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Abstract: This paper addresses the formation control problem of multi-agent systems whose
dynamics are all positive. Recently, as a byproduct of the analysis of interconnected positive
systems, we have shown an effective way for designing a communication scheme (i.e., an
interconnection matrix) over the positive agents so that a prescribed formation can be achieved.
For the convergence rate analysis of such multi-agent positive systems under formation control,
we propose an efficient algorithm to compute the dominant pole of interconnected positive
systems by actively using the positive property of each agent. We illustrate by numerical
examples that the proposed algorithm is definitely efficient particularly when the number of
agents gets larger.
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1. INTRODUCTION

Recently, the analysis and synthesis of positive systems
have been active in conjunction with the development
of convex-optimization-based control theory [Mason and
Shorten (2007); Rantzer (2011, 2012); Tanaka and Lang-
bort (2011); Blanchini et al. (2012); Ebihara et al. (2014)].
A linear time-invariant (LTI) system is said to be posi-
tive if its state and output are both nonnegative for any
nonnegative initial state and nonnegative input [Farina
and Rinaldi (2000); Kaczorek (2001)]. This property can
be seen naturally in biology, network communications,
economics and probabilistic systems. Moreover, simple
dynamical systems such as integrator and first-order lag
and their series/parallel connections are also all positive.
Even though their dynamics are relatively simple, large-
scale systems constructed from those subsystems exhibit
complicated behavior and deserve investigation in the area
of multi-agent systems [Olfati-Saber et al. (2007); Tan-
ner et al. (2003a,b)]. Motivated by these facts, we made
continuing efforts toward establishing effective methods
for the analysis and synthesis of interconnected positive
systems [Ebihara et al. (2011, 2013a)]. In particular, by
exploiting the positive property of each agent, we showed
an efficient method to design a communication scheme
(i.e., the interconnection matrix) over the agents to achieve
prescribed formation [Ebihara et al. (2013a)].

The convergence performance of such multi-agent positive
systems under formation control can be determined by
the dominant pole of the corresponding interconnected
⋆ This work is supported in part by JSPS KAKENHI Grant Number

25420436.

positive systems (the dominant pole is often called alge-
braic connectivity in the study area of multi-agent systems
[Olfati-Saber et al. (2007)]). Even though we can com-
pute the dominant pole by directly computing all of the
eigenvalues of the coefficient matrices of the interconnected
system, such straightforward method is computationally
demanding especially when the total number of agents gets
larger. Moreover, such method does not give any insights
on how we can accelerate the convergence by appropriately
designing the interconnection matrices. Motivated by these
facts, in this paper, we propose an efficient algorithm for
the computation of the dominant pole by decomposing the
original large size problem into small size problems and
exploiting the positive property of each agent. We illus-
trate by numerical examples that the proposed algorithm
is definitely efficient.

Notations:

R (C): the set of real (complex) numbers.
D: D := {ν ∈ C : |ν| ≤ 1}.
R

n: the set of real vectors of size n.
Rn

+: the set of nonnegative vectors of size n.
Rn

++: the set of strictly positive vectors of size n.
Rn×m: the set of real matrices of size n×m.
R

n×m
+ : the set of nonnegative matrices of size n×m.

Hn: the set of Hurwitz stable matrices of size n× n.
Mn: the set of Metzler matrices of size n× n.
σ(A): the set of the eigenvalues of A ∈ Cn×n.
ρ(A): the spectral radius of A ∈ Cn×n.
κ(A): the maximal real part of σ(A).
κ2(A): the second maximal real part of σ(A).
ZN : ZN := {1, · · · , N}.
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2. INTERCONNECTED POSITIVE SYSTEMS

Consider the linear system described by

G :

{
ẋ = Ax + Bw,
z = Cx + Dw

(1)

where A ∈ R
n×n, B ∈ R

n×nw , C ∈ R
nz×n, and D ∈

Rnz×nw . The definition and a basic result of positive
systems are given in the following.

