
Planning of Optimal Daily Power
Generation Tolerating Prediction

Uncertainty of Demand and Photovoltaics

Masakazu Koike ∗,† Takayuki Ishizaki ∗,† Yuzuru Ueda ∗∗,†

Taisuke Masuta ∗∗∗,† Takashi Ozeki ∗∗∗,† Nacim Ramdani ∗∗∗∗

Tomonori Sadamoto ∗,† Jun-ichi Imura ∗,†

∗ Graduate School of Information Science and Engineering, Tokyo
Institute of Technology 2-12-1, Ookayama, Meguro, Tokyo, 152–8552,
Japan (Tel: +81-3-5734-2646; e-mail: { koike, ishizaki, sadamoto,

imura } @cyb.mei.titech.ac.jp )
∗∗ Graduate School of Science and Engineering, Tokyo Institute of
Technology 2-12-1, Ookayama, Meguro, Tokyo, 152–8552, Japan

(e-mail: ueda.y.ae@m.titech.ac.jp )
∗∗∗ National Institute of Advanced Industrial Science and Technology

1-2-1, Namiki, Tsukuba, Ibaraki, 305–8564, Japan (e-mail: {
taisuke.masuta, takashi.oozeki} @aist.go.jp)

∗∗∗∗ Universite d’Orleans, PRISME,63 av. de Lattre de Tassigny,
18020 Bourges, France (e-mail: Nacim.Ramdani@univ-orleans.fr )
† CREST, Japan Science and Technology Agency 4–1–8, Honcho,

Kawaguchi, Saitama, 332–0012, Japan

Abstract: The concern with renewable energy has been growing. Large-scale installation of
photovoltaic (PV) generation and electricity storage is expected to be installed into the power
system in Japan. In this situation, we need to keep supply-demand balance by systematically
using not only traditional power generation systems but also the PV generation and storage
equipment. Towards this balancing, a number of prediction methods for PV generation
and demand have been developed in literature. However, prediction-based balancing is not
necessarily easy. This is because the prediction of PV generation and the demand forecasting
inevitably includes some uncertainty. Against this background, we formulate a problem to plan
battery charge pattern while minimizing the fuel cost of generators with explicit consideration of
prediction uncertainty. In this problem, given as interval quadratic programming, the prediction
uncertainty is described as a parameter in constraint condition. Furthermore, we propose a
method to find a solution to this problem from the viewpoint of monotonicity analysis. Finally,
by numerical analysis based on this problem and its solution method, we discuss the relation
between the minimal regulating capacity and the required battery charge/discharge pattern to
tolerate a given amount of prediction uncertainty.

Keywords: Photovoltaic Power Generation, Prediction Uncertainty, Battery Charge Pattern
Planning, Regulating Capacity

1. INTRODUCTION

Recently, the global warming and the depletion of natural
resources have been a serious problem in energy environ-
ment. In view of this, renewable energy as typified by
photovoltaic (PV) power generation has been gathering
attention to reduce carbon dioxide as well as to achieve
sustainable energy consumption. Actually in Japan, a large
number of PV power generators and storage batteries are
expected to be installed into power systems in the near
future [T. Masuta et al. 2012], [R. Komiyama et al. 2011].

In this situation, we are required to operate a power system
that includes the traditional generators as well as PV
generators and storage batteries while keeping the supply-

demand balance of the power. If a PV/demand prediction,
which is a net value of demand prediction defined as the
difference of the demand prediction and the PV power
output prediction, is exactly available, one can schedule
the power generation and the battery charge pattern
by solving an optimization problem. This optimization
problem can be formulated as an allocation problem of
a sequence of the PV/demand prediction to those of the
generated power and battery charge/discharge power (see
Fig. 1 (a) and (b)) with the minimization of an energy cost
function.

However, in practice, the PV/demand prediction in-
evitably includes some uncertainty. In view of this, we ex-
press the uncertainty of PV/demand prediction as a tem-
poral sequence of prediction values that can vary within a
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Fig. 1. Allocation Problem.

sequence of intervals; see Fig. 1 (c). These intervals have
known bounds but the actual distribution of the uncer-
tainty within these bounds is unknown. This unknown but
bounded error thus gathers both systematic and random
variations and uncertainty. To keep the supply-demand
balance for all possible PV/demand predictions within the
intervals, it is important to estimate how wide the ranges
of generator power and battery charge power should be.
More specifically, to clarify the ranges of generator power
and battery charge power to be required, we need to find
the upper and lower limits of them shown by the lines with
circles in Fig. 1 (d). It should be noted that the sequence
of power generation intervals coincides with the sequence
of regulating capacity that can tolerate a given amount of
prediction uncertainty.

