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Abstract. This paper presents an exponentially stabilizing boundary control for the microvia fill process. 
The control accounts for the mass balance of the copper ions in the electrolyte and for the surface mass 
balance of the deposition-blocking additives, both modeled with a diffusion mass transfer model in a 
shape changing domain. With simulations based on real-world data, it is shown that by applying the 
control, the microvia fill process can be speeded up (in the example case by ca. 15%) without 
endangering product output quality.  
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1. INTRODUCTION 

Multilayered printed circuit boards are basic building 
elements of microelectronic devices. They enable packing the 
electronic components of the device within a significantly 
smaller footprint than if only a single-layer board was used. 
Microvia filling, a process in which the interconnections 
between adjacent circuit layers are formed, is a key step in 
the series of sub-processes required in manufacturing of 
multilayered boards. The microvia fill process takes place in 
an electrolytic copper plating bath, where the copper plating 
rate at different sites of the board is significantly affected by 
surfactant chemicals (additives) added in the bath. To control 
the process in practice, the cell current is adjusted and a 
compromise between the production speed and product 
quality has to be made. Production speed increases as the cell 
current is increased but this also increases the risk depleting 
the electrode of copper ions, which would deteriorate product 
quality. This paper presents one approach to solve the said 
conflict of interests by controlling the cell current based on 
the copper ion concentration on the plated board surface. 

Significant research efforts related to the copper 
electroplating process with additives have been carried out by 
Moffat et al. (2001-2007), Josell et al. (2007), Wheeler et al. 
(2003), Dow et al. (2003-2008), Andricacos et al. (1998), 
Vereecken et al. (2005), West et al. (2000-2001), Cao et al. 
(2001), as well as others. The referred work mainly focused 
on developing several fill process models in the sub-micron 
(integrated chip) scale. A model of microvia filling, used in 
the current work, was developed by Pohjoranta and Tenno, 
(2007-2011), and preliminary work on the process control 
algorithm has been carried out by Tenno (2012) and Tenno 
and Pohjoranta (2012). 

2. THE MICROVIA FILL PROCESS MODEL 

For brevity, explanations of most parameters and symbols are 
omitted from the text and, instead, gathered in Appendix A, 
Tables 1-2, respectively.  

The electrochemical system The copper electrolysis system 
model builds on the Cu/Cu2+ electrochemical reaction whose 
rate is considered directly proportional to the current density 

ci (A/m2) on the cathode surface where the reaction takes 

place. The current density is given by the Butler-Volmer 
equation (1), as a function of the electrode overpotential η 
(V) and the activity of the reacting species aa (anodic) and 

ca (cathodic, no dim.)  

 0
a ck k

c a a c ci i a e a e        (1) 

The coefficients a , c  in (1) are used to implement the 

effects of the surfactant chemicals on the rate of the copper 
reduction reaction. In our case only c , i.e., the term 

affecting the cathodic reaction is essential, and the oxidation 
reaction is not considered ( 1a  ). The activity ac can be 

expressed through the copper ion concentration as described 
in Pohjoranta and Tenno (2007).  

The mass transfer of species within the diffusion layer (i.e. a 
bounded domain 3R with smooth Lipschitz boundary in 
the electrolyte and at the cathode surface) is described by (2).  

 i
i i

c
D c

t


  


    (2)  

The considered species i include the Cu2+ ion as well as the 
additive species (suppressor, accelerator, leveler), which are 
not charged. It is considered that due to the continuous 
agitation of the microvia fill bath electrolyte, species’ 
concentration in the bulk of the bath have a constant bulk 
concentration ,i i bulkc c  at bulk , and the mass transfer has 

to be modeled explicitly only within a thin layer of 
electrolyte (the diffusion layer) close to the electrode surface 
where diffusion is assumed to dominate species’ mass 
transfer.  
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The initial conditions for (2) is ,i i bulkc c , i.e. species are in 

their bulk concentration. The mass flux of the plated Cu2+ 

ions and the current density over cathode boundary are 
coupled by (3).  

 2 Cu Cu cF D c i  n    (3) 

The boundary condition on the cathode boundary for the 
additives (i = [supp, acc, lev]) is taken as the first order 
consumption reaction at the cathode boundary.  

  cons
i i i iD c k c  n    (4) 

Constant concentration ,i i bulkc c  at the bulk solution 

boundary and zero flux (symmetry) conditions are assumed 
on other boundaries for all species.  

The additives affect the via-fill process in proportion to their 
surface concentration  i  on the cathode surface. The surface 

concentration normalised with its maximum value max
i  to 

obtain the surface coverage max/i i i    , whose behaviour is 

modelled with equation (5).  

