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Abstract: Energy efficiency is firstly considered into the control of overhead cranes. Based on
the model of crane system, energy consumption as well as operational safety is formulated in an
optimal control problem. The optimal control is used to search optimal trajectories of velocity
and acceleration for minimizing energy consumption. Existing related work mainly focused on
reducing transportation time and swing, but trajectory in this paper focuses on increasing energy
efficiency of transportation while satisfying practical and physical constraints. Model predictive
control (MPC) is then proposed to track optimal trajectories in real-time. As a result, the actual
trajectories can match the reference trajectories with small errors when external disturbances
exist. In the simulation, it can be shown that the proposed control approach can improve energy
efficiency of overhead cranes robustly.
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1. INTRODUCTION

Due to high payload capacity, good operational flexibil-
ity and transportation efficiency, overhead cranes have
been widely used in many industrial fields, such as sea
ports, construction sites, manufacturing plants and facto-
ries (Peng et al., 2012; Ngo and Hong, 2012). Regardless
of the type of overhead crane, each crane always has a
similar fundamental structure that can be described as a
trolley-pendulum system, that consists of a trolley, a sup-
porting frame and a rope connecting the trolley with the
payload. The crane system has one control input (trolley’s
actuating force) and two system variables to be controlled
(trolley’s position and payload’s swing angle). It is difficult
to control this so-called underactuated mechanical system
that has fewer independent control inputs than degrees
of freedom. Therefore, the automatic control of crane has
attracted much interest from researchers in areas of me-
chanics and control.

Under the assumption of small payload swing, the nonlin-
ear model of crane can be linearized around its equilibrium
points, and then linear control approaches can be used on
the simplified linear system. Many linear control methods
have been applied to overhead cranes, including feedback
control (Hekman and Singhose, 2006), input shaping (feed-
forward control) (Singhose et al., 2000; Garrido et al.,
2008), optimal control (Moon et al., 1996; Piazzi and
Visioli, 2002; Terashima et al., 2007). Time efficiency is the
main objective of crane control that is usually considered
in previous work (Chang and Wijaya Lie, 2012; Sun et al.,
2012a). In Moon et al. (1996), time optimal control the-
ory has been evaluated on the bang-bang control system
of cranes. In Piazzi and Visioli (2002); Terashima et al.
(2007), time optimal trajectories have been designed for
continuous system of cranes subject to the swing con-
straint.

Two important issues have been neglected, i.e., energy effi-
ciency and safety, which turn out to be significantly urgent
when a large number of cranes have been equipped in some
international industrial fields. To the best of our knowl-
edge, little work has been done to minimize the swing risk
while most work only considered the swing as a constraint
of the control problem. The total energy consumption,
has seldom been optimized in crane control, because the
relation between energy consumption and control sequence
is still vague. In this paper, energy efficiency as well as
safety will be considered in the proposed control approach,
that includes trajectory planning and tracking. Optimal
trajectories in terms of energy efficiency and safety are
planned by the optimal control method. As references,
these optimal trajectories will be tracked in real time by
model predictive control (MPC).

The reminder of this paper is organized as follows. Section
2 presents the dynamic model of overhead cranes. The
discrete-time model is deduced in Section 3. Section 4
illustrates our control approach. Section 5 shows results
of numerical simulation. Conclusion is given at last.

2. DYNAMIC MODEL OF OVERHEAD CRANES

The structure of an overhead crane can be illustrated
as shown in Figure 1, where the trolley moves on the
horizontal bridge and the payload is connected with a
constant-length rope. x(t), θ(t) and F (t) denote the trol-
ley’s position, the payload’s swing angle and overall force
on the trolley respectively. In this paper, air resistance as
well as stiffness and mass of the rope is neglected and the
load is considered as a point mass. Moreover, as this study
only focuses on the control of horizontal transportation,
hoisting and lowering of payload are not considered. Then
the overhead crane system with constant rope length can
be described as follows:

(M +m) ẍ+ml cos θθ̈ −ml sin θθ̇2 = F, (1)
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ml2θ̈ +ml cos θẍ+mgl sin θ = 0, (2)

where M and m denote masses of the trolley and the
payload, respectively. l is the length of the rope; g is the
gravitational acceleration. The overall force F is composed
of the actuating force Fa and the friction Fr as

F = Fa − Fr, (3)

Fr ∝ (M +m)g, (4)

Motivated by the friction models in Makkar et al. (2007);
Sun et al. (2012b), this paper employs the friction model
as

Fr = (kr1 tanh ẋ/ξ + kr2|ẋ|ẋ)(M +m)g, (5)

where kr1, kr2 and ξ are friction-related coefficients that
can be determined by offline regression of historical data.

