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Abstract: This paper addresses the problem of determining the H∞ norm of 2D mixed
continuous-discrete-time systems. A novel approach is proposed based on the use of a class
of complex Lyapunov functions with rational dependence on a parameter, which provides upper
bounds on the sought norm via linear matrix inequalities (LMIs). It is also shown that the
provided upper bounds are nonconservative by using rational functions in the chosen class with
degree sufficiently large. Some numerical examples illustrate the proposed approach.

1. INTRODUCTION

An important area of control systems is represented by
2D mixed continuous-discrete-time systems. Indeed, such
systems contain both continuous-time and discrete-time
dynamics, which mutually influence each other. Their
study has a long history, the reader is referred to Roesser
[1975], Fornasini and Marchesini [1978] for the introduc-
tion of basic models and fundamentals properties. 2D
mixed continuous-discrete-time systems can be found in
a number of applications, including repetitive processes
Rogers and Owens [1992], disturbance propagation in ve-
hicle platoons Fornasini and Valcher [1997], and irrigation
channels Li et al. [2005], Knorn and Middleton [2013].

Fundamental problems in 2D mixed continuous-discrete-
time systems include stability analysis, which has been
considered in a number of works, see for instance Rogers
and Owens [2002], Galkowski [2002], Kar and Singh [2003],
Galkowski et al. [2003], Bouagada and Van Dooren [2013],
Chesi and Middleton [2014]. As in typical 1D systems,
another fundamental problem in 2D mixed continuous-
discrete-time systems is performance analysis. In particu-
lar, the computation of theH∞ norm has been investigated
in the literature in order to compute the L2 gain of the
system. Existing works include Paszke et al. [2008, 2011]
which propose sufficient conditions based on linear matrix
inequalities (LMIs) for establishing upper bounds on the
H∞ norm.

This paper addresses the problem of determining the H∞

norm of 2D mixed continuous-discrete-time systems. A
novel approach is proposed based on the use of a class of
complex Lyapunov functions with rational dependence on
a parameter, which provides upper bounds on the sought
norm via LMIs. It is also shown that the provided upper
bounds are nonconservative by using rational functions
in the chosen class with degree sufficiently large. Some

numerical examples illustrate the proposed approach. This
paper extends our previous work Chesi and Middleton
[2014] which investigates the use of complex Lyapunov
functions with polynomial dependence on a parameter,
and where asymptotical non-conservatism is not guaran-
teed.

The paper is organized as follows. Section 2 provides
the problem formulation and some preliminaries about
SOS matrix polynomials. Section 3 describes the proposed
results. Section 4 presents some illustrative examples.
Lastly, Section 5 concludes the paper with some final
remarks.

2. PRELIMINARIES

2.1 Problem Formulation

Notation:

- R,C: real and complex number sets;
- j: imaginary unit, i.e. j2 = −1;
- I: identity matrix (of size specified by the context);
- ℜ(A), ℑ(A): real and imaginary parts of A;
- Ā: complex conjugate of A;
- AT , AH : transpose and complex conjugate transpose
of A;

- adj(A): adjoint of A;
- det(A): determinant of A;
- trace(A): trace of A;
- λi(A): i-th eigenvalue of A;
- ‖A‖2: Euclidean norm of A;
- |a|: magnitude of a;
- Hermitian matrix A: a complex square matrix satis-
fying AH = A;

- ⋆: corresponding block in symmetric or Hermitian
matrices;

- A > 0, A ≥ 0: Hermitian positive definite and
Hermitian positive semidefinite matrix A.
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Let us consider the 2D mixed continuous-discrete-time
system described by











































d

dt
xc(t, k) = Accxc(t, k) +Acdxd(t, k)

+Bcu(t, k)

xd(t, k + 1) = Adcxc(t, k) +Addxd(t, k)

+Bdu(t, k)

y(t, k) = Ccxc(t, k) + Cdxd(t, k)

+Du(t, k)

(1)

where xc ∈ Rnc and xd ∈ Rnd are the continuous
and discrete states, respectively, the scalars t and k are
independent variables, u ∈ Rnu and y ∈ Rny are the
input and output, respectively, and Acc ∈ Rnc×nc , Acd ∈
Rnc×nd , Adc ∈ Rnd×nc , Add ∈ Rnd×nd , Bc ∈ Rnc×nu , Bd ∈
Rnd×nu , Cc ∈ Rny×nc , Cd ∈ Rny×nd and D ∈ Rny×nu are
given matrices.

