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Abstract: The use of Long Baseline (LBL) systems is quite consolidated in the underwater domain, 

especially within applications where it is important to precisely localize submerged devices close to the 

sea bottom. Indeed with a LBL acoustic array the nominal positioning accuracy for seabed applications 

results to be not dependent on the depth and almost constant at any point inside the area delimited by the 

transponders. Despite the above advantages, the achievable accuracy of LBL systems is actually affected 

by different factors, mainly related with technical limits of the used instruments and with the level of 

knowledge of the physical characteristics of the acoustic medium. Another important element, possibly 

reducing the precision, concerns the way the LBL system is operated, and is related with the calibration 

of the acoustic array after its deployment on the sea bottom. Indeed if the positions of all the transponders 

are not perfectly known, errors in the localization procedure unavoidably arise. The paper specifically 

focuses on this last aspect and investigates the linkage existing between the error on the position of 

transponders and the resulting error in the localization procedure. A detailed theoretical analysis of the 

problem is proposed and for some basic transponders geometries a closed form relationship is obtained. 

Some simulations are finally reported to support the achieved results. 
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1. INTRODUCTION 

A Long Baseline (LBL) system is a positioning system 

constituted by an array of transponders, in fixed known 

positions, that can exchange signals with the object to be 

localized. The estimation of the object position is obtained 

through the measurements of the Time-of-Flights (ToFs) of 

the exchanged signals. 

The use of ToF measurements for localization is not a new 

concept. Several applications can be found in literature, as for 

example Lange and Seitz (2001), Chandrasekhar et al. 

(2006), Lanzisera et al. (2006). Existing techniques are 

typically based on the following dual-step procedure: first, 

each ToF is simply transformed into the corresponding 

distance (or range), by taking into account the speed of 

propagation of the signals in the considered medium; then, if 

a sufficient number of range estimations is available, the 

localization problem is solved by applying a standard 

trilateration-based algorithm as in Manolakis (1996). Within 

terrestrial applications, the use of such a strategy is well 

consolidated and is normally employed, for example, by GPS 

receivers, processing the ToFs of radio signals received by a 

proper set of satellites. 

Conversely, in the underwater domain, the application of the 

above methodology is not as straightforward because of the 

impossibility of exploiting electromagnetic signals in water 

as they suffer from strong absorption effects which almost 

totally prevent their employment. Therefore the use of 

acoustic signals is the only viable solution. However different 

issues are known to affect the underwater acoustic channel, 

as indicated, among the others, by Milne (1983) and Jensen et 

al. (1994). The main source of problems within underwater 

localization is the anisotropy of the acoustic medium, which 

makes the speed of sound (SoS) in water a not constant 

parameter, as it is actually dependent on the physical 

characteristics of the considered zone. As a consequence, ray 

bending phenomena arise and multi-path effects become 

more crucial. 

The above problems certainly represent the more serious 

limiting factors in the achievable accuracy of any ToF-based 

localization technique, as indicated by several works, among 

which Chandrasekhar and al. (2006), Caiti et al. (2005) and 

Kussat and al. (2005). However, together with the limitations 

induced by the physics of the underwater acoustic medium, 

another factor, impacting on the accuracy of LBL-based 

localization, is represented by the calibration of the acoustic 

array after its deployment. Indeed if the positions of all the 

transponders are not perfectly known, errors in the 

localization procedure unavoidably arise. 

To avoid such a risk, within the off-shore industry, for long-

term seabed applications, where a high level of accuracy in 

positioning submerged devices is requested, sophisticated 

and costly instruments are normally used together with 

consolidated calibration procedures.  

Unfortunately the same cannot be stated for shallow water 

shorter–term operations, like the survey-oriented missions 

often performed by low-cost autonomous underwater 

vehicles (AUVs), like the FOLAGA available at the authors’ 
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research group and described in Alvarez et al. (2009). For 

such a kind of applications, very frequently the GPS position 

of the supporting boat, registered at the point where the 

transponder is dropped down, is considered the transponder 

position. Sometimes the localization errors occurred during 

the survey can be mitigated by post-processing the acquired 

mission data. But in any case, very often, calibration errors 

are considered negligible by definition. Despite such a 

consideration can be reasonable in various situations, 

quantitative indications about the real impact of a non precise 

calibration process on the resulting localization errors are, at 

the best of authors’ knowledge, still lacking in literature.  

Moving from such a consideration, the authors propose a 

detailed analysis of the errors induced by a wrongly 

calibrated acoustic array. All the other possible sources of 

localization errors are here purposely neglected, in order to 

isolate the addressed phenomenon. The effects induced by the 

way acoustic signals propagate underwater were the subject 

of other dedicated works, as in Turetta et al. (2011) and 

Casalino et al. (2010), and are here not taken into account at 

all. For the same motivations, all the electric, human-induced 

and environmental possible sources of noise are them also not 

considered hereafter. And the same is true also for the 

quantization errors induced by the signal processing in charge 

of detecting the presence of an incoming acoustic pulse and 

measuring its ToF.  