      2
T T , T

i
i T i s i i

ads des cons
i i i

D
t

                                                  N N N

   
          


 

v n v n
  (5) 

The boundary conditions for (5) are point conditions (in a 2D 
model) and a symmetry condition was used in this work. 

Equation (5) accounts for changes in the surfactant’s surface 
coverage i  due to the following phenomena (from left to 

right, on the right-hand side of (5)): 

(i) surface deformation in the surface tangential direction 
(i.e. for surface stretching and compression) 

(ii) surface deformation due to the movement of a curved 
surface in its normal direction 

(iii) diffusion of the surfactant along the surface due to a 
surface concentration gradient 

(iv) other processes such as adsorption, desorption and 
consumption are collected in the source terms p

iN  

Several formulations for the adsorption and desorption as 
well as consumption processes are given in the literature 
Moffat et al. (2004), Wheeler et al. (2003), Dow et al. (2008),  
West et al. (2000), and the most appropriate formulation 
depends on the chemical system in question. In this work, 
equations (6)-(9) are used for the adsorption (ads), desorption 
(des) and consumption (cons) of the additives. 

 1ads ads
supp supp supp acc suppN k c       (6) 

 1ads ads
i i i iN k c      (7) 

des des
i i iN k      (8) 

max

cons
cons i
i i

i

k
N 


    (9) 

Initially, the surface coverage of the accelerator and the 
leveler are small (0, ) 1acc   , (0, ) 1lev    but the coverage 

of the suppressor is high (0, ) 1supp   .  

The coupling of the copper plating current and the surfactant 
additives’ coverage is made through the coefficient  

  1 1c supp lev     in (1) which therefore represents the 

additives’ blocking effect on the copper reduction rate.  

The domain and boundary shaping In electrodeposition, the 
cathode surface moves as metallic copper is deposited, which 
means that the involved species’ diffusion path length 
changes locally during the process. Furthermore, the 
surfactants’ effect on the deposition rate in feature filling 
processes has been shown to be related to the electrode 
surface curvature by Moffat et al. (2004). The electrode 
surface movement must thus be included in the via fill 
process by a means that effectively alters the geometry of the 
modeled domain during the computation. In this work, the 
arbitrary Lagrange-Eulerian (ALE) method was utilized. The 
ALE method is a node tracking method, where the shape of 
the modeling domain is tracked explicitly. Tracking of the 
deforming domain is based on creating a mapping between 
the deformed and a reference (fixed) coordinate system. The 
mapping is obtained as the deformation gradient /  F x X , 
where x  and X  are the location in the deformed and in the 
reference coordinate systems, respectively. To carry out 
calculations of phenomena that occur in the deformed 
domain, their describing equations are transformed back to 
the reference system by using the inverse 1F of the 
deformation gradient.  

The node points of the deformed mesh ( )x  are obtained by 

integrating the mesh velocity v in time, with the initial 
condition x X . The mesh velocity v is obtained by solving 
the Laplace equation  

2 0 v     (10) 

for velocity v as part of the entire equation system (a.k.a. 
Laplace smoothing). The determinant det( )F yields the 

scaling factor between the two coordinate systems, which 
scales the infinitesimal integration element used in solving 
the electrochemical system (1)-(9). 

The coupling between the ALE solution and the 
electrochemical part is formed by the electrode boundary 
velocity, which is given as boundary condition for (10). The 
electrode boundary moves due to the growth of the deposited 
copper layer and the movement velocity in the boundary 
normal direction is thus given by 

2
Cu

c
Cu

M
i

F
 v n .    (11) 

Other boundaries move with the same velocity as the flat 
cathode surface. Further information of the ALE system 
implementation is given in Pohjoranta and Tenno (2011). 
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( , , )b bt x y

3. THE PROCESS CONTROL 

The main goal of the microvia fill process control is to 
maximize production while retaining product quality, with a 
set of process and product parameters being given. It is 
anticipated, that the case-specific maximal plating rate is 
obtained when the copper ion concentration at the cathode 
surface is driven to such a level that mass transfer of the 
copper ions to the cathode is maximized but the surface is 
still not depleted of copper ions. If depletion would occur, 
product quality would deteriorate. Although the control 
problem is a maximization problem with constraints, a 
simpler regulation problem is solved in practice.  

The plating process control is implemented by adjusting the 
cell current. However, the microvias form only a fraction of 
the whole plated board surface area and therefore the cell 
current essentially corresponds to the plating rate on the flat 
surface of the board. Although the current density inside the 
vias is high due to the additives, only a small fraction of the 
overall cell current goes through the vias and so the control 
signal (cell current density) can be computed in a single, 
representative point on the flat board surface. The aim is to 
obtain such a cell current that the copper concentration on the 
flat surface is preserved at a desired (as low as possible) level 
without causing depletion of Cu2+ ions inside the via. 