The system (1) is said to be exponentially stable (see,
e.g., Pandolfi [1984], Yeganefar et al. [2013]) if there exist
β, δ ∈ R such that

∥

∥

∥

∥

(

xc(t, k)
xd(t, k)

)
∥

∥

∥

∥

2

≤ β̺e−δmin{t,k} (2)

for all t ≥ 0, k ≥ 0 and initial conditions xc(0, k) and
xd(t, 0), where

̺ = max{̺1, ̺2}
̺1 = sup

t≥0
‖xd(t, 0)‖2 , ̺2 = sup

k≥0
‖xc(0, k)‖2 . (3)

The H∞ norm of the system (1) is defined as

γ∞ = sup
u: ‖u‖L2

6=0

‖y‖L2

‖u‖L2

(4)

and ‖ · ‖L2
is the L2 norm defined as

‖u‖L2
=

√

√

√

√

∞
∑

k=0

∫ ∞

0

‖u(t, k)‖22dt. (5)

Problem. The problem addressed in this paper consists
of determining the H∞ norm of the system (1), i.e., γ∞ in
(4). �

2.2 SOS Matrix Polynomials

Here we provide some information about establishing
whether a matrix polynomial is SOS via an LMI feasibility
test.

Let us consider a Hermitian matrix polynomial M : R →
Rn×n of degree 2d. The matrix polynomial M(ω), ω ∈ R,
is said to be SOS if there exist matrix polynomials Mi :
R → Rn×n, i = 1, . . . , k, such that

M(ω) =

k
∑

i=1

Mi(ω)
TMi(ω). (6)

A necessary and sufficient condition for establishing
whether M(ω) is SOS can be obtained via an LMI fea-
sibility test.

Indeed, M(ω) can be expressed as

M(ω) = (b(ω)⊗ I)T (K + L(α)) (b(ω)⊗ I) (7)

where b(ω) ∈ Rc is a vector whose entries are the mono-
mials in ω of degree less than or equal to d, and c is the
number of these monomials given by

c = d+ 1, (8)

K ∈ Rcn×cn, K = KT , satisfies

M(ω) = (b(ω)⊗ I)
T
K (b(ω)⊗ I) , (9)

L : Rτ ∈ Rcn×cn is a linear parametrization of the linear
subspace

L =
{

L = LT : (b(ω)⊗ I)
T
L (b(ω)⊗ I) = 0

}

(10)

and α ∈ Rτ is a free vector. The quantity τ is the
dimension of L given by

τ =
1

2
n (c (cn+ 1)− (n+ 1)(2d+ 1)) . (11)

The representation (7) is known as square matrix repre-
sentation (SMR) Chesi et al. [2003] and extends the Gram
matrix method for (scalar) polynomials to the matrix case.
One has that M(ω) is SOS if and only if there exists α
satisfying the LMI

K + L(α) ≥ 0. (12)

See for instance Chesi [2010] and references therein for
details on SOS matrix polynomials.

3. PROPOSED RESULTS

In this section we address the problem of determining the
H∞ norm of the system (1), i.e., γ∞ in (4).

Let us start by introducing the following assumption,
which is a necessary condition for exponential stability of
the system (1).

Assumption 1. The matrix Acc is Hurwitz (i.e., all its
eigenvalues have negative real parts) and the matrix Add
is Schur (i.e., all its eigenvalues have magnitude less than
one). �

The fact that Assumption 1 is a necessary condition for
exponential stability of the system (1) can be easily verified
by considering u(t, k) = 0 and xd(t, k) = 0, since one
would get xc(t, 0) = exp(Acct)xc(0, 0), or u(t, k) = 0 and
xc(t, k) = 0, since one would get xd(0, k) = Akddxd(0, 0).

