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Abstract: This paper proposes an approach to active fault tolerant control (AFTC) of a variable-speed 

wind turbine subject to actuator faults. The actuator faults in the turbine pitch system and generator 

system are considered in this work. Takagi-Sugeno (T-S) fuzzy modeling of the combined driver train, 

pitch and generator systems is proposed to account for nonlinearities in the dynamics. Moving horizon 

estimation (MHE) based on T-S fuzzy modeling is proposed as the actuator fault estimation unit. Model 

predictive control (MPC) based on T-S fuzzy modeling is used in the design of the AFTC unit in which 

the predictive controller compensates the actuator faults and takes into account the model nonlinearity 

and turbine system constraints. A T-S fuzzy observer is used to estimate system states and thus an output 

feedback strategy of an observer-based predictive controller is formed. 
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1. INTRODUCTION 

Variable-speed wind turbines can achieve maximum wind 

energy conversion efficiency in a wide range of wind speeds.  

The goal of turbine control in the below rated wind speed 

region is to maximize the wind turbine energy conversion 

efficiency by regulating the turbine rotor angular speed at the 

optimal speed and maintaining the turbine pitch angle at an 

optimal angle. The turbine control problem in the above rated 

wind speed region is to regulate the produced power at the 

rated generator power and keep the generator speed below the 

maximum speed to avoid overload and damage. In highly 

fluctuating wind conditions the control system may 

frequently switch between these two operating regions (Wu 

et al., 2011). 

The two turbine actuators are the pitch system for controlling 

the turbine pitch angle and power converter for controlling 

the generator torque. The actuators can be faulty due to 

electrical or mechanical causes. Hence, it is important to 

consider the potential actuator faults in the design of the 

control system so as to mitigate the effect of faults on the 

control performance and have sustainable turbine operation in 

the presence of loss of actuator effectiveness due to faults. 

Active fault tolerant control (AFTC) is an advanced approach 

to controller design by using fault estimation (FE) unit to 

actively provide the controller the fault information to 

achieve fault tolerance and sustainable operation. In this 

paper an AFTC design is proposed for an offshore wind 

turbine system considering faults in both of the wind turbine 

actuators. The AFTC design in this work is tested and 

evaluated on an wind turbine benchmark model (Odgaard et 

al., 2009). 

Moving horizon estimation (MHE) based on Takagi-Sugeno 

(T-S) fuzzy modeling is proposed in this work as the FE unit 

for actuator faults. The original nonlinear wind turbine model 

is reformulated into a nonlinear T-S fuzzy model and used by 

MHE as the estimation model to estimate faults in the two 

turbine actuators. 

Several control strategies for variable-speed wind turbines 

based on T-S fuzzy modeling are presented in (Sami and 

Patton, 2012b, Sami and Patton, 2012c). However, these 

works only propose the controller design for below the rated 

wind speed region. A two-controller structure can be 

designed to take into account the two turbine operating 

regions with different control goals. Model predictive control 

(MPC) has the advantage of simplifying the multiple 

controller design (Maciejowski, 1999). The need for multiple 

controller design is simplified since only MPC parameter 

changes are required for different control goals. Another 

advantage of MPC is that the system constraints can be 

considered in the MPC formulation. Various studies of the 

application of MPC to wind turbine control are presented in 

(Soliman et al., 2011, Yang and Maciejowski, 2012, Mirzaei 

et al., 2012). 

This paper proposes an AFTC approach based on nonlinear 

T-S fuzzy MPC to compensate for the effect of actuator faults 

and consider the wind turbine system nonlinearity and 

constraints. Compared with the multiple-model based MPC 

approach presented in (Soliman et al., 2011), the proposed T-

S fuzzy MPC can achieve continuous model parameter 

variations rather than the abrupt changes that often 

accompany multiple-model strategies. 

This paper is organized as follows: T-S fuzzy modeling of the 

wind turbine is described in Section 2. The FE unit based on 

T-S fuzzy MHE is described in Section 3. The AFTC strategy 

based on T-S fuzzy MPC is presented in Section 4. 

Simulation results are presented in Section 5. 
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2. WIND TURBINE MODELING 

2.1  Nonlinear Wind Turbine Model 

Modeling of the turbine drive train system, generator system, 

and pitch system are needed to control the wind turbine. The 

model used in this work is based on a benchmark model for a 

realistic large variable-speed wind turbine with rated power 

of 4.8 MW and the blade radius of 57.5m. 