The crane dynamics consist of the actuated part (Eq. (1))
and the underactuated part (Eq. (2)). The latter part is
the system kinematics that defines the coupling behavior
between the trolley’s acceleration ẍ(t) and the payload’s
swing angle θ(t). The main difficulty in controlling the
overhead crane lies in handling of the coupling behavior
between the swing and horizontal motion. When the swing
angle is small enough (θ(t) < 5◦), the kinematic equation
(2) can be linearized with the approximations of cos θ ' 1
and sinθ ' θ. The approximated linear kinematics can be
obtained as

lθ̈ + ẍ+ gθ = 0. (6)



F

x

Trolley

Payload

Bridge

Fig. 1. Two-dimensional overhead crane system

In the evaluated time interval [0, T ], the crane is required
to arrive at the destination without residual swing. There-
fore, several principles must be satisfied according to the
physical and practical situations in crane control.

Principle 1 : The trolley reaches the desired location pd at
the end of the period. The final states must ensure that the
trolley is static with no swing and that it can be lowered
immediately as

x(T ) = pd, ẋ(t) = 0, θ(T ) = 0, θ̇(T ) = 0. (7)

Principle 2 : During the horizontal transportation, the
velocity and acceleration of the trolley must be limited
in certain ranges as{

0 ≤ ẋ(t) ≤ vm, t ≤ T
|ẍ(t)| ≤ am, t ≤ T , (8)

where vm and am are the permitted limits of velocity and
acceleration, respectively.

Principle 3 : The payload swing during the transportation
must be limited within a safe range as

|θ(t)| ≤ θm, t ≤ T, (9)

where θm is the permitted maximum of swing amplitude.

Principle 4 : The jerk (defined as the time derivative of
acceleration j(t) =

...
x (t)) must be limited to a reasonable

range to satisfy the mechanical constraint and to prolong
the motor’s lifetime.

|j(t)| ≤ jm, t ≤ T (10)

where jm is the permitted maximal jerk in the horizontal
transportation.

3. DISCRETE MODEL OF OVERHEAD CRANES

In our proposed approach, the sequence of control input is
[Fa(1), Fa(2), . . . , Fa(N)]T , where Fa(n) is the actuating
force at the nth sampling period and N is the total
number of samples in the planning period T . Therefore,
the continuous system need be discretized by a sampling
period t0. The discrete model of overhead cranes can be
formulated as Eq. (11) and (12).

(M +m) a(n)+ml cos θ(n)θ̈(n)−ml sin θ(n)θ̇(n)
2

= F (n),
(11)

lθ̈(n) + a(n) + gθ(n) = 0, (12)

where N = T/t0 and n = 1, . . . , N ; a(n) and F (n)
represent acceleration and overall force at the nth sample
respectively. θ(n), θ̇(n) and θ̈(n) are measured swing angle,
swing velocity and swing acceleration at the nth sample.
At the period [n−1, n), the overall force F (n) is composed
of the actuating force Fa(n) and the friction Fr(n) as

F (n) = Fa(n)− Fr(n), (13)

where the friction Fr(n) can be formulated similarly with
Eq. (5) as

Fr = [kr1 tanh ẋ(n)/ξ + kr2|ẋ(n)|ẋ(n)](M +m)g. (14)

In this discrete model, we denote the vector of acceleration
as a (a(n) = ∆2x(n)), and denote the vector of velocity
as v (v(n) = ∆x(n)). Suppose that the initial position is
x(0), the initial velocity is v(0), the initial acceleration is
a(0), the initial swing angle is θ(0), and the initial swing

velocity is θ̇(0). Given an vector of acceleration a , the
velocity v and the displacement x can be expressed as{

v = v0 + Aat20
x = x 0 + bv(0)t0 + Axat

2
0
, (15)

where

v0 = [

N︷ ︸︸ ︷
v(0), ..., v(0)]T , (16)

x 0 = [x(0), ..., x(0)]T , (17)

b = [1, 2, . . . , N ]T , (18)
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A =


1 0 0 . . . 0
1 1 0 . . . 0

1 1 1
. . . 0

...
...

...
. . .

...
1 1 1 . . . 1

 , (19)

Ax =


0.5 0 0 . . . 0
1.5 0.5 0 . . . 0

2.5 1.5 0.5
. . . 0

...
...

...
. . .

