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Abstract: In a resource limited multi-agent system, it is of practical importance to select a fraction of
nodes (agents) to provide control inputs such that consensus can be achieved with optimized performance
in terms of network cost and/or convergence speed. In this paper, we investigate the problem of how
to select control nodes so as to minimize the network cost, where the control nodes are selected at the
beginning and will be fixed all the time. This problem can be transformed to a combinatorial optimization
problem, and further relaxed to a convex optimization problem with reweighted l1 norm. We propose a
suboptimal algorithm to solve the convex optimization problem. Finally, we offer several numerical
examples to illustrate the efficiency of the proposed strategies, and investigate the relationship how the
degrees of control nodes will influence network cost and convergence speed.
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1. INTRODUCTION

Consensus based dynamic networks have emerged as a flexible
framework for multi-agent information sharing when coopera-
tive task is required, such as wireless sensor navigation, space-
craft formation control, mobile robot rendezvous, unmanned
aerial vehicle flocking. In the last decade, the consensus prob-
lem has been intensively investigated in a lot of the existed
works have been focused on the study of system stability under
different situations, such as with fixed and switched topology,
time delay, and quantization communication, see Fax et al.
[2004]-Li et al. [2011]. On the other hand, many efforts have
been directed towards the leader-follower system, where the
leaders act as interventions which push all the followers reach-
ing consensus on the leaders’ state, see Hong et al. [2008], Peng
et al. [2009], Ni et al. [2010], Semsar-Kazerooni et al. [2008],
Jia et al. [2011].

Recently, to characterize and design useful interaction models
systematically, the controllability properties of the underlying
interaction network are investigated, where a number of agents
are leaders and the remaining agents are followers, see Tanner
et al. [2004], Porfiri et al. [2008], Yoon et al. [2011], Jafari et al.
[2011], Parlangeli et al. [2011], Lozano et al. [2008], Borsche et
al. [2010]. Specifically, Rahmani et al. [2009] have shown how
the symmetry structure of the network, characterized in terms
of its automorphism group, directly relates to the controllability
of the corresponding multi-agent system. Moreover, Egerstedt
et al. [2012] systematically discuss the relationship between
network structure and controllability properties in single-leader
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consensus networks and collect some of the key results that
have emerged in this area during the last five years.

In most cases, we not only need that all the nodes reach
consensus but also hope that the agreement value is a desired
value. Since most of real networks consist of a large number of
nodes, it is difficult to implement controllers to all the nodes.
To save valuable power and cost in a real network, an effective
control scheme is adding control input to a fraction of nodes
in the network to achieve desired performance. see Li et al.
[2004]-Chen et al. [2009].

A natural question that arises is, in a resource constrained net-
work, how to select a fraction of control nodes so as to optimize
network performances in terms of lowest energy consumption
and/or fastest convergence speed? The optimal selection in real
networks are of practical importance, for example, in social
networks, the information spreads faster from those influential
peoples, and in an animal group, the prey is hunted with higher
probability if those animals with much more experiences are
selected to be the leaders.

In this work, we reduce the network cost over finite time
horizon, we formulate the control nodes selection problem as
optimization problems. It is to determine the binary values
denoting whether the node is added control input in order to
minimize network cost. A related work in (Porfiri et al. [2009])
proposed a node-to-node pinning control strategy to optimize
the control performance, where the control input is added on
a switched node each time. Clark et al. [2012] presented a
framework for selecting leaders based on joint consideration of
controllability and performance. In this paper, we discuss the
control nodes selection problem with the goal of minimizing
the network costs. By replacing the l0 norm by l1 norm, the
problems are relaxed to a convex optimization problem. In
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this paper, we consider fixed nodes selection problem, where
the control inputs are added on fixed nodes over finite time
horizon. We formulate the problem as a general combinatorial
optimization problem. Through simulations, we explore the
relationship between optimality and node properties.

The remainder of this paper is organized as follows. In Section
2, we introduce a general controlled consensus problem for
the optimization of network cost involving the constraints.
In Section 3, we introduce the nodes selection problem and
provide the main results of this paper. Simulation examples are
given in Section 4 and some concluding remarks are given in
the end.

Notations: Rn is the n−dimensional Euclidean space. Sn rep-
resents symmetric n×n matrices. Sn

+ and Sn
++ represents sym-

metric positive semidefinite and positive definite matrices, re-
spectively. When X is positive semi-definite matrix and positive
definite matrix, it is written as X � 0 and X � 0, respectively.
Moreover, X � Y if X−Y is positive semi-definite matrix. tr(·)
is the trace of a matrix. In is the n identity matrix. 1n is the
vector with all components one. ρ(·) is the spectral radius of a
matrix.

