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Abstract: We present discrete-time stochastic extremum seeking algorithms and prove their convergence
using stochastic averaging theory that we recently developed. First, we provide a discrete stochastic
extremum seeking algorithm for a static map, in which measurement noise is considered and an ergodic
discrete-time stochastic process is used as the excitation signal. Second, for discrete-time nonlinear
dynamical systems, in which the output equilibrium map has an extremum, we present a discrete-
time stochastic extremum seeking scheme and, with a singular perturbation reduction, we prove the
stability of the reduced system. Compared with classical stochastic approximation methods, while the
convergence that we prove is in a weaker sense, the conditions of the algorithm are easy to verify and no
requirements (e.g., boundedness) are imposed on the algorithm itself.
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1. INTRODUCTION

Extremum seeking is a real-time optimization tool and also
a method of adaptive control. Since the first proof of the
convergence of extremum seeking Krstic and Wang [2000],
the research on extremum seeking has triggered considerable
interest in the theoretical control community (Teel and Popovic
[2001], Choi et al. [2002], Tan et el. [2006], Stankovic
and Stipanovic [2009], Moase et al. [2010], Stankovic and
Stipanovic [2010]) and in applied communities (Ou et al.
[2007], Popovic et al. [2006]).

In Liu and Krstic [2010], we establish a framework of
continuous-time stochastic extremum seeking algorithms by
developing general stochastic averaging theory in continuous
time. However, there exists a need to consider stochastic ex-
tremum seeking in discrete time due to computer implementa-
tion. Discrete-time extremum seeking with stochastic perturba-
tion is investigated without measurement noise in Manzie and
Krstic [2009], in which the convergence of the algorithm in-
volves strong restrictions on the iteration process. In Stankovic
and Stipanovic [2009] and Stankovic and Stipanovic [2010],
discrete-time extremum seeking with sinusoidal perturbation is
studied with measurement noise considered and the proof of the
convergence is based on the classical idea of stochastic approxi-
mation method, in which the boundedness of iteration sequence
is assumed to guarantee the convergence of the algorithm.

In this paper, we investigate general discrete-time stochastic ex-
tremum seeking with stochastic perturbation and measurement
noise. We supply discrete-time stochastic extremum seeking
algorithm for a static map and analyze stochastic extremum
seeking scheme for nonlinear dynamical systems with output
equilibrium map. With the help of our developed discrete-time
stochastic averaging theory Liu and Krstic [2013], we prove
the convergence of the algorithms. Unlike in the continuous-
time case Liu and Krstic [2010], in this work we consider the
measurement noise, which is assumed to be bounded. In the

classical stochastic approximation method, boundedness condi-
tion or other restrictions are imposed on the iteration algorithm
itself to achieve the convergence. In our stochastic discrete-time
algorithm, the convergence condition is only imposed on the
cost function or considered systems and is easy to verify, but as
a consequence, we obtain a weaker form of convergence.

The remainder of the paper is organized as follows. In Section
2 we present stochastic extremum algorithms for a static map.
In Section 3, we give stochastic extremum seeking scheme for
dynamical systems and its stability analysis. In Section 4 we
offer some concluding remarks. The discrete-time stochastic
averaging results are listed in Appendix.

2. DISCRETE-TIME STOCHASTIC EXTREMUM
SEEKING ALGORITHM FOR STATIC MAP

Consider the quadratic function

φ(x) = φ∗+
φ ′′

2
(x− x∗)2, (1)

where x∗ ∈ R, φ∗ ∈ R, and φ ′′ are unknown. Any C2 function
φ(·) with an extremum at x = x∗ and with φ ′′ ̸= 0 can be locally
approximated by (1). Without loss of generality, we assume that
φ ′′ > 0. In this section, we design an algorithm to make |xk−x∗|
as small as possible, so that the output y = φ(xk) is driven to its
minimum φ∗. The only available information is the output with
measurement noise.

Denote x̂k as the k step estimate of the unknown optimal input
x∗. Design iteration algorithm as

x̂k+1 = x̂k − ε sin(vk+1)yk+1, k = 0,1, . . . , (2)
where yk+1 = φ(xk)+Wk+1 is the measurement output, {vk,k =
1,2, . . . ,} is an ergodic stochastic process with invariant mea-
sure µ and living space SY , and {Wk,k = 1,2, . . . ,} is mea-
surement noise, which is assumed to be bounded with a bound
M > 0 and ergodic with invariant measure ν and living space
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Fig. 1. Discrete-time stochastic extremum seeking scheme for
a static map.