...
N − 0.5 N − 1.5 N − 2.5 . . . 0.5

 . (20)

According to initial states, the swing angle θθθ can be
formulated as

θθθ = θ(0) cos (bwnt0) +
θ̇(0)

wn
sin (bwnt0) +Aθat

2
0, (21)

where wn =
√
g/l is the natural frequency of system.

Note that sine and cosine functions are calculated on each
component of bwnt0. In Eq. (21) the first two components
at the right hand side is the initial-conditions response and
the third component is the forced response. Based on the
kinematic Eq. (12), the matrix Aθ can be formulated as

Aθ = −1

l
C−1

= −1

l



1 + gt0/l 0 0 . . . 0 0 0
−2 1 + gt0/l 0 . . . 0 0 0

1 −2 1 + gt0/l
. . . 0 0 0

0 . . .
. . .

. . .
. . .

. . .
...

0 . . .
. . .

. . . 1 −2 1 + gt0/l



−1

.

(22)

Note that the matrix C is non-singular. It can be noticed
in Eq. (15) and Eq. (21) that state variables are calculated
at the initial time. At the kth sample, calculations of future
states have similar expressions with Eq. (15) and Eq. (21),
which can be generalized as

[x(i), v(i), θ(i), θ̇(i)]T = g(i, [x(k), v(k), θ(k), θ̇(k)]T )
(23)

where k + 1 ≤ i ≤ N , x(k), v(k), θ(k) and θ̇(k) represent
current state variables.

Based on this discrete model, our control approach, in-
cluding trajectory planing and tracking, is proposed to
optimize energy efficiency of transportation. When the
profile of acceleration is planned, the profiles of velocity
and swing are determined. As a result, the actuating force
is determined according to Eq. (11),(13), and (14). In other
words, the profile of force can be represented with the
profile of acceleration using some simple transformations.

4. THE PROPOSED CONTROL APPROACH

Energy efficiency and safety have been considered in
our approach. This approach can be divided into two
steps, i.e. trajectory planning and tracking as shown in
Fig. 2. For trajectory planning, an objective function
is made to quantify energy efficiency and safety. The
optimal control theory is then employed to search an

optimal trajectory for minimizing the objective function.
For trajectory tracking, MPC is employed to control the
crane following the planned trajectory while satisfying all
practical constraints. Note that the horizon of MPC is
receded at each control period. The aim of tracking is to
minimize difference between the reference and predicted
trajectories over the future horizon.

4.1 Trajectory planning

Operational safety can be reflected by two metrics, i.e.
the maximal swing angle and the residual swing. After
integrating these two metrics, safety can be formulated as

J11(a) = α max
n∈{1,...,N}

θ(n) + (1− α)

N∑
n=N−Nr+1

θ(n)

Nr
(24)

where Nr is the number of samples considered in the
residual swing. The first component of the right-hand side
is the maximal swing angle, and the second component of
the right-hand side is the residual swing. The coefficient α
is used to integrate these two metrics. α is set to 0.5 in this
paper. Note that residual swing is defined as the average
swing angle during the final Nr · t0 period.

Within the planning period T , energy consumption for the
horizontal transportation can be calculated as

E =

∫ T

0

Pdt =

∫ T

0

Faẋdt (25)

where Fa is output force of the actuating motor, P is power
of the actuating motor, and E is energy consumption of
the motor. For the discrete system, energy consumption is
similarly formulated as

J12(a) =

N∑
n=1

Fa(n)v(n) =

N∑
n=1

[F (n) + Fr(n)]v(n) (26)

where the overall force F (n) is computed as Eq. (11), and
the friction Fr(n) can be computed as Eq. (14).

Therefore, the objective function for trajectory planning
will integrate safety and energy consumption as

J1(a) = βJ11 + (1− β)J12 (27)

where the integrating parameter β is set as 0.99 in this
paper.

By substituting v(n) and θ(n) with a(n) using Eq. (15) and
Eq. (21), the objective function can be expressed by the
acceleration a . Note that the profile of actuating force is
indirectly computed by the planned profile of acceleration
in this paper. The planned acceleration a is bounded in
the range [−am, am] as

a(n) ∈ [−am, am], n = 1, . . . , N. (28)

The constraints include the equality constraints, such as
terminate states of displacement, velocity and swing angle;
and also include the inequality constraints, such as limits
of velocity, swing angle and jerk. The set of constraints is
formulated as
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Fig. 2. Structure of the proposed control approach

C(k) :



−am ≤ a(n) ≤ am, n = k + 1, . . . , N
x(N) = xp
v(N) = 0
θ(N) = 0
θ(N − 1) = 0
0 ≤ v(n) ≤ vm, n = k + 1, . . . , N
|θ(n)| ≤ θm, n = k + 1, . . . , N
|a(n+ 1)− a(n)| ≤ jm, n = k + 1, . . . , N − 1
|a(1)| ≤ jm
|a(N)| ≤ jm

.