In this paper, we find the upper and lower limits of
generator power and battery charge power that minimize
a quadratic fuel cost function of generators. Owing to the
fact that the PV/demand prediction within an interval
can be regarded as a continuous parameter within an
vector-valued interval, we can formulate the problem as
an interval quadratic programming.

It should be noted that to give a solution to the interval
quadratic programming is not necessarily easy. This is be-
cause we are required to solve the quadratic programming
for all possible parameters, i.e., infinite many parameters,
to derive the optimal solutions as a function of the contin-
uous parameter.

To tackle this difficult problem, we use an interval analysis
technique; see [E. Hansen et al. 2003], [L. Jaulin et
al. 2001], [Q.G. Lin et al 2008], [Y. Zhu et al 2012],
[L. He et al 2009]. Interval analysis literature focuses
mainly on global optimization, i.e. finding the global
maximum/minimum point of a multimodal multivariable
function, or on constraint satisfaction problems, i.e. cov-
ering the feasible solution set of conjunctions of equality
and inequality constraints. Most techniques use constraint
propagation, and some of them also use time consuming
branch-and-bound algorithms [E. Hansen et al. 2003], [L.
Jaulin et al. 2001]. By using these method directly, we can
solve the interval quadratic programming. However, the
method would require partitioning and computing directly
with interval of real numbers, and hence potentially huge
computation costs are required. To the best of our knowl-
edge, there is no method based on the interval analysis for

solving an interval quadratic programming in an effective
way.

To overcome this difficulty, we propose a method to find
the upper and lower limits of solutions, which is based the
monotonicity analysis. This method has the advantage to
exactly find the upper and lower limits by a finite number
of operations. Finally, by a numerical analysis, we discuss
the relation between the minimal regulating capacity and
the required charge pattern to tolerate a given PV/demand
prediction interval.

2. PROBLEM FORMULATION
2.1 Quadratic Programming for Optimal Power Generation
Planning

In this section, based on uncertain prediction of PV gener-
ation and demand, we formulate a problem to minimize the
fuel cost of generators as a quadratic programming. Here,
we consider obtaining an one-day plan of power generation
as well as charge and discharge pattern of storage batteries.
In general, the one-day plan is calculated by using unit
commitment. However, for simplicity, we do not consider
the start-up cost of generators.

Dividing a day into n moments, we denote the temporal
sequences of predicted PV power generation and demand
by p ∈ Rn and q ∈ Rn, respectively. Using these symbols,
we define a net amount of demand prediction as d := q−p.
Furthermore, we describe its time sequence as

d = {di} ∈ Rn (1)

where di denotes the ith element of d. In what follows, we
refer to d in (1) just as a PV/demand prediction.

For this PV/demand prediction, we keep a supply-demand
balance using the power of generators as well as the charge
and discharge power of storage batteries. The total power
of all generators and the total charge and discharge power
of all storage batteries are described by

v = {vi} ∈ Rn, ∆x = {∆xi} ∈ Rn (2)

on which we impose the inequality constraint as{
vmin ≤ vi ≤ vmax

∆xmin ≤ ∆xi ≤ ∆xmax,
i ∈ {1, . . . , n}. (3)

In (3), the constants vmin ∈ R, vmax ∈ R, ∆xmin ∈ R and
∆xmax ∈ R represent the lower and upper limits of vi and
∆xi. In this notation, the supply-demand balance at the
ith moment is represented by

∆xi = vi − di, i ∈ {1, . . . , n}. (4)

Furthermore, we denote the total energy of the batteries
by

x = {xi} ∈ Rn, xi := x0 +
i∑

j=1

∆xj (5)

where x0 ∈ R denotes the initial value of the total energy,
and we impose the equality constraint on this battery
energy as

xn = x0 + xd (6)

where xn ∈ R denotes the total energy at the termination
time, and xd ∈ R denotes a desired energy to be charged.
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We define the fuel cost function of the generators by