For S ∈ Cn×n, let us define the function

Φ(S) =

(

SR SI
−SI SR

)

(13)

where SR, SI ∈ Rn×n are the real and imaginary parts of
S, i.e., S = SR + jSI . Let us observe that

S is Hermitian ⇐⇒ Φ(S) = Φ(S)T . (14)

Let us denote with UL(s, k) and YL(s, k) the Laplace
transforms of u(t, k) and y(t, k), respectively, where s ∈
C. Let us denote with ULZ(s, z) and YLZ(s, z) the Z-
transforms of UL(s, k) and YL(s, k), respectively, where
z ∈ C. The transfer function from u(t, k) and y(t, k) can
be expressed as

F (s, z) =
YLZ(s, z)

ULZ(s, z)
(15)
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and standard manipulations lead to

F (s, z) = F3(s) (zI − F1(s))
−1
F2(s) + F4(s) (16)

where














F1(s) = Adc(sI −Acc)
−1Acd +Add

F2(s) = Adc(sI −Acc)
−1Bc +Bd

F3(s) = Cc(sI −Acc)
−1Acd + Cd

F4(s) = Cc(sI −Acc)
−1Bc +D.

(17)

We express Fi(s), i = 1, . . . , 4, as

Fi(s) =
Gi(s)

g(s)
(18)

where Gi(s), i = 1, . . . , 4, are matrix polynomials of
suitable size, and g(s) is defined as

g(s) = det(sI −Acc). (19)

Let us define
Fω(z) = F (jω, z). (20)

The H∞ norm of the system (1) can be written as

γ∞ = sup
ω∈R

‖Fω‖H∞
(21)

where
‖Fω‖H∞

= sup
θ∈[−π,π]

∥

∥Fω(e
jθ)
∥

∥

2
. (22)

For a matrix functionM : R → C
n1×n2 , we say thatM(ω)

is symmetric with respect to ω if

M(−ω) =M(ω) ∀ω ∈ R (23)

and we say that M(ω) is anti-symmetric with respect to ω
if

M(−ω) = −M(ω) ∀ω ∈ R. (24)

The next result provides a property of Hermitian matrix
functionsM(ω) that are positive semidefinite for all ω ∈ R.

Theorem 1. Let M : R → Cn×n be a Hermitian matrix
function, and decompose M(ω) as

M(ω) =Ms(ω) +Ma(ω) (25)

whereMs,Ma : R → Cn×n are Hermitian matrix functions
that are symmetric and anti-symmetric, respectively, with
respect to ω, and given by















Ms(ω) =
M(ω) +M(−ω)

2

Ma(ω) =
M(ω)−M(−ω)

2
.

(26)

Then,
M(ω) ≥ 0 ∀ω ∈ R (27)

implies
Ms(ω) ≥ 0 ∀ω ∈ R. (28)

Proof. Suppose that (27) holds and, for contradiction, that
(28) does not. This means that there exists ω̂ ∈ R such
that

Ms(ω̂) 6≥ 0. (29)

Hence, there exists b ∈ Cn such that

bHMs(ω̂)b < 0. (30)

At this point there are two possibilities: either bHMa(ω̂)b ≤
0 or bHMa(ω̂)b > 0. If the first possibility holds, then

bHM(ω̂)b = bHMs(ω̂)b + bHMa(ω̂)b
< 0

(31)

which means that M(ω̂) 6≥ 0 hence contradicting (27). If
the second possibility holds, then one has

{

b̄HMs(−ω̂)b̄ = bHMs(ω̂)b
b̄HMa(−ω̂)b̄ = −bHMa(ω̂)b

(32)

and, consequently,

b̄HM(−ω̂)b̄ = b̄HMs(−ω̂)b̄+ b̄HMa(−ω̂)b̄
< 0

(33)

which similarly contradicts (27). Therefore, (28) holds. �

Theorem 1 states that, if a Hermitian matrix function
M(ω) is positive semidefinite for all ω ∈ R, then also its
part Ms(ω) enjoys the same property.

Let us define the set
S(n) = {M : R → C

n×n, M(ω) is a
Hermitian matrix polynomial
symmetric with respect to ω}.

(34)

In order to compute the H∞ norm of the system (1), we
introduce Lyapunov function candidates defined by

VRAT (ω) =
V (ω)

v(ω)
(35)

where V ∈ S(nd) has degree 2d, with d integer, and

v(ω) = (1 + ω2)d. (36)

For ξ ∈ R let us define

Q(ω) =

(

q1 q2
⋆ q3

)

(37)

where






















q1 = |g(jω)|2 V (ω)−G1(jω)V (ω)G1(jω)
H

−v(ω)G2(jω)G2(jω)
H

q2 = −G1(jω)V (ω)G3(jω)
H − v(ω)G2(jω)G4(jω)

H

q3 = ξv(ω) |g(jω)|2 I −G3(jω)V (ω)G3(jω)
H

−v(ω)G4(jω)G4(jω)
H .

