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Abstract: In this paper, the minimum time multi-points traversal problem is studied for robotic 

manipulators. It is shown that the problem can be formulated as a mixed integer optimal control problem. 

Cubic Hermite spline is applied to interpolate the desired path points and then a decomposition method is 

proposed to solve the problem. An outer level iteration and a series of inner level optimization processes 

are used in the decomposition method. The outer level iteration aims to search optimal permutation of the 

path points, which is realized by Genetic Algorithm (GA). And the inner level processes aim to cope with 

a series of path determined minimum time motion planning problems, which are solved by a direct 

transcription method. Minimum time multi-points traversal task of a 2-DOF robotic manipulator is used 

to demonstrate the effectiveness of the proposed approach. 

 

1. INTRODUCTION 

For the purpose of improving productivity, minimum time 

motion planning problems are widely studied and several 

efficient methods are proposed, such as the phase plane 

analysis approach of Bobrow et al. (1985), the greedy search 

algorithm of Zhang et al. (2012) and the convex optimization 

approach of Verscheure et al. (2009). Nevertheless, all these 

approaches are designed for simple motion planning along 

given path merely.

 

In mechanical industry, there exists a class of complex tasks 

called multi-points traversal problems, such as drilling, spot 

welding and assembly et al. These tasks have many 

unordered points, due to which planning strategy is required 

to design a path to traverse all the given points once and only 

once and at the same time to satisfy some minimum index 

such as distance, time or energy. Recently, Petiot et al. (1998) 

used an elastic net method to study the minimum distance 

multi-points traversal problem. Dubowsky and Blubaugh 

(1989) applied a branch and bound method to solve the 

minimum time multi-points traversal problem for spot 

welding tasks. Zacharia and Aspragathos (2005) studied the 

minimum time multi-points traversal problem for non-

redundant manipulator by using genetic algorithm. However, 

all the studies mentioned above need the manipulator to stop 

completely at each task point. 

Different from the works of Petiot et al. (1998), Dubowsky 

and Blubaugh (1989) and Zacharia and Aspragathos (2005), 

in this paper we study the minimum time multi-points 
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traversal (MTMPT) problem in which the requirement of full 

stop at each task point is not mandatory. It is shown that the 

multi-points traversal problem can also be described as a 

performance limited traveling salesman problem (TSP): the 

manipulator effector acts as the salesman, who starts from 

any path point and passes by each point just by once. So the 

purpose of this paper is to find an order among the points, 

through which the salesman can traverse in minimum time 

under performance limits. Similar works appeared in other 

applications, Glocker and von Stryk (2002) discussed a 

minimum time multi-points traversal problem of a motorized 

car, which is solved by branch-bound combined with the 

direct collocation methods; Conway et al. (2007) studied a 

space mission planning problem, which is solved based on an 

evolutionary principle.  

In this paper, a decomposition method is proposed for solving 

our minimum time multi-points traversal problem for robotic 

manipulators. As shown in Glocker and von Stryk (2002) and 

Conway et al. (2007), the MTMPT problem can be 

formulated as a mixed integer optimal control problem 

(MIOCP). The dynamics constraints and maximum velocity 

constraints of manipulator are considered in the problem. By 

interpolating the path points with unique cubic Hermite 

spline, we can solve the MIOCP by executing an outer task 

points sorting process and a series of inner path determined 

minimum time motion optimization processes.  

2. PROBLEM FORMULATION AS A MIXED INTEGER 

OPTIMAL CONTROL PROBLEM 

The dynamics model of a n -DOF robotic manipulator can be 

formulated as (Constantinescu and Croft (2002)): 

     = + , +τ M q q C q q q G q ,                  (1) 
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where n
q R is the vector of joint angular positions, 

n
τ R is the vector of joint toques,  

n n
M q R denotes the 

inertia matrix of the manipulator,  ,
n n

C q q R contains the 

information of the centrifugal and Coriolis forces, 

 
n

G q R is the vector of the centrifugal torques.  

As mentioned in the introduction section, the goal of this 

paper is to plan a reasonable path which passes through all 

the given points in minimum time under the dynamics limits 

of the manipulator.  