Definition 1. (Farina and Rinaldi (2000)). The linear sys-
tem (1) is said to be positive if its state and output are
both nonnegative for any nonnegative initial state and
nonnegative input.

Proposition 2. (Farina and Rinaldi (2000)). The system (1)
is positive if and only if A ∈ Mn, B ∈ R

n×nw

+ , C ∈ R
nz×n
+ ,

and D ∈ R
nz×nw

+ .

In this paper, we deal with multi-agent systems where
the dynamics of each agent, or say, subsystem, is positive.
Consider the positive subsystem Gi (i ∈ ZN ) given by

Gi :

{
ẋi = Aixi + Biwi,
zi = Cixi + Diwi,

Ai ∈ M
ni ∩H

ni , Bi ∈ R
ni×nwi

+ ,

Ci ∈ R
nzi

×ni

+ , Di ∈ R
nzi

×nwi

+ .

(2)

As clearly shown in (2), we assumed that Gi (i ∈ ZN )
are all stable. With these positive subsystems, we define
positive and stable system G by G := diag(G1, · · · , GN ).
The state space realization of G is given by

G :

{
˙̂x = Ax̂ + Bŵ,
ẑ = Cx̂ + Dŵ

(3)

where

A := diag(A1, · · · , AN ), B := diag(B1, · · · , BN ),
C := diag(C1, · · · , CN ), D := diag(D1, · · · ,DN ),

(4)

x̂ :=




x1

...
xN


 ∈ R

nx̂ , nx̂ :=

N∑

i=1

ni,

ŵ :=




w1

...
wN


 ∈ R

nŵ , nŵ :=

N∑

i=1

nwi
,

ẑ :=




z1
...
zN


 ∈ R

nẑ , nẑ :=

N∑

i=1

nzi .

For a given interconnection matrix Ω ∈ R
nŵ×nẑ

+ , we are
interested in the analysis of interconnected system G ⋆ Ω
defined by ŵ = Ωẑ. In relation to the well-posedness of
this interconnection, we give the next definition.

Definition 3. (Ebihara et al. (2011)). Interconnected sys-
tem G ⋆Ω is said to be admissible if Metzler matrix DΩ−I
is Hurwitz stable.

In the sequel, we require the admissibility of intercon-
nected system G ⋆ Ω whenever we analyze its properties.
The meaning of this presupposition, and its rationality
as well, can be explained as follows. If det(DΩ − I) 6= 0,

then the interconnection is well-posed, and the state-space
description of the interconnected system is represented by

˙̂x = Aclx̂, Acl := A+ BΩ(I −DΩ)−1C. (5)

Thus, if the admissibility is ensured, we see that

(i) interconnection G ⋆ Ω is well-posed;
(ii) Metzler matrix DΩ − I is Hurwitz and hence (I −

DΩ)−1 ≥ 0 holds [Farina and Rinaldi (2000); Kac-
zorek (2001); Mason and Shorten (2007)]. Therefore
Acl given by (5) is Metzler. It follows that the inter-
connected system G ⋆ Ω inherits the positive nature
of Gi (i ∈ ZN ), i.e., the nonnegativity of states
xi (i ∈ ZN ) for any nonnegative initial states is still
preserved under the interconnection.

3. FORMATION CONTROL OF MULTI-AGENT
POSITIVE SYSTEMS

The goal of this paper is to give an efficient method to
analyze the convergence rate performance of multi-agent
positive systems under formation control. In this section,
we review our preceding results on formation control of
multi-agent positive systems and show that a practical
formation control of moving agents can be cast as a
formation control of multi-agent positive systems.

3.1 Basic Results for Formation Control

The next result concerns the formation control of the
interconnected positive system G ⋆ Ω with respect to the
output ẑ.

Theorem 4. (Ebihara et al. (2013a)). Consider the case
where every stable positive subsystem Gi represented by
(2) is SISO. Suppose Gi (i ∈ ZN ) and given interconnec-

tion matrix Ω ∈ R
N×N
+ satisfy the following conditions:

(i) (Ai, Bi) is controllable and (Ai, Ci) is observable for
all i ∈ ZN .