(38)
Since Gi(ω) is symmetric with respect to ω for all i =
1, . . . , 4, it follows that

Q ∈ S(nq) (39)

where
nq = nd + nu. (40)

The following result provides an upper bound on the H∞

norm of the system (1) via a semidefinite program.

Theorem 2. Suppose that there exist V ∈ S(nd) of degree
2d and ξ, ε ∈ R such that

{

Φ(Q(ω)− εv(ω) |g(jω)|2 I) is SOS
ε > 0.

(41)

Then,
√

ξ > γ∞. (42)

Proof. Suppose that there exist V ∈ S(nd) and ξ, ε ∈ R

such that (41) holds. From the definition of SOS matrix
polynomials in Section 2.2, the first constraint in (41)
implies that

Φ
(

Q(ω)− εv(ω) |g(jω)|2 I
)

≥ 0 ∀ω ∈ R. (43)

From (13) it follows that

Q(ω) ≥ εv(ω) |g(jω)|2 I ∀ω ∈ R. (44)
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Since Assumption 1 implies that

|g(jω)| > 0 ∀ω ∈ R, (45)

one can write

Q(ω) = v(ω) |g(jω)|2 Q̂(ω) (46)

where

Q̂(ω) =

(

q̂1 q̂2
⋆ q̂3

)

(47)

and






















q̂1 = VRAT (ω)−G1(jω)VRAT (ω)G1(jω)
H

−G2(jω)G2(jω)
H

q̂2 = −G1(jω)VRAT (ω)G3(jω)
H −G2(jω)G4(jω)

H

q̂3 = ξI −G3(jω)VRAT (ω)G3(jω)
H

−G4(jω)G4(jω)
H .

(48)
Hence, (44)–(45) imply

Q̂(ω) ≥ ε ∀ω ∈ R. (49)

Since ε > 0 due to the second constraint in (41), from the
bounded real lemma and Schur complement it follows that
(see, e.g., de Oliveira et al. [2002])

√

ξ ≥ ‖Fω‖H∞
∀ω ∈ R. (50)

Hence, (42) holds since this implies
√

ξ ≥ sup
ω

‖Fω‖H∞

= γ∞.
(51)

�

Theorem 2 provides a condition for establishing an upper
bound on the H∞ norm of the system (1), γ∞. This
condition is based on the search for a matrix polynomial
V (ω) of degree 2d in the set S(nd) and scalars ξ, ε such that
(41) holds. Hence, the condition provided by Theorem 2 is
equivalent to an LMI feasibility test as explained in Section
2.2 since Φ(Q(ω)−εI) is affine linear in the variables V (ω),
ξ and ε. Let us observe that VRAT (ω) defines a complex
Lyapunov function candidate with rational dependence on
ω of degree 2d and structure defined by the set S(nd).
It is possible to show that the conservatism of the condition
provided by Theorem 2 is monotonically non-increasing
with 2d, i.e., (41) holds with 2d+ 2 if it holds with 2d.

The number of LMI scalar variables in the condition
provided by Theorem 2 is given by the number of free
coefficients in the matrix polynomial V (ω), plus two (for
the scalars ξ, ε), plus the length of the vector α required to
establish whether Φ(Q(ω)−εI) is SOS according to Section
2.2. The following results states an important property of
the condition provided by Theorem 2, namely that this
condition is nonconservative by using VRAT (ω) of degree
sufficiently large.

Theorem 3. Let ξ ∈ R be such that
√
ξ > γ∞. Then, there

exists a sufficiently large integer d such that (41) holds for
some V ∈ S(nd) of degree 2d and ε ∈ R.