Let 
c

n denote the number of the given points. The joint 

angular positions vector of the manipulator corresponding to 

each given task point is denoted by 
1 2
, , ,

cn
p p p with 

n

i
p R . Joint torque constraints are considered in our 

MTMPT problem and are written as  

B B
  τ τ τ .                             (2) 

The joint velocity constraints are   

B B
,  q q q                             (3) 

Then the minimum time multi-points traversal problem of 

robotic manipulator can be formulated as the following 

mixed integer optimal control problem: 

  

 

 

 

     

f
,
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1
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m in
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, 1, 2, , ,

s.t. 1,1, ,1 ,

= + , + ,
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c

c

t

i i

i i c

n

i n

i

T

t

t i n



 


 











     





q W

q Q W

q q

W

τ M q q C q q q G q

τ τ τ q q q

            (4) 

where 
i

t  denotes the time when manipulator reaches the 

ordered i th path point, 
1 2
, , ,

c
c

n
n n

 
 

Q p p p contains all 

joint positions of the path points, 
i

q  denotes the desired joint 

velocity at ordered point i ,  0,1
cn

i
W is the i th unit 

column vector of matrix W , c cn n
W Z , 

1 2 f
0

cn
t t t T     . 

Problem (4) is an optimal control problem with continuous 

and discrete decision variables. The common solution 

methods include branch and bound (von Stryk and Glocker 

(2000)), bender decomposition (Sager (2005)), et al. In this 

paper, we use a GA with embedded direct transcription 

method to solve this problem.  

3. PROBLEM DECOMPOSITION USING GENETIC 

ALGORITHM AND DIRECT TRANSCRIPTION 

METHOD 

The common multi-points traversal problem is described as a 

minimum distance TSP. Hence the planned path is a series of 

straight lines with sharp corners at the path points, which 

means the motion of the manipulator must stop or slow down 

at the corners, which may fly away from the path otherwise. 

Thus, it is reasonable to plan a smooth path to travel by the 

points. 

In this section, cubic Hermite spline is applied to interpolate 

the desired path points, because of which the generated path 

has 2
C continuity.  

Assuming the travel order of the points is known, denoted by 
cn

L Z with each element of L be the point label, then the 

sequence of the point positions is
      1 2

, , ,
cnL L L

Q Q Q . 

Define path parameter  0,1s  with
1

, 1, 2, ,
1

i c

c

i
s i n

n


 


. 

In an arbitrary interval  1
,

i i
s s


, cubic Hermite spline path 

has the following formulation: 

         

       

00 10 1

01 11 1 11
,

i i ii

i i ii

s h u h u s s

h u h u s s



 

   

 

L

L

q Q r

Q r
         (5) 

where 
1

i

i i

s s
u

s s






,  0,1u  . h  refers to the basis function 

and can be defined as below. 

3 2

00

3 2

01

3 2

10

3 2

11

2 3 1,

2 3 ,

2 ,

.

h u u

h u u

h u u u

h u u

  

  

  

 

                         (6) 

In (5), 
i

r denotes the tangent value at point  iL  which is 

defined as the following three-point difference form: 

   

 

   

 

+1 1

1 1

- -
=

2 2

i i i i

i

i i i i
s s s s



 


 

L L L L
Q Q Q Q

r                   (7) 

for 2, 3, , 1
c

i n   and one-sided difference at the end 

points of the path. According to the property of Hermite 

spline, for the given travel order of the points, the 

interpolated smooth path is unique.  

As mentioned in Bobrow et al. (1985) and Verscheure et al. 

(2009), if there exists optimal motion along a given path, the 

minimum travel time (written as 
min

T ) is unique, accordingly 

the manipulator performance in which satisfying the 

corresponding limits. Therefore the minimum time objective 

can be treated as an implicit function of point traversal order 
L . Hence the mixed integer optimal control problem (4) can 

be solved as a two-level nested optimization problem. The 

outer level iteration is a combinational optimization problem 

aiming to obtain optimal traversal order and corresponding 

interpolated path, while, at each outer iteration, an inner 

optimization process is performed to calculate a minimum 

travel time for the current interpolated path.  

In this section, a GA is used to solve the combinational 

optimization problem, in which each minimum travel time 
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for current path is obtained through a direct transcription 

method.  