SW . ε ∈ (0,ε0) is a positive small parameter for some constant
ε0 > 0. The perturbation process {vk,k = 1,2, . . . ,} is indepen-
dent of the measurement noise {Wk,k = 1,2, . . . ,}.

Define xk = x̂k +asin(vk+1), a > 0 and the estimate error x̃k =
x̂k − x∗. Then we have

x̃k+1 = x̃k − ε sin(vk+1)

[
φ∗+

φ ′′

2
(x̃k +asin(vk+1))

2 +Wk+1

]
.

(3)
To analyze the solution property of the error dynamics (3), we
use stochastic averaging theory provided in Appendix. First,
to calculate the average system, we assume that the excitation
process {vk,k = 1,2, . . . ,} is i.i.d. gaussian random variable

sequence with invariant distribution µ(dy) = 1√
2πσ e−

y2

2σ2 dy and
that the measurement noise process {Wk,k = 1,2, . . . ,} is any
bounded ergodic process.

By (A.4), we have

Ave{sin(vk+1)},
∫

SY

sin(y)µ(dy) = 0, (4)

Ave{sin2(vk+1)},
∫

SY

sin2(y)µ(dy) =
1
2
− 1

2
e−2σ2

, (5)

Ave{sin(vk+1)Wk+1},
∫

SY×SW

sin(y)xµ(dy)×ν(dx)

=
∫

SY

sin(y)µ(dy)×
∫

SW

xν(dx) = 0.(6)

Thus, we obtain the average system of the error system (3)

x̃ave
k+1 = (1− ε

aφ ′′
(1− e−2σ2

)

2
)x̃ave

k . (7)

Since φ ′′ > 0, there exists ε∗ = 2
aφ ′′

(1−e−2σ2
)

such that the

average system (7) is globally exponentially stable for ε ∈
(0,ε∗).

Thus by Theorem A.2, for the discrete-time stochastic ex-
tremum seeking algorithm in Fig. 1, we have the following
theorem.
Theorem 2.1. Consider the static map (1) under iteration algo-
rithm (2). Then there exist constants cε > 0 and 0 < γε < 1 such
that for any initial condition x̃0 ∈ R and any δ > 0,

lim
ε→0

inf
{

k ∈ N : |x̃k|> cε |x̃0|γk
ε +δ

}
=+∞ a.s. (8)

and
lim
ε→0

P
{
|x̃k| ≤ cε |x̃0|γk

ε +δ ,∀k = 0,1, . . . , [N/ε]
}
= 1. (9)

These two results imply that the norm of the error vector x̃k
exponentially converges, both almost surely and in probability,
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Fig. 2. Discrete-time stochastic ES with independent variables
with the same gaussian distribution as the stochastic per-
turbation.

to below an arbitrarily small residual value δ , over an arbitrarily
long time interval which tends to infinity as ε goes to zero. To
quantify the output convergence to the extremum, for any ε > 0,
define a stopping time

τδ
ε = inf

{
k ∈ N : |x̃k|> cε |x̃0|γk

ε +δ
}
.

Then by (8), we know that lim
ε→0

τδ
ε =+∞, a.s. and

|x̃k| ≤ cε |x̃0|γk
ε +δ , ∀k ≤ τδ

ε . (10)

Since yk+1 = φ(x∗+ x̃k + asin(vk+1))+Wk+1 and φ ′
(x∗) = 0,

we have

yk+1 −φ(x∗) =
φ ′′

(x∗)
2

(x̃k +asin(vk+1))
2

+O
(
(x̃k +asin(vk+1))

3)+Wk+1. (11)

Thus by (10), it holds that ∀k ≤ τδ
ε

|yk+1 −φ(x∗)| ≤ O(a2)+O(δ 2)+Cε |x̃0|2 γ2k
ε +M, (12)

for some positive constant Cε . Similarly, by (9),

lim
ε→0

P
{
|yk+1 −φ(x∗)| ≤ O(a2)+O(δ 2)+Cε |x̃0|2 γ2k

ε

+M, ∀k = 0,1, . . . , [N/ε ]}= 1, (13)