The non-linear wind turbine drive train system model is 
given as: 
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in which
g is the generator rotating speed, 

r is the turbine 

rotor speed, and 
 is the torsion angle of the drive train. 

aT

and
gT  are the aerodynamic torque and generator torque 

separately. 

The nonlinear aerodynamic torque 
aT  resulting from the wind 

acting on the turbine blades is: 

,),(
2

1 23 vCRT qa                           (2) 

where  and R are the air density and radius of the turbine 

blades which are given constants. v  is the effective wind 

speed (EWS),  is the turbine blade pitch angle, and 
qC  is 

the nonlinear torque coefficient as a function of  and the 

tip-speed-ratio  computed by: 
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The system state space matrices are: 
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where
rJ  and 

gJ  are the rotor and generator moments of 

inertia. 
rB  and 

gB  are the rotor and generator external 

damping coefficients, 
dtS is the torsion damping coefficient, 

gN  and 
dt  are the gear ratio and drive train efficiency, and 

dtK  is the torsion stiffness.  

The generator system model is given as:  
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in which 
grT is the reference generator torque. 

The second order turbine hydraulic pitch system model is: 

,
2)(

)(
22

2

nn

n

r sss

s










                     (5) 

where 
r is the corresponding reference angle. 

As shown in (1) to (3), the drive train model nonlinearity 

comes from 
aT  which is a highly nonlinear function of  , 

r  and v . Numerical values of the parameters in (1), (2), (4) 

and (5) can be found in the benchmark model (Odgaard et al., 

2009). 

The measured outputs of the turbine system are generator 

speed, pitch angle, generator torque, and turbine rotor speed. 

The turbine rotor speed sensor contains very heavy noise and 

is only used as a premise variable for fuzzy modelling after 

being filtered. Therefore, the following nonlinear wind 

turbine model taking account the actuator faults can be 

developed by combing (1), (2), (4), and (5) to give: 

Cxy

vuxfx



 ),,(
,                                     (6) 

in which ,][ 

 ggr Tx    ,][  gg Ty   
 ][ rgrTu  , 63C  is the constant output matrix. 

2.2  T-S Fuzzy Modeling of Wind Turbine 

In this work, T-S fuzzy modeling of the nonlinear wind 

turbine system is proposed. The three parameters in the 

nonlinear aerodynamic torque (2) defined in vector form 

][ vr   are used as the premise variables for 

building the fuzzy turbine model. To achieve T-S fuzzy 

modeling, a series of local linear models linearized at 

different turbine system operating points are needed. Each 

local model is obtained by first order Taylor series 

approximation applied to (2) according to the corresponding 

operating point  and substituting the approximated Taylor 

series into (6). The following T-S fuzzy wind turbine model 

considering actuator faults is then obtained: 
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are system matrices of the local linear models. 12f  

represents the actuator faults. )( i
 is the membership 

function of a fuzzy system. Several types of membership 

functions are available in  (Feng, 2010). 

The following discretized T-S fuzzy turbine model taking 

account of actuator faults can be acquired from (7) given as: 
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in which )]()()([ kvkk rk   . )( kG  , )( kH  , and 

)( kD   are acquired with the same membership function 

applied to the discretized system matrices of the local linear 

models. 

3. FAULT ESTIMATION 

3.1  T-S Fuzzy Observer 

A T-S fuzzy observer for the nonlinear wind turbine system is 

designed to estimate system states. The output feedback 

turbine controller based on T-S fuzzy MPC also need state 

estimation from the fuzzy observer.  

The following T-S fuzzy observer is designed for wind 

turbine system (8): 
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where )(ˆ kx  is the estimate of )(kx . 36)( F is the 

fuzzy observer gain given as: 
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in which )( ki   is the same membership function for the 

turbine system model (8). 
iPQ  is the local fuzzy gain 

obtained by solving the following LMIs (Feng, 2010): 
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where 
iG is the system matrix of each local linear models of 

(8).  

The problem of estimation of the EWS is beyond the scope of 

this work and thus it is assumed that )(kv  is known. Some 

methods of EWS estimation can be found in (Xu et al., 2012, 

Østergaard et al., 2007, Sami and Patton, 2012a). 

3.2  Fault Estimation based on MHE 

The fuzzy observer error dynamics is given as: 

)(ˆ)()( kxkxke  .                               (12) 

)(ke approaches zero when there is no actuator fault. 

However, the actuator faults are not considered in the fuzzy 

observer and thus )(ke  will not approach zero when actuator 

faults are present. Therefore, there is an error between the 

estimated output )(ˆ ky and the sensor output )(ky . This error 

information is used by the MHE to estimate the actuator 

faults. 