J(v) :=
n∑

i=1

a0 + a1vi + a2v
2
i (7)

where a0 ∈ R, a1 ∈ R and a2 ∈ R are the nonnegative
coefficients. Then, by representing ∆x with v and d based
on (4), the optimal power generation plan that minimizes
the fuel cost of generators is given by

v∗(d) := arg min
v∈Rn

J(v) (8)

where the inequality constraint in (3) can be rewritten as

Cin(v; d) :

{
vmin ≤ vi ≤ vmax

∆xmin + di ≤ vi ≤ ∆xmax + di,
(9)

and the equality constraint in (6) can be rewritten as

Ceq(v; d) :
n∑

i=1

vi =
n∑

i=1

di + xd. (10)

In addition, as being compatible with (4), the optimal plan
of charge pattern is given by

∆x∗(d) := v∗(d)− d, (11)

and the optimal temporal sequence of battery energy is
given by

x∗(d) = {x∗
i (d)} ∈ Rn, x∗

i (d) := x0 +
i∑

j=1

∆x∗
j (d). (12)

2.2 Interval Quadratic Programming

In this subsection, we formulate a problem to plan the
power generation and the battery charge pattern explic-
itly taking into account the uncertainty of PV/demand
prediction. More specifically, we regard d in the quadratic
programming as a continuous parameter that can vary
within a vector-valued interval.

Let [d, d] ⊆ Rn denote an interval of the PV/demand
prediction d in (1), and we refer to [d, d] ⊆ Rn as a
prediction interval. Furthermore, we refer to the central
value

d :=
d+ d

2
∈ Rn (13)

as a nominal PV/demand prediction.

As shown in (8) and (11), the optimal power generation
plan v∗ and the optimal charge and discharge pattern ∆x∗

depend on the PV/demand prediction d varying within
the interval [d, d]. In view of this, we refer to the quadratic
programming in (8) as an interval quadratic programming.
For this quadratic programming, we formulate a problem
to find the upper and lower limits of v∗ and ∆x∗ as follows:

Problem 1. Consider an interval quadratic programming
in (8). Let a prediction interval [d, d] ⊆ Rn be given. For
a parameter d ∈ [d, d], define the inequality and equality
constraints by

Cin(v; d), Ceq(v;d) (14)

where Cin and Ceq are defined as in (9) and (10), and the
nominal PV/demand prediction d is defined as in (13).
Furthermore, define

V∗ := {v∗(d) : d ∈ [d, d]}
∆X ∗ := {∆x∗(d) : d ∈ [d, d]}

(15)

where v∗ and ∆x∗ are defined as in (8) and (11). Find

v∗ = {v∗i } ∈ Rn, v∗ = {v∗i } ∈ Rn (16)

and

∆x
∗
= {∆x

∗
i } ∈ Rn, ∆x∗ = {∆x∗

i } ∈ Rn (17)

where v∗i and v∗i indicate the maximum and minimum

value of the ith element of v∗ for any v∗ ∈ V∗, and ∆x
∗
i

and ∆x∗
i are defined as in the same manner. ■

In Problem 1, we formulate a problem to find the upper
and lower limits of all possible solutions v∗ and ∆x∗ with
respect to any d ∈ [d, d]. It should be noted that, in this
problem, the equality constraint in (14) is given by using
the nominal PV/demand prediction d, which is a constant
vector. This is because, if the equality constraint depends
on the parameter d, the resulting interval quadratic pro-
gramming does not possess monotonicity, which is a key
notion to solve Problem 1; see Section 3 for details.

The upper and lower limits of v∗ can be regarded as
the regulating capacity that can cover any PV/demand
prediction d ∈ [d, d]. To reduce the number of generators
while guaranteeing stable power supply, it is important to
find the minimum regulating capacity that can cover any
uncertain demand prediction.

Note, however, that the solution of Problem 1 is not
necessarily easy to obtain in general. This is because,
in order to derive the optimal solution as a function of
the parameter d, we are required to solve the interval
quadratic programming for all possible parameters, i.e.,
infinite many parameters. This fact implies that a finite
number of solutions for a fixed d ∈ [d, d] does not give the
exact lower and upper limits in (16) and (17).