Proof. Suppose that
√
ξ > γ∞. Then, there exists a scalar

ε̂ > 0 and a Hermitian matrix function V̂ : R → Cnd×nd

such that (49) holds with VRAT (ω) and ε replaced by V̂ (ω)
and ε̂, respectively. The limit for ω that tends to infinity
of such a matrix function V̂ (ω) does exist, i.e.,

lim
ω→∞

V̂ (ω) = V̂∞ (52)

for some symmetric matrix V̂∞ ∈ R
nd×nd . Since the

matrices of the system (1) are real, one has

Gi(jω) = Gi(−jω) ∀i = 1, . . . , 4

g(jω) = g(−jω)

}

∀ω ∈ R. (53)

From Theorem 1, this implies that V̂ (ω) can be assumed
symmetric with respect to ω without loss of generality.

Let us define
V̂R(ω) = ℜ(V̂ (ω)). (54)

Since V̂ (ω) is symmetric with respect to ω, it follows that

V̂R(ω) can be rewritten as

V̂R(ω) = V̂1(ω
2) (55)

where V̂1 : R → Rnd×nd is a symmetric matrix function.
Let us define















m1(ψ) =
ψ

1− ψ

m2(ω) =
ω2

1 + ω2

(56)

and

V̂2(ψ) = V̂1(m1(ψ)). (57)

It follows that V̂1(ω
2) and V̂1(ψ) are the same function

defined on different domains, i.e.,

∀ω ∈ R, ∃ψ = m2(ω) ∈ [0, 1) : V̂1(ω
2) = V̂2(ψ). (58)

Since V̂2(ψ) is continuous and the limit for ψ that tends

to 1 of V̂2(ψ) does exist, in particular

lim
ψ→1

V̂2(ψ) = V̂∞, (59)

it follows that V̂2(ψ) can be approximated arbitrarily well

over [0, 1] by a symmetric matrix polynomial V̂3 : R →
Rnd×nd . Hence, let us define

V̂4(ω) = V̂3(m2(ω)). (60)

It follows that V̂4(ω) is a symmetric rational function that

approximates arbitrarily well V̂R(ω). Moreover, from (56)

and since V̂4(ω) is symmetric with respect to ω, it follows

that V̂4(ω) has the form

V̂4(ω) =
VR(ω)

v(ω)
(61)

where v(ω) is as in (36) for a suitable integer d and VR(ω)
is a symmetric matrix polynomial of degree 2d in the set
S(nd).
Next, let us define

V̂I(ω) = ℑ(V̂ (ω)). (62)

Since V̂ (ω) is symmetric with respect to ω, it follows that

V̂I(ω) can be rewritten as

V̂I(ω) = ωV̂5(ω
2) (63)

where V̂5 : R → Rnd×nd is an anti-symmetric matrix func-

tion. Similarly to V̂1(ω
2), V̂5(m1(ψ)) can be approximated

arbitrarily well by an anti-symmetric matrix polynomial
V̂6 : R → Rnd×nd over [0, 1], and hence

V̂7(ω) = ωV̂6(m2(ω)) (64)
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is an anti-symmetric rational function that approximates
arbitrarily well V̂I(ω) of the form

V̂7(ω) =
VI(ω)

v(ω)
(65)

where VI(ω) is an anti-symmetric matrix polynomial of
degree 2d, with jVI(ω) in the set S(nd).
Lastly, let us define VRAT (ω) as in (35) with V (ω) given
by

V (ω) = VR(ω) + jVI(ω). (66)

Due to the continuity of Q̂(ω) with VRAT (ω), it follows
that the degree 2d can be chosen such that (49) holds
for some ε > 0. This implies that (43) holds. Since

Φ
(

Q(ω)− εv(ω) |g(jω)|2 I
)

is a symmetric matrix poly-

nomial and in a scalar variable, it follows that (43) holds if
and only if (41) holds. The proof is concluded by observing
that V ∈ S(nd). �

Theorem 3 states that the condition provided by Theorem
2 is nonconservative by choosing an integer d sufficiently
large, where d defines the degree of VRAT (ω) given by 2d.

Let us define the quantity

γ̂∞ =

√

ξ̂ (67)

where ξ̂ is the solution of the semidefinite program

ξ̂ = inf
V ∈S(nd)
ξ,ε∈R

ξ

s.t.

{

Φ(Q(ω)− εv(ω) |g(jω)|2 I) is SOS
ε > 0.