In conclusions, in the following analysis, acoustic signals are 

assumed to move at a constant and perfectly known SoS, 

along straight path and in an ideal, noiseless, environment. 

Further, the used instruments are them also considered as 

ideally perfect, as they are capable of measuring all the ToFs 

with infinite resolution and precision. Moving from such 

premises, the work starts by introducing the algorithm used 

for the localization process in the absence of transponder 

positioning errors. Successively the transponder errors are 

introduced and the closed form for the resulting localization 

error is obtained. Then the different parameters related with 

the localization error are analyzed in details. Simulative 

results validate the theoretical analysis carried out and finally 

some conclusions on the performed activities are drawn.  

2. SOLUTION IN THE ABSENCE OF ERROR SOURCES 

The most used algorithm for localizing an AUV through a 

LBL system is the spherical-based one. According to that, 

first the measured ToF from the i-th transponder (ti) is 

translated by the AUV into an estimation of its distance from 

the same transponder (di), by considering the SoS (v). 

nivtd ii ,..,1       ;      ˆ   (1) 

 
being n the number of transponders.  

Then by defining (x,y,z) the coordinates of the AUV w.r.t. to 

a given Cartesian frame and (xi, yi, zi) the coordinates of the i-

th transponder, the following relationships can be formulated:  

 nidzzyyxx iiii 1,...,   ;   )()()(
2222   (2) 

 

each one of them clearly stating that the AUV is located on 

the surface of a sphere centred in the corresponding 

transponder position and with radius equal to di. 

Now, by considering known the AUV z coordinate (as it is 

given from an onboard sensor like a pressure gauge or an 

altimeter) and by assuming that (as it often happens) all the 

transponders are deployed at the same depth (z1=z2=…=zn), 

the original 3D problem can be reduced to a 2D one (for the 

unknown x and y), consisting in finding out the intersecting 

point of the set of circumferences obtained by intersecting the 

above spheres with the horizontal plane at the known depth 

of the AUV:   

 niryyxx iii 1,...,       ;      )()(
222   (3) 

 

where the term  

 nizzdr iii 1,...,       ;    )( ˆ 
222

  (4) 

 

is obtained by the measured ToF and the known vertical 

distance between the AUV and the transponders. 

By now manipulating terms of (3) the following linear 

relationship can be obtained (in the case of n=4 transponders) 

for the 2D vector X = [x,y]T: 

 DRXA           (5) 
 

where: 
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the above equation can then be solved with a least squares 

method, giving the following estimated position TyxX ]ˆ,ˆ[ˆ  : 

 )()( ) (     ˆ #T1T DRADRAAAX    (7) 
 

where it is worth noticing that both A (and consequently A#) 

and D are constant terms that can be computed just once 

offline.  

 

Fig. 1 – squared configuration of transponders  
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Further, if the transponders are located in a rectangular 

configuration and if the coordinate system is selected with the 

origin in the center of the rectangle, it is easy to see that D 

vector is always null. Moreover, if the configuration is 

square, A matrix assumes a very simplified form. Indeed by 

numbering transponders as indicated in figure 1, it turns out 

that: 
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and consequently that: 
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In conclusion, in the above assumption of a squared 

configuration the solution of the localization procedure with 

the spherical based algorithm can be formulated in a closed 

form as follows: 
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being Ri the i-th term of vector R. 

Before concluding this section it is worth noticing that under 

the considered assumptions, the above solution results to be 

absolutely exact, as it can be verified by substituting into it 

the expressions of Ri: 

 

   

   

   

   
L

yyxxyyxx

L

yyxxyyxx
  y

L

yyxxyyxx

L

yyxxyyxx
 x

8

)()()()(
        

8

)()()()(
ˆ

8

)()()()(
      

8

)()()()(
   ˆ

2
2

2
2

2
1

2
1

2
3

2
3

2
4

2
4

2
1

2
1

2
4

2
4

2
2

2
2

2
3

2
3















 (11) 

 

that, after some math, leads to the expressions:  
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clearly showing how the estimated position is actually 

errorless. 

3. SOLUTION IN THE PRESENCE OF ERRORS IN THE 

TRANSPONDERS POSITIONING 

If the transponders are not deployed in their nominal position, 

errors in the localization procedure may arise. The problem is 

not originated by the presence of displacements between the 

desired and actual positions; whenever such displacements 

can be measured, it is obviously possible to compensate for 

them. Matrix A would not have the simplified form (8) and 

vector D would not be the null one; however, in the 

knowledge of the displacements, the same computation seen 

before, despite not anymore in its simplified form, can be still 

applied with no resulting errors.  