Remark 2.1. As an optimization method, besides the different
derivative estimation methods, there are some other differences
between stochastic extremum seeking (SES) and stochastic ap-
proximation (SA)(Ljung [1977], Spall [2003], Stankovic and
Stipanovic [2010]). First, in the iteration, the gain coefficients
in SA is changing with the iteration step, but for SES, the
gain coefficient is a small constant and denotes the amplitude
of the excitation signal; Second, stochastic approximation may
consider more kinds of measurement noise (i.e., martingale
difference sequence, some kind of infinite correlated sequence),
but here we assume the measurement noise as bounded ergodic
stochastic sequence; Third, to prove the convergence of the
algorithm (P{limk→∞ xk = x∗} = 1) , SA algorithm requires
some restrictions on the cost function or the iteration sequence,
while the conditions of SES algorithm are simple and easy to
verify.

Fig.2 displays the simulation results with φ∗ = 1,φ ′′ = 1,x∗ =
1, in the static map (1) and a = 0.8,ε = 0.002 in the parameter
update law (2) and initial condition x̂0 = 5. The excitation signal
{vk,k = 1,2, . . . ,} is taken as i.i.d. gaussian random variables
with distribution N(0,4) and the measurement noise is taken
as truncated i.i.d. gaussian random variables with distribution
N(0,0.2).
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Fig. 3. Discrete-time stochastic extremum seeking scheme for
nonlinear dynamics

3. DISCRETE-TIME STOCHASTIC EXTREMUM
SEEKING FOR DYNAMIC SYSTEMS

Consider a general nonlinear model
xk+1 = f (xk,uk), (14)

y0
k = h(xk), k = 0,1,2, . . . , (15)

where xk ∈ Rn is the state, uk ∈ R is the input, y0
k ∈ R is the

nominal output, and f : Rn ×R → Rn and h : Rn → R are
smooth functions. Suppose that we know a smooth control law

uk = β (xk,θ) (16)
parameterized by a scalar parameter θ . Then the closed-loop
system

xk+1 = f (xk,β (xk,θ)) (17)
has equilibria parameterized by θ . We make the following
assumptions about the closed-loop system.
Assumption 3.1. There exists a smooth function l : R → Rn

such that
f (xk,β (xk,θ)) = 0 if and only if xk = l(θ). (18)

Assumption 3.2. There exists θ ∗ ∈ R such that
(h◦ l)′(θ ∗) = 0, (19)
(h◦ l)′′(θ ∗)< 0. (20)

Thus, we assume that the output equilibrium map y = h(l(θ))
has a local maximum at θ = θ ∗.

Our objective is to develop a feedback mechanism which makes
the output equilibrium map y = (h(l(θ))) as close as possible
to the maximum y∗ = h(l(θ ∗)) but without requiring the knowl-
edge of either θ ∗ or the functions h and l. The only available in-
formation is the measurement output with measurement noise.

As discrete-time stochastic extremum seeking scheme in Fig. 3,
we choose the parameter update law

θ̂k+1 = θ̂k + ερξk, (21)
ξk+1 = ξk − εw1ξk + εw1(yk+1 −ζk)sin(vk+1), (22)
ζk+1 = ζk − εw2ζk + εw2yk+1, (23)

yk+1 = y0
k +Wk+1, (24)

where ρ > 0,w1 > 0,w2 > 0,ε > 0 are design parameters and
{vk,k = 1,2, . . . ,} is assumed to be a i.i.d. gaussian random

variable sequence with distribution µ(dx) = 1√
2πσ e−

x2

2σ2 dx .
Wk = (−M)∨ Zk ∧ M is measurement noise, where {Zk,k =
1,2, . . . ,} is i.i.d. gaussian random variable sequence with dis-

tribution ν(dx) = 1√
2πσ1

e
− x2

2σ2
1 dx. We assume that the probing

signal {vk,k = 1,2, . . . ,} is independent of the measure noise
{Wk,k = 1,2, . . . ,}. It is easy to verify that {Wk,k = 1,2, . . . ,}
is a bounded and ergodic process with invariant distribution

ν1(A) = ν(A ∧ (−M,M)) + q1 + q2, where q1 = ν([M,+∞))
if M ∈ A, else q1 = 0 and q2 = ν((−∞,−M]) if −M ∈ A, else
q2 = 0.