MHE can be considered to be the dual problem of MPC (Rao 

et al., 2003) and has a similar mathematical formulation with 

that of MPC. It is proposed for solving constrained state 

estimation problems (Rao et al., 2003). However, its 

capability of parameter estimation can be utilized for fault 

estimation (Izadi et al., 2011). 

In this work, we propose an MHE based on T-S fuzzy 

modeling to solve the fault estimation problem of the 

nonlinear turbine system.  

The system (8) can be reformulated as the following system 

when the estimated states from the fuzzy observer are used: 
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in which )(ˆ ky  is the estimated output when faults are 

considered. 

In order to estimate actuator faults, MHE is formulated by 

online minimizing the following cost function at every 

sample time: 
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where 
MN  is the estimation horizon of MHE, k is the present 

sample time, and Sppp
S

 . 
33S  is a positive 

define matrix which is a design parameter. 

Minimization of (14) can be written as the following 

optimization problem by using (13): 
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in which fmin and fmax are the bounds of faults that can be 

decided from the view of practical hardware. (16) is acquired 

by using (13) recursively in the past NM  sampling times with 

t(i) being the second and third term on the right side of the 

first equation in (13) given as: 

Minimization of (14) is reformulated into the optimization 

problem  (15) and solved online at each sample time. (15) is a 

quadratic programming problem and thus can be solved 

efficiently.  

MHE is generally used for state estimation, which will 

increase the online computation burden. However, in this FE 

unit, state estimation is achieved with a T-S fuzzy observer 

designed offline and thus the online state estimation by MHE 

is not required. Therefore, MHE is only used to estimate 
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faults and thus the online computation burden due to state 

estimation is greatly reduced. 

4. AFTC OF WIND TURBINE 

4.1  Control  Principle of Wind Turbine 

The goal of wind turbine control in below rated wind speed 

region is to drive the turbine rotor speed 
r  to track the 

optimal rotating speed given as: 

R

v opt

optr


 _

,                                 (18) 

where 
opt is the optimal tip-speed ratio which is a given 

constant. The maximum conversion efficiency from wind to 

electrical power can be achieved if the turbine rotor is 

rotating at the speed of 
optr _  and the pitch angle is regulated 

at the optimal pitch angle 0opt . However, in practice the 

filtered optimal rotor speed 
optr _̂ is being tracked to avoid 

heavy drive train torsion caused by trying to follow the 

highly fluctuating wind speed precisely. 

The goal of wind turbine control in above rated wind speed 

region is to protect the generator by regulating the generator 

speed around a reference speed 
gr  below the generator safe 

limit 
max_g . The generated power 

gP  should also be 

regulated around the rated power 
grP . The pitch angle is 

frequently changing in this region to regulate the generator 

speed and power rather than being regulated at the optimal 

pitch angle. 

The control inputs for both turbine operation regions are 
grT

and 
r . Regulation of 

grP  is achieved by regulating 
gT  to 

track the following value according to the power and torque 

relation: 

g

gr

optg

P
T


_

.                                      (19) 

The turbine controller switches between the two operating 

regions according to the following rules. The controller 

switches to above rated wind speed region if: 

grg PP    or  
grg   . 

The operation region is switching to below rated wind speed 

region if: 

  grg
, 

where 
gr  satisfies s/rad186max_  ggr  . s/rad15

is an offset for some hysteresis during the switching between 

the two operation regions. Hence, frequent switching between 

operating regions is avoided by using this approach. 

4.2  AFTC of Wind Turbine via Fuzzy MPC 

The T-S fuzzy MPC is proposed in this work as the AFTC 

unit to consider the system nonlinearity and compensate for 

the actuator faults online by including the effects of the faults 

in the MPC optimization problem. Physical constraints are 

also considered in the MPC formulation. The fuzzy MPC 

controller, the T-S Fuzzy observer and the FE unit together 

form the output feedback AFTC strategy as shown in Fig. 1. 

Wind Turbine

MPC Controller

FE unit

Fuzzy Model

Fuzzy Observer

Fuzzy Model

y (k)u(k)

u(k)

u(k)

v(k)

v(k)

MHE

)(kf

f̂
)(ˆ kx

v(k)

 
Fig. 1. AFTC control strategy. 

During the turbine operation, the range of control inputs is 

limited by physical constraints imposed by the turbine 

actuators due to hardware specifications of the hydraulic 

system and the power converter. Hence, constraints should be 

considered in the design of the turbine controller. The 

constraints are considered naturally in the MPC and 

formulated into the constraints of the nonlinear optimization 

problem given in (25). 