(ii) G1(0) = · · · = GN (0) =: γ(> 0) holds for Gi(s) :=
Ci(sI − Ai)

−1Bi +Di (i ∈ ZN ).

(iii) Ω ∈ R
N×N
+ is irreducible (i.e., the directed graph of

Ω, denoted by Γ(Ω), is strongly connected).
(iv) Ωvobj = (1/γ)vobj holds for given vobj ∈ RN

++.

Then, for the interconnected system G ⋆Ω, the next results
hold.

(I) G ⋆Ω is admissible, i.e., the Metzler matrix DΩ− I is
Hurwitz stable.

(II) The output of interconnected system G ⋆ Ω satisfies
ẑ∞ = γα(x̂(0))vobj, ẑ∞ := lim

t→∞

ẑ(t) (6)

where
α(x̂(0)) := ξTL x̂(0)/ξ

T
L ξR ∈ R,

ξR := −A−1Bvobj ∈ R
nx̂

++,
ξL := −A−T CT vL ∈ R

nx̂

++

(7)

and vL ∈ RN
++ is a left-eigenvector of Ω with respect

to the eigenvalue 1/γ, i.e., vL satisfies vTLΩ = (1/γ)vTL .
Namely, for any initial state x̂(0) ∈ R

nx̂

+ \ {0},
we can achieve the convergence of output ẑ(t) =
[ z1(t) · · · zN (t) ]T to γα(x̂(0))vobj ∈ RN

++.

This theorem implies that, for a given vobj ∈ RN
++ that

represents the desired formation of N -agents, we can
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enforce their outputs (positions) to converge to (a positive
scalar multiple of) vobj by designing the interconnection
matrix Ω to satisfy conditions (iii) and (iv).

3.2 Synthesis of Interconnected Matrices

It is meaningful to show a concrete way to design a desired
Ω ∈ R

N×N
+ satisfying Ωvobj = (1/γ)vobj and Γ(Ω) = Γ for

a prescribed vector vobj ∈ R
N
++ and a graph structure Γ.

For illustration, consider the cases where Γ is schematically
shown in Figs.1 and 2 for N = 3.

G3

G1

G2

Fig. 1. Graph structure ΓA.

G1 G2 G3

Fig. 2. Graph structure ΓB.

For the graph structure ΓA, any interconnection matrix
Ω ∈ R

N×N
+ satisfying Ωvobj = (1/γ)vobj and Γ(Ω) = ΓA

can be parametrized by

Ω =
1

γ
Ω(vobj, p) ∈ R

N×N
+ (8)

where

Ω(vobj, p)i,j =





(1− p1)
vobj,1
vobj,N

(i, j) = 1, N,

pi
vobj,i
vobj,j

(1 ≤ i ≤ N, j = i+ 1),

(1− pi)
vobj,i
vobj,j

(1 ≤ i ≤ N, j = i− 1),

pN
vobj,N
vobj,1

(i, j) = (N, 1),

0 otherwise.

(9)

Here, the vector of parameters p ∈ RN
++ can be chosen

arbitrarily over 0 < p < 1N . On the other hand, for
the graph structure ΓB , any interconnection matrix Ω ∈
R

N×N
+ satisfying Ωvobj = (1/γ)vobj and Γ(Ω) = ΓB can

be parametrized again by (8) and (9) where the vector
of parameters p ∈ RN

++ can be chosen such that p1 = 1,
pN = 0, and 0 < pi < 1 (i ∈ ZN \ {1, N}). In both cases,
we can confirm that the resulting interconnection matrix is
irreducible (since ΓA and ΓB are both strongly connected).

We finally note that the eigenvalues of Ω(vobj, p) ∈ R
N×N
+

depend solely on p ∈ R
N
+ and do not depend on vobj ∈

R
N
++. This can be easily confirmed if we note Ω(vobj, p) =

diag(vobj,1, · · · , vobj,N )Ω(1N , p)diag(vobj,1, · · · , vobj,N )−1.