(68)

From Theorem 2 it follows that

γ̂∞ ≥ γ∞, (69)

and γ̂∞ is the best upper bound on the H∞ norm of the
system (1) provided by Theorem 2 for a chosen degree
2d of VRAT (ω). The computation of this upper bound
amounts to solving the optimization problem (68), which
is a semidefinite program since the cost function is linear
and the constraints are LMIs.

4. EXAMPLES

In this section we present two illustrative examples of the
proposed results. The LMI problems are solved with the
toolbox SeDuMi Sturm [1999] for Matlab.

4.1 Example 1

Let us consider the problem of determining the H∞ norm
of the system (1) with

Acc = −2, Acd = ( 0.6 −0.6 0.4 )

Adc =

(

1
0
−1

)

, Add =

(

0 −0.2 0
0 0 0.4
0.3 0 0

)

Bc = 1, Bd =

(

0
−1
1

)

Cc = 0.5, Cd = ( 1 2 3 ) , D = −1.

Hence, it turns out that nd = 3 and nc = nu = ny = 1.
Let us observe that the matrices Acc and Add are Hurwitz
and Schur, respectively.

Let us use compute the upper bound γ̂∞ on the H∞

norm γ∞. We solve the semidefinite program (68) by using

VRAT (ω) as in (35) with degree 2d = 0. We find ξ̂ = 5.445
and, hence,

γ̂∞ = 2.333.

The found VRAT (ω) is

VRAT (ω) =

(

3.991 2.742 −3.019
⋆ 5.676 −4.689
⋆ ⋆ 4.474

)

.

Brute force search shows that this upper bound is tight,
i.e., γ̂∞ = γ∞. In particular,

∥

∥Fω(e
jθ)
∥

∥

2
= γ̂∞ for ω =

6.000 rad/s and θ = −1.209 rad.

4.2 Example 2

Let us consider the problem of determining the H∞ norm
of the system (1) with

Acc =

(

0 1
−2 −2

)

, Acd =

(

0.5 0.4
−0.7 0

)

Adc =

(

0 1
−1 1

)

, Add =

(

0.4 −0.5
0.3 0.6

)

Bc =

(

1 0
0 1

)

, Bd =

(

0 −1
1 0

)

Cc =

(

0 0
0 0

)

, Cd =

(

1 0
0 1

)

, D =

(

0 0
0 0

)

.

Hence, it turns out that nc = nd = nu = ny = 2. Let us
observe that the matrices Acc and Add are Hurwitz and
Schur, respectively.

Let us use compute the upper bound γ̂∞ on the H∞

norm γ∞. We solve the semidefinite program (68) by
using VRAT (ω) as in (35) with degree 2d = 0. We find

ξ̂ = 3050.077 and, hence,

γ̂∞ = 55.228.

The found VRAT (ω) is

VRAT (ω) =

(

146.879 −39.210
⋆ 119.378

)

.

This upper bound can be improved by increasing the

degree of VRAT (ω). Indeed, with 2d = 2 we find ξ̂ =
155.276 and, hence,

γ̂∞ = 12.461.

The found VRAT (ω) is ℜ(VRAT (ω)) + jℑ(VRAT (ω)) where

ℜ(VRAT (ω))=

(

37.830 + 27.557ω2 −8.238− 6.291ω2

⋆ 19.006 + 30.910ω2

)

1 + ω2

jℑ(VRAT (ω))=

(

0 j14.450ω
⋆ 0

)

1 + ω2
.

Brute force search shows that this upper bound is tight,
i.e., γ̂∞ = γ∞. In particular,

∥

∥Fω(e
jθ)
∥

∥

2
= γ̂∞ for ω =

1.040 rad/s and θ = 2.148 rad.

We have also investigated the use of complex Lyapunov
function candidates with polynomial dependence instead
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of rational, i.e., setting the denominator v(ω) to 1. Inter-
esting, by using the degree 2d = 2 as before, one finds only
the upper bound 54.981.

Lastly, we have tested the method in Paszke et al. [2008]
for comparison, which provides the upper bound 55.228.

5. CONCLUSION

We have proposed a novel approach for determining the
H∞ norm of 2D mixed continuous-discrete-time systems.
The approach is based on the use of a class of complex Lya-
punov functions with rational dependence on a parameter,
and provides upper bounds on the sought norm via LMIs.
It has also been shown that the provided upper bounds are
nonconservative by using rational functions in the chosen
class with degree sufficiently large.
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