Define θk = θ̂k + asin(vk+1). Then we obtain the closed-loop
system as

xk+1 = f (xk,β (xk, θ̂k +asin(vk+1))), (25)

θ̂k+1 = θ̂k + ερξk, (26)

ξk+1 = ξk − εw1ξk + εw1(y0
k +Wk+1 −ζk)sin(vk+1), (27)

ζk+1 = ζk − εw2ζk + εw2(y0
k +Wk+1). (28)

With the error variable

θ̃k = θ̂k −θ ∗, (29)

ζ̃k = ζk −h◦ l(θ ∗), (30)

the closed-loop system is rewritten as

xk+1 = f (xk,β (xk, θ̂k +asin(vk+1))), (31)
θ̃k+1 = θ̃k + ερξk, (32)

ξk+1 = ξk − εw1ξk + εw1(h(xk)−h◦ l(θ ∗)− ζ̃k +Wk+1)

× sin(vk+1),
(33)

ζ̃k+1 = ζ̃k − εw2ζ̃k + εw2 (h(xk)−h◦ l(θ ∗)+Wk+1) . (34)

We employ a singular perturbation reduction, freeze xk in (31)
at its quasi-steady state value as xk = l(θ ∗+ θ̃k + asin(vk+1))
and substitute it into (32)-(34), and then get the reduced system

θ̃ r
k+1 = θ̃ r

k + ερξ r
k , (35)

ξ r
k+1 = ξ r

k − εw1ξ r
k + εw1(ς(θ̃ r

k +asin(vk+1))− ζ̃ r
k +Wk+1)

× sin(vk+1),
(36)

ζ̃ r
k+1 = ζ̃ r

k − εw2ζ̃ r
k + εw2

(
ς(θ̃ r

k +asin(vk+1))+Wk+1
)
. (37)

where ς(θ̃ r
k + asin(vk+1)) , h

(
l(θ ∗+ θ̃ r

k +asin(vk+1))
)
− h ◦

l(θ ∗). With Assumption 3.2, we have

ς(0) = 0, (38)
ς ′(0) = (h◦ l)′(θ ∗) = 0, (39)
ς ′′(0) = (h◦ l)′′(θ ∗)< 0. (40)

Now we use our stochastic averaging theorems to analyze sys-
tem (35)-(37). According to (A.4), we obtain that the average
system of (35)-(37) is θ̃ r,ave

k+1 − θ̃ r,ave
k

ξ r,ave
k+1 −ξ r,ave

k
ζ̃ r,ave

k+1 − ζ̃ r,ave
k



= ε


ρξ r,ave

k

−w1ξ r,ave
k +w1

∫
SY

ς(θ̃ r,ave
k +asin(y))sin(y)µ(dy)

−w2ζ̃ r,ave
k +w2

∫
SY

ς(θ̃ r,ave
k +asin(y))µ(dy)

 ,

(41)

where we use the following facts:
∫

SW
xν1(dx) = 0,

∫
SW×SY

xsin(y)ν1(dx)×µ(dy) = 0.

Now, we determine the average equilibrium (θ̃ a,e,ξ a,e, ζ̃ a,e)
which satisfies
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ξ a,e = 0, (42)

−w1ξ a,e +w1

∫
SY

ς(θ̃ a,e +asin(y))sin(y)µ(dy) = 0, (43)

−w2ζ̃ a,e +w2

∫
SY

ς(θ̃ a,e +asin(y))µ(dy) = 0. (44)

We assume that θ̃ a,e has the form

θ̃ a,e = b1a+b2a2 +O(a3). (45)

By (38) and (39), define

ς(x) =
ς ′′(0)

2
x2 +

ς ′′′(0)
3!

x3 +O(x4). (46)

Then substituting (45) and (46) into (43), we have∫ +∞

−∞
ς(b1a+b2a2 +O(a3)+asin(y))sin(y)

1√
2πσ

e−
y2

2σ2 dy

= O(a4)+ ς ′′(0)b1

(
1
2
− 1

2
e−2σ2

)
a2+[(

b2ς ′′(0)+
ς ′′′(0)