3.3 Concrete Examples of Formation Control

In this section, we show that a practical formation control
problem can be cast as a formation control problem of

multi-agent positive systems as discussed in the preceding
subsection. Consider the formation control problem of
N agents where the i-th agent can move on the (x, y)-
plane. We denote by (zi,x(t), zi,y(t)) the position of agent
i. Furthermore, we define ẑj := [z1,j · · · zN,j ]

T (j = x, y)
by stacking the coordinates of all agents.

We assume that agent i has independent dynamics along
the x- and y-axes, denoted by Pi,x(s) and Pi,y(s), respec-
tively, and independent control inputs ui,x(t) and ui,y(t).
Suppose Pi,x(s) and Pi,y(s) are typical dynamics of moving
agents given by

Zi,j(s) = Pi,j(s)Ui,j(s),

Pi,j(s) =
ki,j

s(s+ ai,j)
(i ∈ ZN , j = x, y)

where ki,j , ai,j > 0. Roughly speaking, our goal here is to
design communication schemes (interconnection matrices)
over N -agents along x- and y-axes independently so that
prescribed formation can be achieved asymptotically.

Before designing interconnection matrices over the agents,
we apply the following local feedback

ui,j(t) = −fi,j(zi,j(t)− wi,j(t)) (i ∈ ZN , j = x, y)

with 0 < fi,j ≤ a2i,j/4ki,j , where wi,j (i ∈ ZN , j = x, y)
is the exogenous input kept for the interconnection. Then
we have

Zi,j(s) = Gi,j(s)Wi,j(s),

Gi,j(s) =



−bi,j 1 0
0 −ci,j bi,jci,j
1 0 0


 ,

bi,j + ci,j = ai,j , bi,jci,j = fi,jki,j .

(10)

It follows that Gi,j (i ∈ ZN , j = x, y) are stable positive
systems (in the realization (10)) with Gi,j(0) = 1 (i ∈
ZN , j = x, y). The latter is a natural consequence from
the fact that each open-loop transfer function Pi,j(s) (i ∈
ZN , j = x, y) includes an integrator. For description
simplicity, we define ŵj := [w1,j · · · wN,j ]

T (j = x, y).

Suppose each agent can communicate its position to other
agents. More specifically, we assume that N -agents inde-
pendently communicate their x and y positions. Then, we
can restate our goal as in designing Ωx and Ωy such that,
under the interconnection with Ωx and Ωy for (ẑx, ŵx)
and (ẑy, ŵy), respectively, the following formation can be
achieved:

lim
t→∞

[ ẑx(t) ẑy(t) ]

= [ αx(x̂x(0))vobj,x αy(x̂y(0))vobj,y ].
(11)

Here, (vobj,x, vobj,y) are given vectors that specify the
desired formation. On the other hand, x̂x(0) and x̂y(0)
stand for the initial states of the corresponding intercon-
nected systems. It is obvious that we can readily solve this
problem by following Theorem 4.

For a concrete and concise illustration, consider the case
where the dynamics are uniform over the agents and (x, y)-
coordinates as well by letting ai,j = a = 50, ki,j = k = 1
and fi,j = 0.8 × a2/4k (i ∈ ZN , j = x, y). We let N = 20
and

[vobj,x vobj,y]i = [2 + cos(2πi/N) 2 + sin(2πi/N)] .
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Namely, the vectors (vobj,x, vobj,y) are chosen to form
a circle. Under this setting, we designed two pairs of
(ΩA,x,ΩA,y) and (ΩB,x,ΩB,y) detailed below:

(A) Γ(ΩA,x) = Γ(ΩA,y) = ΓA,
ΩA,x = Ω(vobj,x, pA,x), ΩA,y = Ω(vobj,y, pA,y).

(B) Γ(ΩB,x) = Γ(ΩB,y) = ΓB,
ΩB,x = Ω(vobj,x, pB,x), ΩB,y = Ω(vobj,y, pB,y).