Problems rather occur if displacements exist but their 

existence is unknown. Indeed in such a scenario the 

localization procedure runs by assuming that transponders are 

in their nominal positions. However measured ToFs (and 

hence computed distances) are instead dependent on the 

actual positions of transponders. From this inconsistency, 

localization errors arise.  

In order to better characterize such errors, be dXi=[dxi,dyi]T 

the vector representing the difference between the nominal 

and the actual position of the i-th transponder. 

Now by referring with Ti=[xi ,yi]T the nominal position of the 

i-th transponder, the actual position Tai becomes: 

 ,...,nidXTT iiai 1         ;             (13) 

 

As a consequence the circumferences (3) now become: 

 nirdyyydxxx iiiii 1,...,  ;   )]([)]([
222   (14) 

 

Now as, by assumption, the existence of transponder 

displacements is unknown, A matrix (depending only on the 

nominal position of transponders), remains as in (6) as well 

as vector D. 

As a consequence (again under the assumption of a nominal 

squared configuration) the form of the solution is still (10) 

but now, by substituting into it the expressions of the new ri 

terms (14), it turns out that the estimated position becomes 

after some maths: 
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where it has been posed   
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Fig. 2 –Nominal positions (grey) and actual positions (cyan) 

of transponders in the presence of displacements  
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From (15) it is clear that in this case (as expected) an 

estimation error vector actually exists, as follows:  
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In order to make easier the analysis of the characteristics of e, 

it is convenient introducing the unit versors describing the 

directions from the origin to the nominal positions of 

transponders (see Fig.3): 
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By exploiting (21), the position estimation error (20) can be 

expressed in the following more compact form: 
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from which it emerges how the error vector e is actually the 

combination of four vectors, each one aligned with a unit 

versors ui. and with a coefficient i. For understanding the 

direction and the norm of the resulting error vector e, it is 

therefore necessary analyzing the nature of coefficients i. 

Each one of them is actually composed by three terms: 
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Fig. 3 – Unit versors ui. 

The impact of each term in the resulting error vector e can be 

appreciated by considering the orders of magnitudes of 

different quantities within a typical application: normally L is 

at least hundreds of meters, while idX  is expected to be at 

most few meters.  

 

Analysis of the errors due to ai  terms 

In the light of the last consideration, ai terms clearly play a 

very limited role, as their order of magnitude is the 

centimeter. Further, as their values are never negative and 

they combine along four orthogonal directions, it follows that 

what is relevant for the final error vector e is just the 

difference (if any) between the norms of dXi vectors. Indeed 

if the norms of the four transponder displacements are equal 

each other (despite the four dXi vectors might have different 

directions), the impact of ai terms on e is null. Actually for 

having a null contribution of ai terms, it is sufficient that:   
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Analysis of the errors due to bi  terms  
As it emerges from (22), bi terms are the only ones not 

dependent on the baseline. Indeed each one of them depends 

on the inner product between the corresponding dXi vector 

and the ui versor. Therefore also the directions of 

displacement vectors are relevant. In this light, the luckiest 

scenario (where every bi terms is null) is depicted in Figure 

4a. Further, analogously to what previously said for ai  terms, 

it is also possible to have non null bi terms, providing a null 

contribution to e as depicted in Figure 5b. Indeed: 

 0
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For given norms of displacement vectors dXi, the worst-case 

scenario (i.e. when the error contribution is bigger) is instead 

depicted in Fig. 5. It occurs when dX1 and dX3 lie along the 

direction of u1 (with the same orientation) and dX2 and dX4 lie 

along the direction of u2 (with the same orientation). In such 

a case (under the same assumptions than before) order of 

magnitude of the contribution of bi terms to e is the meter.  

 

 

    
     (a)                                           (b) 

Fig. 4 – Scenarios of null contribution provided by bi terms. 

a) every bi term is null, as every dXi vector is orthogonal to 

its corresponding ui; b) bi terms are not null but their resulting 

contribution to error vector e is null 
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Fig. 5 – Scenario of non null contribution provided by bi 

terms. The resulting vector is in bold. 

  

Analysis of the errors due to ci  terms  
Differing from what happen for ai and bi terms, the values of 

ci terms depend always on the AUV position. with the sole 

exception occurring in the unlikely case that dX1=dX3 and 

dX2=dX4. In such an extreme case (see Figure 6) it is easy to 

see that the overall contribution of ci terms is always zero, 

notwithstanding the AUV position. In all the other 

displacement vectors configurations, the contribution of ci 

terms to the overall error depends on the position of the AUV 

and might be null or not according to where the AUV is. The 

worst-case scenario (for given norms of displacement vectors 

dXi and given AUV distance from the origin X) occurs when 

all the five vectors are aligned each other and with directions 

as depicted in Figure 7: i.e. dX1 opposite to dX3 and dX2 

opposite to dX4. However it is worth noticing how, for the 

same configuration of dXi vectors, the contributions of ci 

terms to the overall error e assumes different values, 

depending on the position of the AUV in the plane (also if it 

maintains a constant distance from the origin). Indeed in the 

case of Figure 8 (obtained with the same dXi vectors than in 

Figure 7) as X vector is orthogonal to all dXi, the the resulting 

contribution to error e is null. Analogously, in all the other 

possible AUV positions, contributions intermediate values 

are clearly obtained. 