The control target To re-cap, the goal of the control is to 
bring the (unobserved) boundary concentration ( ,0)c t  of 

copper ions at the cathode surface to level dc  which is as low 

as possible to maximize mass transfer of copper to the 
cathode without running to depletion ( ( , ) 0c t x  ). The target 

concentration cd is given as a constant, which simplifies the 
control problem. From here on, the control problem is 
considered in a single dimension and formulated as the 
following diffusion process boundary control problem.  

(0, ) bc x c     (12) 

2

2

( , ) ( , )c t x c t x
D

t x

 


 
       0    0x t    (13) 

0

( )( , )
( )

2
c

x

i tc t x
D u t

x F


 


   (14) 

( , ) bc t c      (15) 

Furthermore, only the copper ion is considered in the control 
model and therefore, the species’ subscripts are omitted. 

The boundary control It is simple to prove that the 
proportional control (16)  

 ( ) ( ,0)P du t K c t c       (16) 

brings the copper ion concentration in (12)-(15) close to the 
desired level dc . The bigger the control gain PK  is, the closer 

and faster the controlled concentration comes to the desired 
level dc . However, such a proportional control leaves a static 

control error, which can be removed entirely if the target 
concentration is scaled (to a lower value) by (17). Since the 

static error 0
dc is known and constant it can be removed 

effectively without integration of control errors. 

  0( ,0) d b d d
P

D
c t c c c c

D K 
   


   (17) 

The obtained control is an exponentially stabilizing feedback 
control.  

The control mapping The relations between the microvia fill 
process and the control are sketched in Fig. 1 The control is 
computed by (16) as ( ) ( , , )bx byu t u t p p  in a representative 

point ( , )bx byp p on the flat board surface and scaled to obtain 

the current density ( ) 2 ( )i t Fu t . Then the control is applied 

point-wise in the control model to find the required electrode 
overpotential ( , , )b bt x y  on the cathode boundary by solving 

the Butler-Volmer equation (1). Then, the found 
overpotential is used to calculate (with (1)) the current 
density distribution ( , , )b bi t x y  over the whole cathode, 

including inside the via, the current density obtained so is 
finally used for validating the control signal ( , , )bx byu t p p . 

The last part of the state-to-control mapping must include all 
mass transfer and shape evolution processes and should be 
implemented in dimensions higher than one, at least in two 
dimensions as was also done in this study.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 1. The state-to-control mapping, where (xb, yb) is any  point on 
the cathode surface and (xbx, yby) is the reference point on flat 
cathode surface.  
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Appendix A. TABLES 

Table 1. List of parameter values 

Symbol Cu2+ Supp Acc  

,i bc  755 0.005 0.01 mol/m3 

dc  600   mol/m3 

iD  7×10-5e-0.001c   m2/s 

,s iD   759 10  64 10  m2/s 

max
i   644 10  62 10  mol/m2 
ads
ik   4083 35 m3 /mol/s 
des
ik   0.001 1.0 1/s 
cons
ik   596 10  56 10  m/s 

 21 A/m2 

,  0.232          0.170 – 

  410  m 
 

Table 2. List of symbols 

Symbol Description Unit 

,  
Activity of Cu2+ ion toward the 
anodic or cathodic direction, 
Pohjoranta and Tenno (2007) 

– 

,  
Apparent transfer coefficient for the  
anodic and cathodic reactions 

– 

Copper(II) ion concentration mol/m3 
 Concentration of species  mol/m3

.  Bulk concentration of species  mol/m3

Diffusivity of the Cu2+ ion m2/s 
 Diffusivity of species	  m2/s 

,  Surface diffusivity of additives	  m2/s 

 
Thickness of the diffusion layer on 
the board 

m 

 Surface overpotential at electrode V 
 Faraday’s constant, 96485 As/mol 
 Deformation strain gradient – 

Γ  
Γ  

Surface concentration of additives  
and its maximum value 

mol/m2 

 Cathodic current density A/m2 

 Exchange current density A/m2 

PK  Control gain m/s 

 Shorthand for 2F/R/T, 77.85 1/V 
 Copper atomic weight g/mol 

Surfactants blocking effect – 

 
Surface mass transfer flux of 
additives  due to process  

mol/m2/s 

 Boundary outward normal vector – 
Ideal gas coefficient, 8.314 J/mol/K 

 Copper density  kg/m3

 Temperature K 
Surface coverage of additives 	  – 
Boundary control mol/m2/s 

 Mesh movement velocity (vector) m/s 
x Location in 1D model m 

,  
Location at deformed and reference 
coordinate systems 

m 

 
Surface tangential differential 
operator 

– 
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