Here we choose parameters pA,x ∈ RN
++ and pB,x ∈ RN

+ so

that there exits vL,x ∈ RN
++ satisfying

vTL,xΩ(vobj,x, pA,x) = vTL,xΩ(vobj,x, pB,x) = vTL,x.

Similarly, we choose parameters pA,y ∈ RN
++ and pB,y ∈

RN
+ so that there exits vL,y ∈ RN

++ satisfying

vTL,yΩ(vobj,y, pA,y) = vTL,yΩ(vobj,y, pB,y) = vTL,y.

Such parameters can be computed by solving LPs along
the line in [Ebihara et al. (2013a)]. From (7), we can
confirm that the output [ẑx(t) ẑy(t)] converges to the
same value under the interconnections (ΩA,x,ΩA,y) and
(ΩB,x,ΩB,y).

In Figs. 3–10 given at the last page, we show the plots of
[ẑx(t) ẑy(t)] under the settings (A) and (B). In both cases,
we took exactly the same initial states as implied by Figs. 3
and 7. In both cases, we successfully achieved exactly
the same circular formation (scaled along x- and y-axes
independently) as expected. However, the convergence
performance is quite different between (A) and (B): it is
clear from Figs. 4 and 8 that the convergence of case (A)
is much faster than case (B).

The real part of the dominant pole of the system G⋆Ω, i.e.,
the second largest real part of the eigenvalues of A+BΩC
denoted by κ2(A + BΩC) is a reasonable measure for the
convergence rate performance. Of course the computation
of the dominant pole can be done by simply computing all
the eigenvalues of A+BΩC and comparing their real parts.
By this simple procedure, we know in the above numerical
examples that

(κ2(A+ BΩA,xC), κ2(A+ BΩA,yC)) = (−0.3719,−0.4890)
(κ2(A+ BΩB,xC), κ2(A+ BΩB,yC)) = (−0.0951,−0.1501).

(12)

These results surely validates the fact that the convergence
for case (A) is much faster than case (B).

Even though we obtained (12) by directly computing all
the eigenvalues of A+ BΩC, such straightforward method
is computationally demanding especially when the total
number of agents gets larger. Moreover, such method does
not give any insights on how we can accelerate the conver-
gence by appropriately designing Ω. Motivated by these
facts, in the next section, we propose an efficient algorithm
for the computation of κ2(A+ BΩC) by decomposing the
original large size problem into small size problems and
exploiting the positive property of each agent. Note that
the real part of the dominant pole is often called algebraic
connectivity in the study area of multi-agent systems [Fu-
jita and Hatanaka (2008); Olfati-Saber and Murray (2004);
Olfati-Saber et al. (2007); Tanner et al. (2003a,b)]. In the
case where the dynamics of each agent are simple such as

in the case of an integrator, the algebraic connectivity can
be determined solely by the interconnection matrix but
this is not the case in general. Our objective is to establish
an efficient algorithm by exploiting the positive property
of each agent.

From now on we assume that the dynamics of all agents are
uniform. This assumption is indispensable in constructing
the efficient algorithm.

4. EFFICIENT ALGORITHM FOR THE
COMPUTATION OF κ2(A+ BΩC)

In this section, we propose an efficient algorithm for the
computation of (the real part of) the dominant pole of
multi-agent positive systems under formation control. As
noted previously, we assume that the dynamics of all
agents are uniform and thus

Ai = A ∈ Mn ∪Hn, Bi = B ∈ R
n×1
+ ,

Ci = C ∈ R
1×n
+ , Di = 0 (i ∈ ZN ).

(13)

holds in (2). In the following we further assume that

Gi = G (i ∈ ZN ) and Ω ∈ R
N×N
+ satisfies the conditions

(i)-(iv) in Theorem 4 with γ = 1. From now on all proofs
for technical results are omitted due to limited space.