 

 
Fig. 6 – Null resulting contribution to the error e provided by 

ci terms 

 

As a final remark, note how the error contribution provided 

by ci terms, (for a given AUV direction) is linearly dependent 

with the ratio between the AUV distance from the center of 

the area and the baseline. Such a property provides an 

important operative indication: in order to minimize the 

localization errors induced by the uncertainties on the 

transponder positioning, transponders should be deployed as 

far each other as possible (compatibly with technological 

limitations of the device at hand), notwithstanding the size of 

the operative area of the AUV. 

 

 
Fig. 7 – Worst-case scenario for the error contribution 

provided by ci terms. The resulting vector is in bold.. 

 

 
Fig. 8 – Same displacement vectors as in Figure 7 but null 

error contribution provided by ci terms  

 

 

4. SIMULATIVE RESULTS 

In order to validate the above analysis, some simulative tests 

have been carried out with Matlab Simulink®.  

In all of them the AUV has been moved on a horizontal plan, 

making it follow a spiralled path, starting from the origin and 

moving outwards and reaching a distance from it higher than 

one kilometre, as represented in Figure 9. 

 

 
Fig. 9 –AUV simulated motion (meters) 

 

Four transponders are located 50 meters deeper than the AUV 

in a squared nominal configuration. For every test two 

baselines have been considered, namely 400 and 800 meters 

(i.e. L=200, L=400 respectively). The quantization effects 

related with the ToF measurements have been neglected, by 

assuming onboard the AUV the presence of an ideal signal 

processing functionality with an infinite resolution. Finally 

the assumed speed of sound in all the tests was 1500 m/s. 

In the first set the transponders displacements error vectors 

have been selected as: dX1=[1m, -1m]T; dX2=[1m, -1m]T; 

dX3=[-1m, 1m]T; dX4 =[-1m, 1m]T. In this way, as the left 
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sides of relationships (23) and (24) are both satisfied, the 

contributions of ai terms and bi terms are null. As a 

consequence in this configuration the whole error e is 

originated by ci terms only. The variation of the norm of the 

error vector as dependent on the norm of the AUV vector X 

can be appreciated in Figure 10. 

 

  
Fig. 10 – Time behaviour of the norm of e in meters (blue) 

and the norm of the X in hundreds of meters (red) 

 

Once emphasized the role of ci terms, in order to show the 

effects of bi terms, the transponders displacements error 

vectors have been selected as dX1 =[1m, -1m]T; dX2 =[1m, 

-1m]T;  dX3 =[1m, -1m]T; dX4 =[1m, -1m]T which allow to 

have zero contribution from both ai and ci terms. As expected 

(see Figure 11) the norm of the error vector is constant and 

not dependent on the AUV position, nor on the baseline. 

 

  
Fig. 11 – Time behaviour of the norm of e in meters (blue) 

and the norm of X in hundreds of meters (red) 

 

As the final considered scenario, the following intermediate 

case was selected dX1 =[1m, -1m]T;  dX2 =[1m, -1m]T; dX3 

=[1m, -1m]T; dX4 =[-1m, 1m]T where both contribution of bi 

and ci terms are present. Results are clearly consistent with 

expectations: there is a variation in the error norm depending 

on the AUV distance combined with a constant offset. It is 

also interesting noticing how the increment of the baseline 

reduces just the oscillations but not the offset, as it is given to 

bi terms which are not dependent on the baseline. 

 

  
Fig. 14 – Time behaviour of the norm of e in meters (blue) 

and the norm of X in hundreds of meters (red) 

5. CONCLUSIONS 

The effects of a non precise knowledge of the transponders 

positions on the resulting accuracy of a LBL system have 

been investigated and analyzed in details. Other than clearly 

depending on the existing displacements between the nominal 

and actual position of transponders, localization errors came 

out to be linearly dependent also on the ratio between the size 

of the baseline and the distance of the object to be localized 

from the center of the operative area. A fact this last that 

provides an important operative indication, especially useful 

when the LBL system is employed for localizing low-cost 

AUVs within short-term missions: transponders should be 

always deployed as far each other as possible (compatibly 

with technological limitations of the device at hand), 

notwithstanding the size of the operative area of the AUV.       
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