2. PROBLEM FORMULATION

Consider a network described as an undirected graph G =
(V,E) with V = (1,2, . . . ,n) being the set of n nodes, and
the edges E ⊂ V ×V representing the communication links.
Denote the set of neighbors of node i by Ni = { j : (i, j) ∈
E}. Each node can exchange information with its neighbors.
The interconnection topology of the network is described by
a weighted matrix W = [wi j], where wii = 1−∑ j∈Ni wi j and
0 < wi j ≤ 1 if (i, j) ∈ E; otherwise, wi j = 0. Here, we assume
that the network G is connected. Thus, W is nonnegative and
stochastic.

In this paper, we consider reaching desired agreement by
adding control inputs on a fraction of nodes. Each node updates
its state as

xi(k+1) =
n

∑
j=1

wi j · x j(k)+ l · γi ·ui(k) (1)

where

ui(k) = c− xi(k).

Here, xi(k) ∈ Rm is the state of ith node at time step k, c ∈ Rm

is the desired state. Note that 0 < l < min{wii} is a constant
gain. If node i is added control input at time step k, then γi = 1;
otherwise, γi = 0. Assume that the number of control nodes is
less than or equal to q. Let

Γ, diag(γ1, . . . ,γn),

u(k), [u1(k)T , . . . ,un(k)T ]T .

Here, we take m = 1 for simplicity. However, all the results can
be extended to the case m > 1 using Kronecker product.

In this paper, we are interested into one problem: how to select
a fraction of nodes as the control nodes to minimize network
costs while satisfying specific constraints? The nodes selection
problem can be formulated as the following optimization prob-
lem:

(P0) : min
Γ

T

∑
k=0

x(k)T x(k)+u(k)T u(k) (2)

s.t. tr(Γ)≤ q

γi = 0 or 1, i = 1, . . . ,n,

Before solving the above optimization problem, we analyze the
stability of the protocol (1). By concatenating the states of all
the nodes, the discrete-time network dynamics is,

x(k+1) =Wf x(k)+ cl ·Γ1n, (3)

where x(k) = [x1(k)T ,x2(k)T , . . . ,xn(k)T ]T denotes the aggre-
gated state vector of the network system, and Wf = W − lΓ.
The choice of l guarantees that Wf is nonnegative.

We need the following lemmas in (Horn et al. [1985]) to obtain
the stability results.
Lemma 1. The matrix A is irreducible if and only if its corre-
sponding graph is connected.

Lemma 2. If an irreducible matrix is weakly diagonally domi-
nant, but in at least one row (or column) is strictly diagonally
dominant, then the matrix is irreducibly diagonally dominant.
Lemma 3. Let A be irreducibly diagonally dominant. Then A is
invertible.
Proposition 1. If W = (wi j)

n
i, j=1 is an irreducible non-negative

matrix and satisfying wi j = w ji, if i 6= j, and W1n = 1n. Then,
if ε < mini(wii), all the eigenvalues of the matrix

W̃ =W − εeieT
i , 1≤ i≤ n

are within (−1,1). Here, el denotes the vector with a 1 in the
ith coordinate and 0’s elsewhere.

Proof: Note that ∑
n
j=1 w̃i j ≤ 1 for i = 1,2, . . . ,n. According to

Gershgorin circle theorem, all the eigenvalues of W̃ are within
(−1,1] because each diagonal element w̃ii > 0. Suppose that
λ = 1 is an eigenvalue of W̃ with corresponding eigenvector
v = [v1, . . . ,vn]

T , that is, (In−W̃ )v = 0.

Without loss of generality, we assume that i = 1.

det(W̃ − In) =

∣∣∣∣∣∣∣∣
w̃11− ε−1 w̃12 . . . w̃1n

w̃21 w̃22−1 . . . w̃2n
...

... . . .
...

w̃n1 w̃n2 . . . w̃nn−1

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
−ε w̃12 . . . w̃1n
0 w̃22−1 . . . w̃2n
...

... . . .
...

0 w̃n2 . . . w̃nn−1

∣∣∣∣∣∣∣∣
Denote

B :=

 w̃22−1 . . . w̃2n
... . . .

...
w̃n2 . . . w̃nn−1

 ,
and let E = (w̃12, . . . , w̃1n). It is easy to verify that −B is
weakly diagonally dominant matrix. Further, we can rearrange
the indices of n−1 nodes such that B can be rewritten as a block
diagonal matrix

B =


B1 0 . . . 0
0 B2 . . . 0
...