2
b2

1

)(
1
2
− 1

2
e−2σ2

)
+

ς ′′′(0)
6

(
3
8
− 1

2
e−2σ2

+
1
8

e−8σ2
)]

a3 = 0, (47)

where the following facts are used: 1√
2πσ

∫ +∞
−∞ sin2k+1(y)e−

y2

2σ2 dy

= 0,k = 0,1,2, . . . , 1√
2πσ

∫ +∞
−∞ sin2(y)e−

y2

2σ2 dy = 1
2 − 1

2 e−2σ2
,

1√
2πσ

∫ +∞
−∞ sin4(y)e−

y2

2σ2 dy = 3
8 −

1
2 e−2σ2

+ 1
8 e−8σ2

. Comparing
the coefficients of the powers of a on the right-hand and left-

hand sides of (47), we have b1 = 0, b2 =− ς ′′′(0)(3−4e−2σ2
+e−8σ2

)

24ς ′′(0)(1−e−2σ2
)

,

and thus by (45), we have

θ̃ a,e =−ς ′′′(0)(3−4e−2σ2
+ e−8σ2

)

24ς ′′(0)(1− e−2σ2
)

a2 +O(a3). (48)

From this equation, together with (44), we have ζ̃ a,e =
ς ′′(0)(1−e−2σ2

)
4 a2 +O(a3). Thus the equilibrium of the average

system (41) is

 θ̃ a,e

ξ a,e

ζ̃ a,e

=


−ς ′′′(0)(3−4e−2σ2

+ e−8σ2
)

24ς ′′(0)(1− e−2σ2
)

a2 +O(a3)

0
ς ′′(0)(1− e−2σ2

)

4
a2 +O(a3)

 .

(49)

The Jacobian matrix of the average system (41) at the equilib-
rium (θ̃ a,e,ξ a,e, ζ̃ a,e) is

Ja
r =

[ 1 ερ 0
εJa

r21 1− εw1 0
εJa

r31 0 1− εw2

]
, (50)

where Ja
r21 =

w1√
2πσ

∫ +∞
−∞ ς ′ (θ̃ a,e +asin(y)

)
sin(y)e−

y2

2σ2 dy, Ja
r31 =

w2√
2πσ

∫ +∞
−∞ ς ′(θ̃ a,e +asin(y))e−

y2

2σ2 dy. Thus we have

det(λ I − Ja
r ) = (λ −1+ εw2)

×
(
(λ −1)2 + εw1(λ −1)− ε2ρJa

r21
)
. (51)

With Taylor expansion and by calculating the integral, we get

∫ +∞

−∞
ς ′ (θ̃ a,e +asin(y)

)
sin(y)e−

y2

2σ2 dy

= a
√

2πσς ′′(0)
(

1
2
− 1

2
e−2σ2

)
+O(a2). (52)

By substituting (52) into (51) we get
det(λ I − Ja

r ) = (λ −1+ εw2)(λ −1− εΦ1)(λ −1− εΦ2),
(53)

where Φ1 =
1
2 (−w1+sqrt(w2

1+2ρw1aς ′′
(0)(1−e−2σ2

) + 4ρw1√
2πσ

O(a2))), Φ2 = 1
2 (−w1 − sqrt(w2

1 + 2ρw1aς ′′
(0)(1 − e−2σ2

)

+ 4ρw1√
2πσ O(a2))). Since ς ′′

(0) < 0, for sufficiently small a,

sqrt(w2
1+2ρw1aς ′′

(0)(1−e−2σ2
)+ 4ρw1√

2πσ O(a2)) can be smaller
than w1. Thus there exist ε∗1 > 0, such that for ε ∈ (0,ε∗1 ), the
eigenvalues of the Jacobian matrix of the average system (41)
are in the unit disc, and thus the equilibrium of the average
system is exponentially stable. Then according to Theorem A.2,
we have the following result for stochastic extremum seeking
algorithm in Fig. 3.
Theorem 3.1. Consider the reduced system (35)-(36)-(37) un-
der Assumption 3.2. Then there exists a constant a∗ > 0 such
that for any 0 < a < a∗ there exist constants r > 0,cε > 0, and
0 < γε < 1 such that for any initial condition