(29)
where C(k) represents the set of constraints over the
interval [k,N), k = 0, . . . , N − 1. Note that for trajectory
planning k = 0 and the required constraints are C(0).

When minimizing the objective function Eq. (27) under
the constraints C(0), the optimal profiles of acceleration,
velocity and force will be found. The trajectory obtained
is expected to have high degree of safety and low energy
consumption.

4.2 Trajectory tracking

In MPC, another objective function is required to evaluate
the error of tracking at each sampling instant. At the kth
sampling instant, the tracking error over the interval [k,N)
can be expressed as

J2 =

N∑
n=k+1

[v(n)− vr(n)]2 + γ

N∑
n=k+1

[
θ(n)− θr(n)

cos θr(n)
]2,

(30)
where k = 1, . . . , N − 1 is the current instant; vr(n) and
θr(n) are the references of velocity and swing angle; v(n)
and θ(n) are the predicted state variables of velocity and
swing angle. γ is the weighting parameter for integration.
The first component at the right hand side is the tracking
error of velocity, and the second component is the tracking
error of swing. The weight γ is set to 10 in this paper.

By substituting v(n) and θ(n) with a(n) using Eq. (23),
the objective function can be expressed by acceleration.
The acceleration a(n) must be bounded in [−am, am], and
the constraints in MPC are C(k).

In MPC, the optimal control problem in the horizon
[k,N) is repeatedly solved (k = 1, . . . , N − 1). Using the
optimal solution obtained, the input force is calculated and
applied to the system. The optimal control problem, say
the objective function and the set of constraints, has been
defined in Eq. (30) and (29). At the kth sample, an optimal
solution [a(k + 1), a(k + 2), . . . , a(N)]T can be obtained

after solving the optimal problem. Then the control input
[Fa(k+ 1), Fa(k+ 2), . . . , Fa(N)]T will be computed based
on the system model. Fa(k + 1) is applied to the system
in the period [k, k + 1). The procedure of MPC approach
can be illustrated as follows.

Set k = 0;
while k < N do

Measure current state variables x(k), v(k), θ(k), θ̇(k);
Solve the optimal control problem Eq. (30) subject to
Eq. (29);
For the optimal solution [a(k+1), a(k+2), . . . , a(N)]T ,
calculate the control input [Fa(k + 1), Fa(k +
2), . . . , Fa(N)]T ;
Apply Fa(k+ 1) to the system at the period [k, k+ 1);
k = k + 1;

end

Algorithm 1. MPC for trajectory tracking

It can be noticed that the reference trajectory designed
in the first step of planning is required in MPC. At
each sampling instant, the horizon of the optimal control
problem will be decreased by one. In each interval [k, k +
1), displacement, velocity, swing angle and swing velocity
are measured. If there is any disturbance in the previous
period [k − 1, k), the optimal MPC controller will make
the compensation and correction automatically. For this
reason, the closed-loop nature of MPC comes with an
inherent property of robustness.

5. NUMERICAL SIMULATION

The overhead crane system described in Sun et al. (2012a)
is used to test our proposed approach. The physical
parameters of the system are listed as follows

m = 1.025kg,M = 7kg, l = 0.75m, g = 9.8m/s2. (31)

The desired trolley location in simulation is set as pd =
1.5m, and the practical constraints are given as

vm = 0.4m/s, am = 0.2m/s2, θm = 5◦, jm = 2m/s3. (32)

The parameters for the friction model Eq. 5 are referred
from the results of offline regression in Sun et al. (2012b)
as

kr1 = 0.5483, ξ = 0.01, kr2 = 0.0623. (33)

Test 1: trajectory planning

The evaluated planning period T is 7s, and the sampling
period t0 is 0.1s. The duration of residual swing is defined
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Table 1. Comparisons of swing

Swing metrics Optimal trajectory Trajectory 1 Trajectory 2 Trajectory 3 Trajectory 4

Maximal swing (◦) 1.126 1.936 2.004 2.002 2.002

Residual swing (◦) 0.721 0.893 0.869 0.88 0.876

Average (◦) 0.923 1.414 1.436 1.440 1.439

Table 2. Comparisons of energy efficiency

Energy metrics Optimal trajectory Trajectory 1 Trajectory 2 Trajectory 3 Trajectory 4

Energy usage (J) 6.695 6.676 6.651 6.653 6.653

Peak power (W) 1.698 1.975 1.678 1.602 1.589

as the last 2s, i.e., Nr = 20. The optimization algorithm
for solving the planning problem is chosen as the fmin-
con function in Matlab toolbox. Note that fmincon is a
simple example of solver in our simulation, other more
complicated solvers may also be employed instead of it
here. In the fmincon function, the algorithm type is set
as “interior-point”and the maximum function evaluation
times are 50 ·N .