4.1 Basic Algorithm by Problem Decomposition

The next lemma is instrumental for the decomposition
of the computation of κ2(A + BΩC) into smaller size
problems.

Lemma 5. For given Ω ∈ RN×N and P,Q ∈ Rm×m, we
have

σ (In ⊗ P +Ω⊗Q) = {λ ∈ σ(P + νQ) : ν ∈ σ(Ω)} . (14)

The next result readily follows from Lemma 5.

Proposition 6. For given Ω ∈ RN×N and A ∈ MNn,
B ∈ R

Nn×N
+ , C ∈ R

N×Nn
+ given by (2), (4) and (13), we

have

σ (A+ BΩC) = {λ ∈ σ(A+ νBC) : ν ∈ σ(Ω)} . (15)

Recall that Proposition 6 holds only if G is SISO. This
proposition implies that we can compute the eigenvalues
of A + BΩC ∈ RNn×Nn by computing the eigenvalues of
A + νiBC ∈ Rn×n repeatedly over νi ∈ σ(Ω). Based on
this fact, we can conceive the following algorithm that is
expected to be efficient if N is large.

Algorithm I (Basic Algorithm)

Step 0: Sort the distinct eigenvalues of Ω with non-
negative imaginary part in descending order with re-
spect to their absolute values and denote them by
λ1, · · · , λM (M ≤ N). From the underlying assumption
on Ω we have λ1 = 1.

Step 1: Let κ⋆ = κ2(A+λ1BC) = κ2(A+BC) and i = 2.
Step 2: Compute κ(λi) := κ(A + λiBC) and let κ⋆ :=
max(κ(λi), κ

⋆).
Step 3: If i = M , exit. Else, let i := i+1 and go to Step 2.

In this algorithm, we need to compute the eigenvalues of
A+νiBC repeatedly over i ∈ ZM . However, if we focus on
the positivity of G, i.e., if we exploit the fact that A ∈ Mn,
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B ∈ Rn
+ and C ∈ R

1×n
+ , we can drastically reduce the

number of eigenvalues νi ∈ σ(Ω) to be examined. This is
the key idea for conceiving a much efficient algorithm as
detailed in the next subsection.

4.2 Efficient Algorithm by Exploiting Positivity

The next theorem is very important for enhancing the
efficiency of Algorithm I.

Theorem 7. For given A,B ∈ R
n×n
+ , we have

ρ(A+ νB) ≤ ρ(A+B) ∀ν ∈ D. (16)

Next corollary follows directly from this theorem.

Corollary 8. For given A ∈ Mn and B ∈ R
n×n
+ , we have

κ(A+ νB) ≤ κ(A+ B) ∀ν ∈ D. (17)

In relation to the computation of κ2(A + BΩC) along
the line of Algorithm I, Corollary 8 shows that we can
reduce the number of eigenvalues νi ∈ σ(Ω) to be ex-
amined. Indeed, by paying attention to the fact that
λ1, · · · , λM (M ≤ N) are sorted in descending order
with respect to their absolute values, we can include the
following stopping conditions to Algorithm I:

(i) If κ(λi) := κ(A + |λi|BC) is not larger than the
tentative value κ⋆, we can let κ2(A + BΩC) = κ⋆

and exit the algorithm.
(ii) If λi ∈ R++, we can let κ2(A+BΩC) = max(κ⋆, κ(A+

λiBC)) and exit the algorithm.

We are now ready to give the efficient algorithm for the
computation of κ2(A+ BΩC).

Algorithm II (Efficient Algorithm)

Steps 0 and 1: The same as Algorithm I.
Step 2: Compute κ(λi) := κ(A+ |λi|BC). If κ(λi) ≤ κ⋆,
exit. If λi ∈ R++, let κ⋆ := max(κ(λi), κ

⋆) and exit.
Else, go to Step 3.

Step 3: Compute κ(λi) := κ(A + λiBC) and let κ⋆ :=
max(κ(λi), κ

⋆).
Step 4: If i = M , exit. Else, let i := i+1 and go to Step 2.