The T-S fuzzy MPC for wind turbine is formulated as: 
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where N  is the MPC prediction horizon, 12ˆ f is the 

estimated fault from the FE unit, 

 ]
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P
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 is the reference 

signal. Equation (23) is the prediction model of system (8) 

and 
66R is a weighting matrix that depends on the 

turbine operating region given as: 






speedwindratedabovediag

speedwindratedbelowdiag
R

)100010(

)010001(
.  (25) 

As shown in (25), the multiple controller strategy is realized 

by only changing the parameter R according to the turbine 

operation region and thus the multiple controller design is 
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simplified since the need for complete redesign of controllers 

for different operation regions is removed. Faults are 

compensated in the prediction model (23) which is a linear 

time-varying system and thus a linear system at each sample 

time. Therefore, (20) becomes a quadratic programming 

problem that can be solved efficiently. The optimization 

problem (20) is solved online at every sample time to 

calculate )(ku  which is used as the control input. An 

alternative MPC formulation with )( iku  rather than 

)( iku  as the decision variable is widely used to eliminate 

constant disturbance for linear systems. However, the wind 

turbine is a nonlinear system and the disturbance is not 

constant since the wind speed is always changing. Thus the 

straightforward form of decision variable )( iku   is used in 

(20). 

The future wind speed over the prediction horizon is not 

known and thus it is approximated by the wind speed of the 

current instant as shown in (23). The future faults are also not 

known and considered as constant over the prediction horizon. 

Therefore, the fault considered in this work is constant or 

slowly-time-varying fault as shown in (21) and (23).  

The AFTC for actuator faults proposed in this work can be 

extended to the AFTC for system faults and then the term 

)()( kfH k in (8) represents system faults which are 

estimated by the FE unit and compensated by the T-S fuzzy 

MPC. 

5. SIMULATION RESULT 

The wind speed data used in the simulation covering both 

wind speed regions are shown in Fig. 2. All sensors are 

subject to random noise as defined in the benchmark model. 

The prediction and estimation horizons are chosen as 6N  

and 6MN , respectively. The rated power and generator 

speed are defined in the benchmark as W108.4 6grP ,

s/rad162gr .  

 
Fig. 2. Wind speed data for simulation. 

The performance of the AFTC strategy in the no-fault case is 

shown in Fig. 3 to Fig. 5. It is shown in Fig. 4 and Fig. 5 that 

the controller frequently switches between the two control 

regions when the wind speed is highly fluctuating. The 

generated power is regulated below the rated power and 

generator speed is regulated around 
gr  and below 

max_g . 

 
Fig. 3. Tracking performance below the rated wind speed 

region. 

 

Fig. 4. Power regulation when controller switches between 

two regions. 

 

Fig. 5. Generator speed regulation when controller are 

switching between two regions. 

The fault estimation corresponding to the pitch actuator fault 

and generator torque faults is shown in Fig. 6 and Fig. 7. A 

10 degree fault is added to the pitch actuator and a 2000N-m 

fault is added to the generator torque to reflect a converter 

malfunction. Estimation of torque fault is more accurate due 

to the much higher signal-to-noise ratio of the torque sensor. 

 

Fig. 6. Estimation of 10 degree pitch actuator fault. 
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Fig. 7. Estimation of a 2000N-m generator torque fault. 

The performance of the AFTC strategy in both operating 

regions is shown in Fig. 8 to Fig. 9. A 10 degree fault is 

added to the pitch actuator for 100 seconds in the low wind 

speed region and a 2000N-m torque offset fault is added to 

generator torque for 250 seconds. It is shown in Fig. 8 that 

the tracking error with AFTC is much smaller than that 

without the action of the AFTC during the fault. Fig. 9 shows 

that without the action of the AFTC, the generated power can 

not be regulated around the rated power after 200 seconds in 

the above rated wind speed region. 

 

Fig. 8. Tracking performance of AFTC in below rated wind 

speed region during the pitch actuator fault. 

 

Fig. 9. Power regulation of AFTC when controller switches 

between two regions. 

6. CONCLUSIONS 

This paper proposes an AFTC strategy for wind turbine 

actuator faults. MHE based on T-S fuzzy modelling is 

proposed as the FE unit to estimate actuator faults. MPC 

based on T-S fuzzy modelling is proposed as the fault 

tolerant controller to compensate for the faults and consider 

the system nonlinearity. The multiple control design for the 

wind turbine is simplified by the proposed MPC. A future 

study will consider the robustness issues arising from the use 

of this AFTC approach. 
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