickisch. Gaussian processes for
machine learning (gpml) toolbox. The Journal of Machine
Learning Research, 9999:3011–3015, 2010.

C. E. Rasmussen and C. K. I. Williams. Gaussian processes
for machine learning. Adaptive computation and machine
learning, 2006.

M. T Rosenstein, Z. Marx, L.P. Kaelbling, and T. Dietterich.
To transfer or not to transfer. In NIPS 2005 Workshop on
Inductive Transfer: 10 Years Later, volume 2, page 7, 2005.

J. Wang, A. Hertzmann, and D. M. Blei. Gaussian process
dynamical models. In Advances in neural information pro-
cessing systems, pages 1441–1448, 2005.

Y. Zhang, Z. Yan, and G. Luo. A new recursive kernel
regression algorithm and its application in ultra-short time
power load forecasting. In Proceedings of the IFAC 18th
World Congress, volume 18, pages 12177–12182, 2011.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3656