...
. . .

...
0 0 . . . Bh

 ,
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where each block matrix Bi, i = 1,2, . . . ,h corresponds to a
connected subgraph. By Lemma 1, each Bi is irreducible. Again
since W is irreducible, there must exist a node in each block Bi
which connects with node 1, otherwise, the graph associated
with W is not connected. It implies that at least one row is
strictly diagonally dominant in each Bi because w̃ j1 6= 0, and
the jth row is one row in Bi. By Lemma 2, because each −Bi
is weakly diagonally dominant matrix, thus −Bi is irreducibly
diagonally dominant. By Lemma 3, −Bi is invertible. Thus,
det(B) 6= 0. Further,

det(W̃ − In) =

∣∣∣∣−ε E
0 B

∣∣∣∣=−ε ·det(B) 6= 0.

Thus, λ 6= 1. Further, |λ |< 1.�

Let
z(k) = x(k)− c1n.

The state error system is,

z(k+1) = x(k+1)− c1n

=Wf x(k)+ clΓ1n− c1n

=Wf (x(k)− c1n)+ cWf 1n + clΓ1n− c1n

=Wf z(k). (4)
The last equality holds because

(Wf + lΓ)1n =W1n = 1n.

It is easy to find that all the nodes reach agreement on the
desired state c if z(k) → 0 as k → ∞. By Proposition 1, we
directly give the following result.
Theorem 1. Consider an undirected network consisting of n
nodes with dynamics (1) . All the nodes’ state converge to the
desired state if any one node is controlled.

Proof: By the assumption that G is connected, W is nonnegative
and irreducible. It is easy to show that the state error system (4)
is asymptotically stable by Proposition 1.�

3. MAIN RESULTS

As discussed above, the whole network reaches agreement on
a desired state if any one node is controlled. This section is
devoted to relaxing the optimization problem (P0) to make it
explicit and convex with respect to the optimization variables.

3.1 Fixed nodes selection problem

In this section, we investigate the fixed control nodes selection
problem.

Let
u(k) = c1n− x(k).

One obtains
u(k+1) = (W − lΓ)u(k). (5)

By iteration, one has

u(k) = (W − lΓ)ku(0).

Let Ŵ =W − lΓ. Then,

∞

∑
k=0

u(k)T u(k) = u(0)T
∞

∑
k=0

Ŵ kTŴ ku(0)

= u(0)T (In−Ŵ 2)−1u(0)

Because

(In−Ŵ 2)−1 =
1
2
(In +Ŵ )−1 +

1
2
(In−Ŵ )−1,

we have
∞

∑
k=0

u(k)T u(k) =
1
2

u(0)T ((I +Ŵ )−1 +(In−Ŵ )−1)u(0).

By Proposition 1, we know that −I ≺ Ŵ ≺ I. By recursion, we
have

x(k) = Ŵ kx(0)+ l
k−1

∑
i=0

Ŵ i
Γc1n,

= Ŵ kx(0)+ l[In−Ŵ k](In−Ŵ )−1
Γc1n,

= Ŵ kx(0)+ c(In−Ŵ k)1n,

The last equality follows from the fact that
lΓ1n = (W −Ŵ )1n = (In−Ŵ )1n.

Further, we have

T

∑
k=0

x(k)T x(k)+u(k)T u(k)

<
T

∑
k=0
||Ŵ kx(0)+ c(In−Ŵ k)1n||22 (6)

+
1
2

u(0)T ((I +Ŵ )−1 +(I−Ŵ )−1)u(0).

Since the inverse of a positive definite matrix is a convex
function of the matrix (See Exercise 3.18, Boyd [2009]), the
second term of (6) is a convex function. Next, we are going to
investigate the convexity of the first term of (6).
Lemma 4. Consider the minimization problem

min
Γ

T

∑
k=0
||Ŵ kx(0)+ c(In−Ŵ k)1n||22, (7)

with γi ∈ {0,1}, i = 1, . . . ,n. The suboptimal solution of (7) can
be derived by solving the following problem,

min
Γ

x(0)T (In−Ŵ 2)−1x(0)+2cx(0)T (In−Ŵ )−11n (8)

+c21T
n (T In−Ŵ −2(T −2)Ŵ 2 +(T −2)Ŵ 4)1n

−2cx(0)T (In−Ŵ 2)−11n

where the function in (8) is the upper bound of the function in
(7).