3.1 Planning Minimum Time Motion using Direct 

Transcription Method 

According to (5), the gradient informations of path  sq w.r.t 

parameter s are 

 

       

       

' '

00 10 1
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01 11 1 11

d
'

d

,

i i ii

i i ii

s
s

h u h u s s

h u h u s s



 



   

 

L

L

q
q

Q r

Q r

           (8) 

 

       

       
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.
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 


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 

L

L

q
q

Q r

Q r

          (9) 

The joint velocities can be rewritten as 

      = 't s t s tq q .                            (10) 

The joint torques are 

     
2

+ +s s s s sτ m c g ,                        (11) 

where 

      

             

    

= ' ,

= '' + , ' ' ,

= .

n

n

n

s s s

s s s s s s

s s







m M q q R

c M q q C q q q R

g G q R
 

Then according to Verscheure et al. (2009), the inner 

minimum time travel problem for certain path can be 

formulated as the following convex optimal control problem: 

   

     

           

   

 

   

1

f
0

B B

B B

1
m in d

' 2 , 0, 0,1 ,

= + + ,

s.t. ' ,

,

' , 1, 2, , ,

b s

i i i c

T s

a s

a s b a s s

s s b s s a s s

s a s

s

s a s i n



   





  


  


 



τ m c g

q q q

τ τ τ

q q

      (12) 

where 
2

a s , b s .  

Then a direct transcription method is used to parameterize the 

problem(12). Define knot vector as  

 1
, , , ,

k N
s s s

n
s ,                       (13) 

where 
1 2

0 1
N

s s s     , and 
c

N n . The knot 

intervals are 

1

-1

, 1

, 2, 3, ,

1 , 1

j j j

N

s j

s s s j N

s j N

 


   


  

.                 
(14)

 

A radial basis function network is applied to approximate the 

desired optimal trajectory, formulated as  

   
1

N

k k

k

a s s 


  , 

where  
 

2

2
exp 0

2

k

k

s s
s



 
   
 
 

denotes the k th  radial 

basis function as shown in Fig. 1,  denotes the width of the 

basis function. 

 

Fig.1. Typical radial basis function 

Since    
2

0a s s s  for all  0,1s  , we expect that the 

weight coefficient 0
k

  for all 1, 2, ,k N . Here we make 

a little offset of trajectory  a s as 

     
T

1

N

k k

k

a s s s   


    ω Φ              (15) 

with   is a small positive. And  

 
T

1 2
, , ,

N
  ω ,                          (16) 

       
T

1 2
, , ,

N
s s s s     Φ .               (17) 

Then we can have 

       
T

1

1 1 1
' ' '

2 2 2

N

k k

k

b s a s s s 


   ω Φ ,        (18) 

where 

 
   

2

2 2
' exp

2

k k

k

s s s s
s

 

  
   
 
 

, 

       
T

1 2
' ' , ' , , '

N
s s s s     Φ . 

At each knot point, the torque function can be  

             
T T1

= ' +
2

k k k k k k k
s s s s s s s τ m ω Φ c ω Φ g c .

(19) 
By using the rectangle rule, the objective function can be 

calculated by 
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1
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1
= d
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
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ω Φ

             (20) 

Hence the optimal control problem (12) can be parameterized 

as the following convex optimization problem: 

 

         
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
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ω Φ

τ m ω Φ c ω Φ
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q q ω Φ q

τ τ τ

q ω Φ q

  (21) 

The efficient solution of problem (21) can be achieved by 

using the SQP routine fmincon in Matlab environment. 

3.2 Path Selection using GA  

In problem (4), assuming the traversal order L is known, 

then the traversal order matrix W is determined. The 

problem will be reduced to problem (12) which can be solved 

by the method in Section 3.1. Since problem (12) is convex, 

the optimal travel time 
min

T of problem (12) is unique. So for 

each traversal order L , there is a unique minimum time 

min
T (if it exists), which means the solution of problem (4) 

can be obtained by solving the following combinational 

optimization problem: 

 

 

   

f
min

1, 2, , ,

s.t. ,

1, 2, ,

cn

c

c

T

n

i j for i j

i, j = n .

 


 




L

L

L L
                   (22) 

In this paper, a genetic algorithm is used to search the 

optimal traversal order L . The algorithm procedure is 

programmed as follows: 

Table 1. GA based path selection procedure (reference to 

Moon et al. (2002)). 

Input: The number of points 
c

n , the location of each 

path point 
1 2
, , ,

cn
p p p , the desired joint 

velocity 
i

q  at each ordered point i . 

Output: Optimized traversal path  sq  and 

corresponding minimum time trajectory  tq . 

Initializa

tion 

 

Generation index 0i  ; 

Population size _pop size ;  

Number of generation _m ax gen ;  

Initialize the traversal order population 

 _Pa pop i =Randperm( _pop size ,
c

n ); 

Using the method in section 3.1 to evaluate the 

corresponding minimum time of each individual 

of the population  _Pa pop i and select the 

best solution *

m in
T . 