In theory, the direct application of interval arithmetics,
i.e. the extension of real algebraic operations to intervals,
may be used for computing the upper and lower limits
of (16) and (17). In practice, the computed limits may
be conservative since interval arithmetics relies on over-
approximation, and may also requires large computation
time. Therefore, we investigate in next section a more
effective way to solve the interval quadratic programming
using interval analysis without interval arithmetics, by
relying on a monotonicity analysis. The upper and lower
limits of the image of an interval by a monotone function
can be computed directly by using only the upper and
lower limits of the interval.

3. MONOTONICITY ANALYSIS
In this section, we analyze the interval quadratic program-
ming from a viewpoint of monotonicity. To this end, the
following notion of monotonicity is introduced:

Definition 1. The interval quadratic programming in Prob-
lem 1 is said to be monotone with respect to d if, for any
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i ∈ {1, . . . , n} and j ∈ {1, . . . , n}, there exist constants

σ
(v)
i,j ∈ {−1, 1} and σ

(∆x)
i,j ∈ {−1, 1} such that

σ
(v)
i,j

∂v∗i (d)

∂dj
≥ 0, σ

(∆x)
i,j

∂∆x∗
i (d)

∂dj
≥ 0 ∀d ∈ [d, d] (18)

where v∗i and ∆x∗
i denote the ith elements of v∗ and ∆x∗

defined as in (8) and (11), respectively. ■

The monotonicity of the interval quadratic programming

is defined as the existence of σ
(v)
i,j ∈ {−1, 1} and σ

(∆x)
i,j ∈

{−1, 1} such that (18), which means that the signs of
∂v∗i /∂dj and ∂∆x∗

i /∂dj are invariant. Note that, if the
interval quadratic programming is monotone with respect
to d, then the upper and lower limits of v∗i are exactly given

as v∗i = v∗i (d
(i)
), v∗i = v∗i (d

(i)) where the jth elements of

d
(i) ∈ Rn and d(i) ∈ Rn are defined by d

(i)

j := σ
(v)
i,j max

{
σ
(v)
i,j dj , σ

(v)
i,j dj

}
d
(i)
j := σ

(v)
i,j min

{
σ
(v)
i,j dj , σ

(v)
i,j dj

}
.

This fact implies that the solutions v∗ with a finite
number of d exactly give the upper and lower limits of
v∗. Obviously, we can obtain the upper and lower limits of
∆x∗ in the same manner.

As for the monotonicity of the interval quadratic program-
ming in Problem 1, we can prove the following theorem:

Theorem 1. Consider the interval quadratic programming
in Problem 1. If

σ
(v)
i,j =

{
1, i = j,
−1, i ̸= j,

σ
(∆x)
i,j = −1, (19)

then (18) follows for any i ∈ {1, . . . , n} and j ∈ {1, . . . , n}.

This theorem shows that the interval quadratic program-
ming in Problem 1 possesses the monotonicity character-
ized by (19). Note that the upper and lower limits of ∆x∗

can be obtained by solving the quadratic programming
with d and d. Consequently, the solution of Problem 1 is
exactly obtained by solving the quadratic programming
with 2n+ 2 kinds of d.

Recall that, in Problem 1, the equality constraint in (14)
is given by the nominal PV/demand prediction d in (13).
If the equality constraint also depends on d, the interval
quadratic programming does not possess the monotonicity
in general. Thus, in this case, we cannot obtain the upper
and lower limits in (16) and (17) by a finite number of
calculation; recall the last of Section 2.2. The efficiency of
analyses based on this monotonicity is demonstrated by
numerical simulations in Section 4.

4. NUMERICAL SIMULATION
4.1 Prediction of PV Generation and Demand

In this section, we show the efficiency of the proposed
method to plan power generation and battery charge pat-
tern. We consider the supply-demand balance in Tokyo
area having 19 million demanders, where five million de-
manders have PV generators and three million demanders
have storage batteries.
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(a) Demand and PV Generation.

(b) Prediction Error of PV Generation.

(c) Model of Uncertain PV/demand Prediction.

Fig. 2. Demand and PV Generation, Prediction Error of
PV Generation and Model of Uncertain PV/demand
Prediction for Cloudy Day.

We suppose that the upper and lower limits of generated
power in (3) are 50 GW and 25 GW, respectively. The
coefficients of the fuel cost function in (7) are given as
a0 = 3.16 × 105 JPY/h?a1 = 4.60 × 10−3 JPY/Wh and

a2 = 1.05× 10−12 JPY/W
2
h [T. Masuta et al. 2013].