Algorithm II is efficient particularly when Ω ∈ R
N×N
+

has only real eigenvalues (ex., this happens when Ω is
symmetric). In such a case, if Ω has a positive eigenvalue λ,
then we do not need to test the eigenvalues whose absolute
values are less than or equal to λ. By following this line, we
can analytically write down κ2(A+BΩC) for some specific
interconnection matrices.

For example, consider the interconnection matrix ΩA,0 :=
Ω(1N , pA,0) where pA,0 := 1

2
1N . In this case, γ(ΩA,0) = ΓA

holds and

σ(ΩA,0) =

{
cos

(
2π(i− 1)

N

)
: i ∈ ZN

}
. (18)

It follows that

κ2(A+ BΩA,0C) = (19)
{
max (κ2(A+ BC), κ(A+ λ2BC), κ(A+ λK+1BC)) N = 2K + 1
max (κ2(A+ BC), κ(A+ λ2BC), κ(A−BC)) N = 2K

where K ∈ Z+ and

λ2 := cos

(
2π

N

)
, λK+1 := cos

(
2Kπ

2K + 1

)
.

On the other hand, we see that ΩB,0 := Ω(1N , pB,0) with
pB,0 := [ 1 1T

N−2 0 ]T satisfies γ(ΩB,0) = ΓB and

σ(ΩB,0) =

{
cos

(
π(i− 1)

N − 1

)
: i ∈ ZN

}
(20)

for N ≥ 3. Therefore we have

κ2(A+ BΩB,0C) = (21)

max

(
κ2(A+BC), κ(A− BC), κ

(
A+ cos

(
π

N − 1

)
BC

))
.

It follows that in the cases Ω = ΩA,0 and Ω = ΩB,0 we can
compute κ2(A+ BΩC) very efficiently irrespective of N .

Remark 9. One may intuitively think that κ(A− νBC) ≤
κ(A) holds for any A ∈ M

n ∪ H
n, B ∈ R

n×1
+ , C ∈ R

1×n
+

and ν ∈ R++ and hence we can omit κ(A + λK+1BC))
and/or κ(A−BC) in the evaluation κ2(A+ BΩA,0C) and
κ2(A + BΩB,0C). However, this is not true in general.
Indeed, for

A =

[
−1 1 0
0 −1 1
0 0 −1

]
, B =

[
0
0
1

]
, C = [ 1 0 0 ]

where (A,B) is controllable, (A,C) is observable and
G(0) = −CA−1B = 1, we see that κ(A) = −1 whereas
κ(A − νBC) = −1/2 for ν = 1. Due to this reason, we
have to leave κ(A + λK+1BC)) and κ(A − BC) for the
max evaluation stated above.

5. NUMERICAL EXAMPLES

In this section, we demonstrate the efficiency of Algorithms
I and II by numerical examples. For given n and N , we
randomly generated Ai ∈ Mn ∪ Hn, Bi ∈ R

n×1
+ and Ci ∈

R
1×n
+ (i ∈ ZN ) satisfying Gi(0) = −CiA

−1
i Bi = 1 (i ∈

ZN ) and irreducible Ω ∈ R
N×N
+ satisfying λF(Ω) = 1.

Then, we computed κ2(A + BΩC) by direct computation
of σ(A + BΩC) (this method is denoted by Algorithm
0 for simplicity) and Algorithms I and II. The average
computation times over 10 tested cases for each setting
N = 10, 100, 1000 with n = 2 and 3 are shown in Tables 1
and 2, respectively.

Table 1. Average CPU time (n = 2).

N Algorithm 0 Algorithm I Algorithm II

10 0.3907× 10−3 0.2983× 10−3 0.2541× 10−3

100 0.0319 0.0074 0.0065
1000 8.4881 1.2354 1.2269

Table 2. Average CPU time (n = 3).