∣∣∆ε
0

∣∣< r, and any
δ > 0,

lim
ε→0

inf
{

k ∈ N : |∆ε
k |> cε |∆ε

0||γε |k +δ
}
=+∞, a.s. (54)

and

lim
ε→0

P
{
|∆ε

k | ≤ cε |∆ε
0||γε |k +δ ,∀k = 0,1, . . . , [N/ε]

}
= 1

∀N ∈ N, (55)

where ∆ε
k , (θ̃ r

k,ξ
r
k , ζ̃

r
k)−

(
− ς ′′′(0)(3−4e−2σ2

+e−8σ2
)

24ς ′′(0)(1−e−2σ2
)

a2 +O(a3),

0, ς ′′(0)(1−e−2σ2
)

4 a2 +O(a3)

)
.

These results imply that the norm of the error vector ∆ε
k expo-

nentially converges, both almost surely and in probability, to
below an arbitrarily small residual value δ over an arbitrary
large time interval as the perturbation parameter ε goes to zero.
In particular, the θ̃ r

k-component of the error vector converges to
below δ . To quantify the output convergence to the extremum,
we define a stopping time

τδ
ε = inf

{
k ∈ N : |∆ε

k |> cε |∆ε
0|γk

ε +δ
}
.

Then by (54) and the definition of ∆ε
k , we know that lim

ε→0
τδ

ε =

+∞, a.s. and
∣∣∣∣θ̃ r

k −
(
− v′′′(0)(3−4e−q2

+e−4q2
)

24v′′(0)(1−e−q2
)

a2 +O(a3)

)∣∣∣∣ ≤

cε
∣∣∆ε

0

∣∣γk
ε +δ , ∀k ≤ τδ

ε , which implies that∣∣θ̃ r
k

∣∣≤ O(a2)+ cε |∆ε
0|γk

ε +δ , ∀k ≤ τδ
ε . (56)

Since the nominal output y0
k = h(l(θ ∗ + θ̃ r

k + asin(vk+1)))

and (h ◦ l)
′
(θ ∗) = 0, we have y0

k − h ◦ l(θ ∗) = (h◦l)
′′
(θ∗)

2 (θ̃ r
k +

asin(vk+1))
2 +O

(
(θ̃ r

k +asin(vk+1))
3
)
. Thus by (56), it holds

that

|y0
k −h◦ l(θ ∗)| ≤ O(a2)+O(δ 2)+Cε |∆ε

0|
2 γ2k

ε , ∀k ≤ τδ
ε ,

for some positive constant Cε . Similarly, by (55)
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lim
ε→0

P
{
|y0

k −h◦ l(θ ∗)| ≤ O(a2)+O(δ 2)+Cε |∆ε
0|

2 γ2k
ε ,

∀k = 0,1, . . . , [N/ε]}= 1.

With the measurement noise considered, we obtain that

|yk+1 −h◦ l(θ ∗)| ≤ O(a2)+O(δ 2)+Cε |∆ε
0|

2 γ2k
ε +M,

∀k ≤ τδ
ε ,

for some positive constant Cε , and moreover,

lim
ε→0

P
{
|yk+1 −h◦ l(θ ∗)| ≤ O(a2)+O(δ 2)+Cε |∆ε

0|
2 γ2k

ε

+M, ∀k = 0,1, . . . , [N/ε]}= 1.

4. CONCLUDING REMARKS

In this paper, we develop stochastic discrete-time extremum
seeking algorithms. Compared with other stochastic optimiza-
tion methods, e.g., stochastic approximation, simulated anneal-
ing method and genetic algorithm, the convergence conditions
of discrete-time stochastic extremum seeking algorithm are
easier to verify and clearer. Compared with continuous-time
stochastic extremum seeking, in the discrete-time case, we con-
sider the bounded measurement noise. In our results, we can
only prove the weaker convergence than almost surely conver-
gence of the classic stochastic approximation. Better conver-
gence of algorithms and improved algorithms are our future
work directions.
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Appendix A. DISCRETE-TIME STOCHASTIC
AVERAGING

Consider system
Xk+1 = Xk + ε f (Xk,Yk+1), k = 0,1,2, . . . , (A.1)

where Xk ∈ Rn,k = 1,2, . . . , are the states, {Yk ∈ Rm,k =
1,2, . . .} is a stochastic perturbation sequence defined on a
complete probability space (Ω,F ,P). Let SY ⊂ Rm be the
living space of the perturbation process. ε ∈ (0,ε0) is a small
parameter for some fixed positive constant ε0.