In the following numerical simulation, we use an actual
demand data on June 9, 2010 [Tokyo Electric Power
Co.,Inc. 2012] as a demand prediction, and use a PV
generation data in the same day, which is produced by
the solar radiation data [Japan Meteorological Business
Support Center 2013], as a PV generation prediction.
In Fig. 2(a), the solid lines with triangles, with squares
and with circles represent the demand prediction data,
the PV generation prediction data, and the PV/demand
prediction data, respectively.

The PV generation data is calculated as follows: First,
the data of vertical quantity of total solar radiation is
multiplied by a PV rating capacity as well as the system
output coefficient 0.8. Second, the obtained data is divided
by the standard solar irradiance 1.0 kW/m2. Finally, we
scale it so that the maximum PV power output is 15 GW,
which corresponds to a target amount of the PV power
output by 2030 in Japan.

In Fig. 2(b), the area enclosed by the two dashed lines rep-
resent the temporal sequence of PV generation prediction
intervals. The dashed lines are calculated as follows: First,
we prepare two sets of data for certain 30 days. One is
the set of actual data for 30 days that resemble the data
on June 9, 2010; the other is the set of prediction data
for the same 30 days. Second, as the difference of data sets
between the actual and prediction data, we obtain the data
set of prediction error that are shown by the thin solid lines
in Fig. 2(b). Furthermore, we show the envelope curves of
the prediction error set as the thick solid lines. Finally, we
obtain the dashed lines by adjusting the envelope curves
so that the dashed lines are symmetric with respect to the
horizontal axis.

In addition, we also consider the temporal sequence of
demand prediction intervals that is given as a band corre-
sponding to ±5% with respect to the peak demand, shown
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by the mark of ∗ on the solid line with triangles in Fig. 2(a).
By adding the temporal sequences of the PV generation
prediction intervals and demand prediction intervals, we
obtain the sequence of the PV/demand prediction inter-
val shown in Fig. 2(c), where the central solid line with
circles represents the nominal PV/demand prediction d in
(13). Note that, in this figure, we have already subtracted
20 GW to be covered by basis generators, such as nuclear
plants and so forth.

4.2 Evaluation Indices for Power Generation Planning

We introduce some quantitative evaluation indices for
power generation planning. We suppose that a desirable
plan of power generation accomplishes the following con-
ditions as much as possible:

(i) The maximum number of operated generators is min-
imized.

(ii) The change rate for the number of operated genera-
tors is minimized.

(iii) The number of generators to tolerate the prediction
uncertainty is minimized.

From the viewpoints of (i), (ii) and (iii), we evaluate a
resultant power generation plan.

The optimal solution for the nominal PV/demand predic-
tion, is expressed as v∗ = v∗(d) where v∗ is defined as
in (8). We refer to v∗ as the nominal power generation
plan. The upper and lower limits of the optimal power
generation plan are defined as in (16).

Let us mathematically describe the evaluation indices (i),
(ii) and (iii) as

W1 := max
i∈{1,...,48}

v∗
i , W2 :=

47∑
i=1

|v∗
i+1 − v∗

i |

W3 :=
48∑
i=1

v∗i − v∗i
v∗
i

(20)

where v∗
i denotes the ith element of v∗. If the value of

W1 is small, the maximum number of operated generators
is small. Similarly, if the value of W2 is small, we do not
require high readiness of generators, and if the value of
W3 is small, the number of generators to tolerate the
prediction uncertainty is small.

4.3 Planing of Power Generation and Battery Charge
Pattern

The simulation results are shown in Figs. 3(a), (b) and
(c) where we use the PV/demand prediction defined in
Section 4.1. In these figures, we show the results in the
cases where we vary the upper and lower limits of the
GW capacity of batteries as Case 1: ±2.5 GW, Case 2:
±4.0 GW and Case 3: ±5.5 GW. In each figure, the first
subfigure shows the resultant plans of power generation
v∗ and battery charge pattern ∆x∗, defined as in (8) and
(11), and the second one shows the corresponding temporal
sequence of battery energy x, defined as in (12). The solid
lines with circles represent the nominal power generation
plan and the corresponding nominal battery charge plan
and the temporal sequence of battery energy. The thick
solid lines show the upper and lower limits of all possible

solutions for any d ∈ [d, d]. These lines can be obtained in
a few seconds by solving the quadratic programming with
2n + 2 kinds of d because the problem in this simulation
possesses the monotonicity. The indication by the color
density is explained in Section 4.4.