N Algorithm 0 Algorithm I Algorithm II

10 0.5488× 10−3 0.3709× 10−3 0.2798× 10−3

100 0.0756 0.0076 0.0067
1000 27.9230 1.2339 1.2230

These tables show that Algorithms I and II are much
more efficient than Algorithms 0. This is due to the fact
that in Algorithms I and II we can avoid the eigenvalue
computation of matrices of large size nN .
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On the other hand, from these tables we cannot see clearly
the efficiency of Algorithm II over Algorithm I. This is due
to the fact that in both algorithms most of computation
time is consumed by the common steps, Steps 0 and 1, i.e.,
the computation of the eigenvalues of Ω. To compare the
efficiency of Algorithms I and II in more detail, we show
in Tables 3 and 4 the computation times of Algorithm I
needed for Steps 0 and 1, and for the remaining steps,
Steps 3 and 4. Similarly for Algorithm II. From these
tables, it is clear that Algorithm II consumes very little
time for the Steps 2, 3, and 4, i.e., the computation of
the eigenvalues A + λiBC over λi ∈ σ(Ω) that have to
be examined. To highlight this point, we show in Tables
5 and 6 the average number of the eigenvalues of Ω
examined in Algorithms I and II. It is clear that Algorithm
II successfully reduce the number of eigenvalues to be
examined by including stopping conditions (i) and (ii)
stated in Subsection 4.2.

Table 3. Average CPU time of
Algorithms I and II (n = 2).

Algorithm I Algorithm II
N Steps 0,1 Steps 2, 3 Steps 2, 3, 4

10 0.1647× 10−3 0.1336× 10−3 0.0894× 10−3

100 0.0064 0.9208× 10−3 0.1205× 10−3

1000 1.2266 0.0088 0.0003

Table 4. Average CPU time of
Algorithms I and II (n = 3).

Algorithm I Algorithm II
N Steps 0, 1 Steps 2, 3 Steps 2, 3, 4

10 0.1786× 10−3 0.1923× 10−3 0.1012× 10−3

100 0.0067 0.0012 0.0002
1000 1.2225 0.0114 0.0004

Table 5. Average number of eigenvalues of Ω
examined in Algorithms I and II (n = 2).

N Algorithm I Algorithm II

10 7.4 3.2
100 54.6 7.9
1000 514.2 13.3

Table 6. Average number of eigenvalues of Ω
examined in Algorithms I and II (n = 3).

N Algorithm I Algorithm II

10 7.0 3.4
100 54.8 7.3
1000 512.6 12.2

6. CONCLUSION

In this paper, we proposed an efficient algorithm for the
convergence rate analysis of multi-agent positive systems
under formation control. Assuming that the dynamics of
all agents are positive and uniform, we fist show that the
dominant pole of the overall interconnected positive sys-
tem can be computed by evaluating eigenvalues of matrices
whose sizes are equal to the dimension of each subsys-
tem. Then, by actively using positive property of each
subsystem, we showed that we can drastically decrease
the number of matrices to be examined. We illustrated
by numerical examples that the proposed algorithm is
definitely efficient.
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Fig. 3. [ẑx(t) ẑy(t)] for t = 0 [sec] under (ΩA,x,ΩA,y).

Fig. 4. [ẑx(t) ẑy(t)] for t = 10 [sec] under (ΩA,x,ΩA,y).

Fig. 5. [ẑx(t) ẑy(t)] for t = 20 [sec] under (ΩA,x,ΩA,y).

Fig. 6. [ẑx(t) ẑy(t)] for t = 30 [sec] under (ΩA,x,ΩA,y).

Fig. 7. [ẑx(t) ẑy(t)] for t = 0 [sec] under (ΩB,x,ΩB,y).

Fig. 8. [ẑx(t) ẑy(t)] for t = 10 [sec] under (ΩB,x,ΩB,y).

Fig. 9. [ẑx(t) ẑy(t)] for t = 20 [sec] under (ΩB,x,ΩB,y).

Fig. 10. [ẑx(t) ẑy(t)] for t = 30 [sec] under (ΩB,x,ΩB,y).
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