As the scope is limited in the motion planning methods,
four trajectory references mentioned in Lee (2005) (tra-
jectory 1),Sun et al. (2012a) (trajectory 2, 3 and 4) are
chosen in comparison in this section. For the same specific
overhead system, we have plotted these four trajectories
and our planned optimal trajectory in Fig. 3. For each
trajectory, the profiles of velocity, acceleration and swing
angle are shown in the figure.
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Fig. 3. Profiles of velocity, acceleration and swing angle

For each trajectory, the results of maximum swing angle,
residual swing and their average are listed in Table 1. For
the optimal trajectory, the maximal swing angle is the
smallest as 1.126◦, and the residual swing and the average
swing are also smallest among the compared trajectories.
In Fig. 3, the profiles of velocity, acceleration and swing
angle are given. Due to the constraint of jerk, acceleration
and deceleration are smooth in the optimal trajectory. In

Fig. 3, it can be noticed that the maximum swing angles
are smallest and the residual swing is close to zero.

In Table 2, energy consumption and peak power over
the planning period are listed for each trajectory. For
the optimal trajectory, energy consumption and peak
load are not the smallest. One possible reason is that
other trajectories have less constraints than the optimal
trajectory. For example, the constraint of jerk is only
considered in our planning method. Another reason is that
the weight β = 0.99 is chosen in the objective function,
which is set as a trade-off between energy efficiency and
safety. When β = 0 is used, our method can obtain an ideal
trajectory with the smallest energy consumption 6.649 J
and the smallest peak power 1.36 W.

Test 2: trajectory tracking

In this part, MPC is used to track the reference trajectory
obtained from Test 1 as shown in Fig. 3. To validate
stability and robustness of the tracking method, random
disturbances are added to the actuating force between 1s
and 3s as{

Fa(n) = F (n) + Fr(n) + d(n)
d(n) = rand− 0.5

, 10 ≤ n ≤ 30, (34)

where rand is a random number uniformly distributed
in [0, 1]. The referenced and disturbed profiles of force
have been shown in Fig. 4. The open-loop control method
using the referenced profile of force is included in the
following comparison. For the open-loop control and MPC,
the performance in terms of tracking error of velocity and
swing angle is given in Table 3.

0 1 2 3 4 5 6 7
−2

−1

0

1

2

3

4

5

6

7

time

fo
rc

e

 

 
refereced force
disturbed force

Fig. 4. Profiles of referenced and disturbed control inputs
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control

Table 3. Comparisons of tracking error

Tracking error Open-loop control MPC

Velocity (m/s) 0.0136 0.0028

Swing angle (◦) 0.249 0.032

At the presence of disturbances, it can be noticed that
tracking errors of MPC are much smaller than errors of
open-loop control. For MPC, the tracking error of velocity
is 0.0136m/s, and the tracking error of swing is 0.032◦.
The profiles of velocity and swing angle have been shown
in Fig. 5. For MPC, velocity and swing angle have been
tracked with small errors over the transportation period.
Meanwhile, it is worth noting that the results of MPC can
satisfy the constraints, such as zero final velocity and zero
final swing, which cannot be achieved by the open-loop
control.

6. CONCLUSION

In this paper, energy efficiency is firstly modeled in crane
control while considering many practical and physical con-
straints, including maximal swing and jerk. Two steps of
control, i.e. trajectory planning and tracking, are proposed
to minimize energy consumption of transportation. Using
the proposed trajectory planning method, an optimal tra-
jectory with small swing and low energy consumption can
be obtained. The optimal trajectory obtained by off-line
computation can be utilized as inputs of open-loop control
schemes or references of closed-loop control schemes.

In practise, cranes are usually operated in the environment
with disturbances. MPC is used to track the planned
trajectory as the second step of our approach. The ex-
perimental results have been shown that MPC has smaller
tracking errors than open-loop control. MPC has achieved
great performance of stability and robustness when exter-
nal disturbances exist. In future work, mechanism of online
update may be considered in the optimal trajectory, and

other closed-loop methods may be considered for tracking
the planned trajectory.
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