We can see from each first subfigure that, as the GW ca-
pacity of batteries becomes larger, the difference between
the upper and lower limits of the generated power becomes
smaller. Furthermore, as shown in each second subfigure,
the nominal temporal sequence of the battery energy at the
termination time returns to its initial value. This is ensured
by setting xd in (6) to zero for the equality constraint
in (14). Moreover, the difference between the upper and
lower limits of the battery energy increase with the lapse
of time. This is because the battery energy is defined by
the temporal integration of charged power.

Next, in Table 1, we show the values of the evaluation
indices in (20) for Case 1, Case 2 and Case 3. In this
table, we normalize the the evaluation index values so that
W1 = W2 = W3 = 1 holds if no storage batteries are
installed. In this case, the temporal sequence of generated
power must be identical to that of the PV/demand predic-
tion; namely, it follows that d = v∗, d = v∗, d = v∗.
We can see form Table 1 that every evaluation index
decreases in the order from Case 1 to Case 3. This fact
indicates that batteries possessing a larger GW capacity
is more effective to provide a desirable power generation
plan, from a viewpoint of (i), (ii) and (iii).

Note that the value of W3 in Case 1 is greater than one.
This means that we require a regulating capacity that is
larger than one in the case where no storage batteries are

installed. This may be caused by the fact σ
(v)
i,j ̸= σ

(∆x)
i,j

shown in Theorem 1, which means that a set of demand
corresponding to the upper and lower limits of the optimal
power generation plan is not identical to that of the
optimal battery charge pattern plan. In conclusion, we see
that the storage batteries with larger GW capacity are
required to tolerate a larger amount of uncertainty.

4.4 Discussion on Total Battery Capacity

We investigate a total battery capacity that is required
to tolerate prediction uncertainty. The temporal sequence
of battery energy is shown in the each second subfigure
of Figs. 3(a), (b) and (c). We can see from these figures
that the differences between the peak values of the upper
and lower limits are 108 GWh, 113 GWh and 119 GWh,
respectively. To tolerate the worst case, we need to have
storage batteries whose total GWh capacity is about
120 GWh; see Case 3.

Next, to investigate an occurrence rate of the worst case,
we calculate the optimal plans of power generation and
battery charge pattern for 10000 PV/demand predictions
randomly chosen from [d, d]. In Figs. 3(a), (b) and (c), the

Table 1. Normalized Values of Indices for
Cloudy Day.

W1 W2 W3

Case 1 0.86 0.42 1.41

Case 2 0.78 0.23 0.72

Case 3 0.70 0.07 0.27
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(a) Case 1. (b) Case 2. (c) Case 3.
Fig. 3. Simulation Results in from Case 1 to Case 3.

color density at each point within the intervals reflects
the number of trajectories passing through around the
corresponding point.

From each first subfigure, we can see that the trajectories
of power generation and battery charge pattern pass
through uniformly in the intervals by the upper and lower
limits. On the other hand, in each second subfigure, the
trajectories of battery energy gather around its nominal
trajectory. This indicates that the variance of the battery
energy trajectories is less than that of the generated power
and the battery charge power. This result comes from
the fact that battery energy is defined as the temporal
integration of charged power. Therefore, we see that the
total battery capacity should be considered with the
consideration of the GWh capacity both in the worst and
common cases.

5. CONCLUSION

In this paper, we have formulated a problem to plan
power generation and battery charge pattern as an interval
quadratic programming. Furthermore, we have proposed
a solution method to this problem. The solution of the
interval quadratic programming can be regarded as the
regulating capacity that can tolerate any uncertain de-
mand prediction. Moreover, we have provided a number of
simulation results to verify the efficiency of the proposed
method for power generation planning. By these numerical
simulations, we have found the following facts:

• Storage batteries having larger GW capacity are more
effective to minimize the regulating capacity.

• If prediction uncertainty is relatively large compared
with the GW capacity of batteries, we require reg-
ulating capacity that is larger than one in the case
where no storage batteries are installed.

A generalization to multiple generators as well as a con-
sideration of PV generation surplus are currently under
investigation.
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