The following assumptions will be considered.
Assumption A.1. The vector field f (x,y) is a continuous func-
tion of (x,y), and for any x ∈ Rn, it is a bounded function of
y. Further it satisfies the locally Lipschitz condition in x ∈ Rn

uniformly in y ∈ SY , i.e., for any compact subset D ⊂ Rn, there
is a constant kD such that for all x1,x2 ∈ D and all y ∈ SY ,

| f (x1,y)− f (x2,y)| ≤ kD |x1 − x2|.
Assumption A.2. The perturbation process {Yk,k = 1,2, . . .} is
ergodic with invariant distribution µ .

Under Assumption A.2, we define two classes of average sys-
tem of system (A.1) as follows:

Discrete average system: X̄d
k+1 = X̄d

k + ε f̄ (X̄d
k ), (A.2)

Continuous average system:
dX̄c(t)

dt
= f̄ (X̄c(t)), (A.3)

where X̄d
0 = X̄c(0) = X0 and

f̄ (x),
∫

SY

f (x,y)µ(dy) = lim
N→∞

1
N +1

N

∑
k=0

f (x,Yk+1) a.s.

(A.4)
Here the definition of discrete average system is different from
that in Solo and Kong [1995], where the average vector field is
defined by f̄ (x) , E f (x,Yk+1) (there, the perturbation process
{Yk+1,k = 0,1, . . . ,} is assumed to be strict stationary). Here
we consider ergodic process as perturbation. It is easy to find
discrete-time ergodic processes, e.g., (i) i.i.d random variables
sequence; (ii) finite state irreducible and aperiodal Markov
process; (iii) {Yi, i = 0,1, . . . ,} where {Yt , t ≥ 0} is OU process.
In fact, for any continuous-time ergodic process {Yt , t ≥ 0},
the subsequence {Yi, i = 0,1, . . . ,} is a discrete-time ergodic
process.

By (A.1), we have

Xk+1 = X0 + ε
k

∑
i=0

f (Xi,Yi+1). (A.5)

We introduce a new time tk = εk. Denote m(t) =max{k : tk ≤ t}
and define X(t) as a piecewise constant version of Xk, i.e.,

X(t) = Xk, as tk ≤ t < tk+1, (A.6)
and Y (t) as a piecewise constant version of Yn, i.e.,

Y (t) = Yk, as tk ≤ t < tk+1. (A.7)
Then we can write (A.1) in the following form:

X(t) = X0 + ε
m(t)

∑
k=1

f (Xk−1,Yk) (A.8)

or as the continuous-time version

X(t) = X0 +
∫ t

0
f (X(s),Y (ε + s))ds−

∫ t

tm(t)

f (X(s),Y (ε + s))ds.

(A.9)
Similarly, we can write the discrete average system (A.2) in the
following continuous-time version

X̄d(t) = X0 +
∫ t

0
f̄ (X̄d(s))ds−

∫ t

tm(t)

f̄ (X̄d(s))ds, (A.10)

and write the continuous average system (A.3) by

X̄c(t) = X0 +
∫ t

0
f̄ (X̄c(s))ds, (A.11)

where X̄d(t) is a piecewise constant version of X̄d
k , i.e., X̄d(t) =

X̄d
k , as tk ≤ t < tk+1. We now rewrite the continuous-time

version (A.9) of the original system (A.1) as two forms:

X(t) =X0 +
∫ t

0
f̄ (X(s))ds

−
∫ t

tm(t)

f̄ (X(s))ds+R(1)(t,X(·),Y (ε + ·)), (A.12)

X(t) =X0 +
∫ t

0
f̄ (X(s))ds+R(2)(t,X(·),Y (ε + ·)), (A.13)

where R(1)(t,X(·),Y (ε + ·)) =
∫ tm(t)

0

(
f (X(s),Y (ε + s))− f̄ (X

(s)))ds, R(2)(t,X(·),Y (ε + ·)) =
∫ t

0
(

f (X(s),Y (ε + s))− f̄ (X
(s))) ds−

∫ t
tm(t)

f (X(s),Y (ε +s))ds. Hence we consider system
(A.12) as a random perturbation of the continuous-time version
(A.10) of discrete average system (A.2) and consider system
(A.13) as a random perturbation of the continuous average
system (A.11).
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To study the solution property of the original system (A.1), we
develop discrete-time stochastic averaging principle, i.e., using
average systems (A.2) or (A.3) to approximate the original
system (A.1).
Remark A.1. Our developed averaging theory is also applicable
to the following systems