Proof: Again since ρ(Ŵ )< 1, it is easy to obtain

T

∑
k=0

x(0)TŴ kTŴ kx(0)<
∞

∑
k=0

x(0)TŴ kTŴ kx(0)

= x(0)T (In−Ŵ 2)−1x(0). (9)
Further, one obtains

T

∑
k=0

x(0)TŴ k(In−Ŵ k)1n <
∞

∑
k=0

x(0)TŴ k(In−Ŵ k)1n

=
∞

∑
k=0

x(0)T (Ŵ k−Ŵ 2k)1n

= x(0)T (In−Ŵ )−11n− x(0)T (In−Ŵ 2)−11n. (10)
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Note that

T

∑
k=0

(In−Ŵ k)2 <
T

∑
k=0

(2In−Ŵ )+(T −2)(In−Ŵ 2)2

= T In−Ŵ −2(T −2)Ŵ 2 +(T −2)Ŵ 4 (11)

Following from (9), (10) and (11), it is directly to have, the
objective function of (8) is the upper bound of the objective
function 7. Thus, we can obtain a suboptimal solution of (7) by
solving the minimization problem (8). �

Using all the previous arguments, and denoting the ith column
of the matrix Ŵ as (Ŵ )i, we can reformulate the optimization
problem P0 as the following problem.
Theorem 2. Consider the linear system (1) and let Γ be the node
selection matrix. The minimization problem over Γ of the cost
function

T

∑
k=0

x(k)T x(k)+u(k)T u(k)

can be formulated as

(P1) : min
Γ

x(0)T (In−Ŵ 2)−1x(0) (12)

+
1
2
(x(0)+1n)

T (In−Ŵ )−1(x(0)+1n)

− 1
2

x(0)T (In−Ŵ )−1x(0)− 1
2

1T
n (In−Ŵ )−11n

− 1
2
(x(0)+1n)

T (In +Ŵ )−1(x(0)+1n)

+
1
2

x(0)T (In +Ŵ )−1x(0)+
1
2

1T
n (In +Ŵ )−11n

+ c21T
n [T In−Ŵ −2(T −2)Ŵ 2 +(T −2)Ŵ 4]1n

+u(0)T (In−Ŵ 2)−1u(0)

s.t. Γ1≤ q,

γi ≥
∥∥1−||(Ŵ )i||1

∥∥
0, i = 1, · · · ,n,

where || · ||0 (called the l0 norm) of a scalar is 0 if the scalar if 0
(it is 1 otherwise) and k̄ is the smallest number which satisfies
the third constraint.

Proof: Again since

(In−Ŵ 2)−1 =
1
2
(In +Ŵ )−1 +

1
2
(In−Ŵ )−1,

we have

2x(0)T [(In−Ŵ )−1− (In−Ŵ 2)−1]1n

= x(0)T [(In−Ŵ )−1− (In +Ŵ )−1]1n

=
1
2
(x(0)+1n)

T (In−Ŵ )−1(x(0)+1n)

− 1
2
(x(0)+1n)

T (In +Ŵ )−1(x(0)+1n)

− 1
2

x(0)T (In−Ŵ )−1x(0)− 1
2

1T
n (In−Ŵ )−11n

+
1
2

x(0)T (In +Ŵ )−1x(0)+
1
2

1T
n (In +Ŵ )−11n.

The remainder of the reformulation follows directly from
Lemma 4. �

Remark 1. The main improvement of formulation (P1) over
(P0) is that instead of

T

∑
k=0

x(k)T x(k)+u(k)T u(k),

we now have an explicit quadratic objective function which is
independence of time horizon, and show an explicit relation be-
tween the objective function and the γis. Further note that each
term of the objective function is a matrix fractional function.
For a function f : Rn×Sn→ R, defined as

f (x,Y ) = xTY−1x
is convex on dom f = Rn × Sn

++ (See, Example 3.4, Boyd
[2009]). However, the problem P1 is hard combinatorial prob-
lem because the constrain on γi contains the l0 norm. In recent
years, some heuristic methods have been proposed to replace l0
norm to other norm like l1 norm. Note that (In−Ŵ 2)−1, (In +
Ŵ 2)−1 and (In−Ŵ )−1 are positive definite matrix. Therefore,
we can relax the problem P1 to a convex optimization problem
by using the reweighed l1 norm, which are discussed in the
subsection.

3.2 Sub-optimal nodes selection algorithm

For large scale networks, the combinatorial problem P1 be-
comes computationally infeasible since it should check all pos-
sible nodes selection strategies satisfying the constraints. In this
subsection, we relax the problem P1 to a convex optimization
problem, where the solutions are suboptimal but computation-
ally feasible.