Loop: While ( i < _m ax gen ), 

Step 1. Regenerate offspring population 

 _Ch pop i  from  _Pa pop i  by applying the 

crossover and mutation operations; 

Step 2. Use the method in section 3.1 to evaluate 

the corresponding minimum time of each 

individual of the population  _Ch pop i and 

select the best solution 
min

T ; 

Step 3. Update the best solution *

min min
T T , if 

the current *

min min
T T ; 

Step 4. Select new population 

 _ 1Pa pop i   

from  _Pa pop i and  _Ch pop i ; 

Step 5. 1i i  . 

End while. 

4. NUMERICAL EXAMPLE 

In this section, a minimum time multi-points traversal 

example for a 2-DOF robotic manipulator is presented to 

verify the effectiveness of the proposed approach. 

The dynamic equations of the manipulator model in Fig. 2 is 

given as (Feng et al. (2002)) 

11 1 12 1

21 1 22 1

( ) ( )
( ) ,

( ) ( )

a q a q
M q

a q a q

 
  
 

2

2 1 2 1 2

2

2 2

( ) 2 ( )
( , ) ,

( )

q q q q q
C q q

q q

 



  
  
 

1 1 2

2 1 2

( , )
( ) ,

( , )

q q g
G q

q q g





 
  
 

 

where 

2 2

11 1 1 2 1 2 2 2 1 2 2
( ) ( ) 2 cos( ),a q m m l m l m l l q     

2

12 1 2 2 2 1 2 2
( ) cos( ),a q m l m l l q   

2

22 1 2 2
( ) ,a q m l  

2 2 1 2 2
( ) sin( ),q m l l q   

1 1 2 1 2 1 2 2 2 1 2
( , ) ( ) cos( ) cos( ),q q m m l q m l q q      
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2 1 2 2 2 1 2
( , ) cos( ).q q m l q q    

The model parameters are  

1
1l m , 

2
0.8l m ,

1
1.5m kg , 

2
2.5m kg . 

The path points used in this example are obtained by solving 

the following equations. 

   

   

5, 1.5,

0.18 : 0.08 : 1

,

,

.

x sin n s cos s

y asin n s sin s

n a

s

 

 







 

 

 

The distribution of the path points is shown in Fig.3. There 

are total 11 points, that is 11
c

n  . Torque limits of the two 

joints are set as [140; 140;]N.m. Initial and termination 

feedrate of the end effecter are assumed to be zero. The 

desired feedrate of the end effecter at each intermediate point 

is set as 2m/s. 

The typical GA set is shown in Table 2. The parameterization 

number of problem (12) is set as 200N  . Since problem 

(21) is convex, the solution process can be very fast. Fig. 4 

presents the best solution history of the GA based path point 

permutation process. The best solution is obtained at 38th 

generation with the mean computation time about 12min on a 

laptop, Matlab environment, 32-bit system, 2.5 GHz Core i3 

processor, 2GB RAM memory. 

Fig.5 presents the optimal traversal path for the given path 

points with the path length 6.087m. Along this traversal path, 

the minimum motion time is 1.3316s. Fig. 6 shows the 

corresponding minimum time feedrate of the end effecter for 

the optimal path. In Fig. 7, the optimal structure of the joint 

torques is shown to be bang-bang, which is an indication of 

time optimality for the desired path.  

 

Fig. 2. Two link robot manipulator model 

Table 2. Typical Genetic Algorithm Set. 

_pop size  40 

_m ax gen   100 

Total mutation rate  75% 

Mutation operations 
Flip   25% 

Swap  25% 

Slide  25% 

 

Fig. 3. Distribution of the path points 

 

Fig. 4. Best solution history of the GA based path point 

permutation process 

 

Fig.5. Optimal traversal path for the given path points 

 

Fig. 6. Minimum time feedrate of the end effecter for the 

optimal path 
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Fig. 7. Minimum time joint torque trajectory for the optimal 

path 

5. CONCLUSIONS 

In this paper, a decomposition method is proposed to solve 

the minimum time multi-points traversal problem for robotic 

manipulators. By applying cubic Hermite spline to interpolate 

the desired path points, the minimum time multi-points 

traversal problem is decomposed into an outer level iteration 

which aims to search the optimal permutation of the path 

points and a series of inner level optimization processes 

which aim to obtain the minimum motion time along the 

interpolated spline paths. The numerical efficiency of the 

proposed method has been demonstrated through the 2-DOF 

robotic manipulator example.  
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