Xk+1 = Xk + ε ( f (Xk,Yk+1)+Wk+1) , k = 0,1,2, . . . , (A.14)
where {Wk ∈ Rn,k = 1,2, . . .} is bounded with a bound M
and ergodic stochastic sequence, which is independent of the
perturbation sequence {Yk,k = 1,2, . . .}.

Take a function g ∈ C0(R) such that g(x) = 1,∀x ∈ BM(0) =
{x ∈ Rn||x| ≤ M} and denote F(Xk,Zk+1) , f (Xk,Yk+1) +
g(Wk+1). Then we obtain the following system

Xk+1 = Xk + εF(Xk,Zk+1), k = 0,1,2, . . . . (A.15)
Since {Wk ∈ Rn,k = 1,2, . . .} and {Yk,k = 1,2, . . .} are inde-
pendent and ergodic, we can obtain the combination process
Zk , {(Y T

k ,W T
k )T ,k = 1,2, . . . ,} is also ergodic.It is easy to

check that the new system (A.15) satisfies Assumption A.1.
Thus we know system (A.14) is included into our considered
system (A.1).

Let (Xk,k = 0,1,2, . . .) and (X̄d
k ,k = 0,1,2, . . .) be the solutions

of the original system (A.1), discrete average system (A.2),
respectively. Rewrite system (A.1) as

Xk+1 = Xk + ε f̄ (Xk)+R(3)(Xk,Yk+1), k = 0,1,2, . . . , (A.16)

where R(3)(Xk,Yk+1) = ε( f (Xk,Yk+1)− f̄ (Xk)). Hence we can
consider system (A.16) (i.e. system (A.1)) as a random pertur-
bation of discrete average system (A.2).

We have the following approximation results. Own to the space
limitation, the proof is omitted and referred to the case without
measurement noise Liu and Krstic [2013].
Lemma A.1. Consider system (A.1) under Assumptions A.1
and A.2. Then for any N ∈ N,

lim
ε→0

sup
0≤k≤[N/ε]

|Xk − X̄d
k |= 0 a.s. (A.17)

Theorem A.1. Consider system (A.1) under Assumptions A.1
and A.2. Then we have

(i) for any δ > 0, limε→0 inf{k ∈N : |Xk− X̄d
k |> δ}=+∞ a.s.;

(ii) for any δ > 0 and any N ∈ N,

lim
ε→0

P

{
sup

0≤k≤[N/ε]
|Xk − X̄d

k |> δ

}
= 0.

About the solution property of the original system (A.1) by
analyzing the stability of discrete average systems (A.2), we
have the following results.
Theorem A.2. Consider system (A.1) under Assumptions A.1
and A.2. Then if for any ε ∈ (0,ε0), the equilibrium X̄d

k ≡ 0 of
the discrete average system (A.2) is exponentially stable, then
it is weakly exponentially stable under random perturbation
R(3)(·,Yk+1), i.e., there exist constants r > 0, cε > 0 and γε > 0
such that for any initial condition X0 = x ∈ {x̌ ∈ Rn : |x̌| < r},
and any δ > 0, the solution of system (A.1) satisfies

lim
ε→0

inf
{

k ∈ N : |Xk|> cε |x|γk
ε +δ

}
=+∞ a.s. (A.18)

Moreover,

lim
ε→0

P
{
|Xk| ≤ cε |x|γk

ε +δ ,∀k = 0,1, . . . , [N/ε]
}
= 1,

for ∀N ∈ N. (A.19)
If the equilibrium X̄d

k ≡ 0 of the discrete average system (A.2) is
exponentially stable uniformly w.r.t. ε ∈ (0,ε0), then the above
constants cε > 0 and γε can be taken independent of ε . If the
equilibrium X̄d

k ≡ 0 of the discrete average system (A.2) is
globally exponentially stable, then (A.18) and (A.19) hold for
any initial condition X0 = x ∈ Rn.
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