In recent years, some technique on replacing l0 norm with l1
norm are proposed, see Candes et al. [2008]. To avoid the
main drawback that the larger numbers in l1 are penalized
much more than in l0, we replace l0 norm by a weighted l1
norm which is similar to the work by Mo et al. [2011]. Using
all the previous results, we propose this algorithm to solve
the suboptimal problem P′1 relaxed by the problem P1. The
algorithm is composed of 4 steps:

1: Initialization: l = 0, wi(0) = 1 f or i = 1, . . . ,n.
2: Solve the weighted l1 minimization problem:

(P′1) : min
Γ

x(0)T (In−Ŵ 2)−1x(0) (13)

+
1
2
(x(0)+1n)

T (In−Ŵ )−1(x(0)+1n)

− 1
2

x(0)T (In−Ŵ )−1x(0)− 1
2

1T
n (In−Ŵ )−11n

− 1
2
(x(0)+1n)

T (In +Ŵ )−1(x(0)+1n)

+
1
2

x(0)T (In +Ŵ )−1x(0)+
1
2

1T
n (In +Ŵ )−11n

+ c21T
n [T In−Ŵ −2(T −2)Ŵ 2 +(T −2)Ŵ 4]1n

+u(0)T (In−Ŵ 2)−1u(0)

s.t. Γ1≤ q,

γi ≥ wl
i(1−||(Ŵ )i||1), i = 1, · · · ,n.

Let the solution be γ1(l), . . . ,γn(l).
3: Update the weights:

wi(l +1) = 1
γi(l)+δ

, δ > 0.
4: Terminate if either l reaches a specified maximum number

of iterations lmax or the solution has converged. Otherwise,
increase l and return to step 2.
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Fig. 1. The network cost J? and the settling time k? as functions
of the degree of control node. Here, p = 1.

Remark 2. In real applications, we do not need a very accurate
solution because we will threshold γi and make it binary.
Usually the problem take less number of reweightings for the
solution to converge. Since a function is convex if and only if
its epigraph is a convex set Boyd [2009], we can represent the
problem P′1 as a series of LMIs form, which can be solved by
many methods, for example, interior point and steepest descent
method.

4. NUMERICAL EXAMPLES

In this section, we investigate the efficiency of the proposed
strategy for control nodes selection problem. Let us assume that
only p < n nodes are selected to add control at each time step.
Throughout this section, we consider an undirected network
with n = 20 nodes. Its second largest eigenvalue λ2(W ) =
0.9129. For the simulations, we impose l = 0.05, c = [3,2]T .

In the case of p = 1, by solving the problem P′1, we find that
the control node with lowest degree leads to minimal cost.
We arrange nodes in increasing order of degree. In the sim-
ulations, we let the settling time be the minimal k satisfy-
ing 1

n ∑
n
i=1 |xi(k)− c|2 ≤ 10−5. Define J? as ∑

4000
k=0 x(k)T x(k)+

u(k)T u(k). Figure 1 shows the cost varying with node degree
over window size T = 4000. Obviously, controlling those nodes
with lower degree leads to less cost. In contrary, controlling
the node with lower degree requires longer convergence time.
It implies that a tradeoff exists between the network cost and
convergence time. This result provides us an effective method
to select control nodes to achieve the goal.

Further, we show the gap between the random selection strategy
and the proposed selection strategy. In the simulations, we
compute the cost of both strategies over the window size T =
4000 for different p. Note that the constraint in the problem
P′1 is changed to Γ1 = q. As Figure 2 shows the cost gap
decreases with the increasing of number of control nodes. The
heuristic reason is that, the convergence speed increases with
the increasing of number of control nodes. After all the nodes
reach the target state, the cost equals to n||c||22, which means
that the gap accumulates during a short time horizon. On the
other side, when p increases, the probabilistic of selecting those
optimal control nodes increases as well in the random strategy.
Thus, when p = n, the cost gap decreases to zero.

1 2 3 4 5 6 7 8 9 10
0

5%

10%

15%

20%

25%

30%

35%

40%

45%

number of controlled nodes

co
st

 g
a

p

Fig. 2. Average cost gap of the proposed suboptimal strategy
and the random strategy.

5. CONCLUSIONS

In this paper, we considered control nodes selection problem
with the goal of minimizing network cost in a resource limited
multi-agent system. We transformed the problem to a combina-
torial optimization problem, and further reformulated it using
a convex relaxation based on a reweighed l1 approximation.
The simulation results verify the effectiveness of the proposed
suboptimal algorithm, and also show that, the node with lower
degree leads to less network cost and longer convergence time,
which provides a method to help us select the control nodes in
real applications. In a counterpart work, we further discuss the
control nodes selection problem in switched nodes case.
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