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Abstract: This paper proposes a simple, non-iterative way of calculating low-complexity
controlled contractive sets, and shows how such set can be used for controller design for
systems with state and input constraints. The result is a low complexity controller, suitable for
implementation in embedded control systems with modest computational power and available
memory.

1. INTRODUCTION

Model predictive control (MPC) has found wide appli-
cation in industry (Qin and Badgwell [2003]). However,
as conventional MPC is based on on-line solution of an
optimization problem, computational requirements and
safety concerns have (practically) limited application to
systems with slow dynamics that are not safety-critical.
This lead to the development of explicit MPC, where all
possible optimization problems are solved off-line in the
design phase, and on-line calculations are reduced to a
simple table look-up and very simple arithmetic operations
(Bemporad et al. [2002], Töndel et al. [2003]). Such simple
on-line calculations enable the use of verifiable code for the
on-line implementation. Unfortunately, the computational
cost of developing the explicit solution grows very rapidly
with problem size, as does also the memory required to
store the explicit solution. For these reasons, application of
explicit MPC is limited to systems with a modest number
of states and/or short prediction horizons. This has also
motivated a substantial volume of research into finding
simpler, approximate solutions to explicit MPC, e.g., (Sci-
bilia et al. [2009], Kvasnica et al. [2010], Bemporad and
Filippi [2006], Jones and Morari [2009]).

An alternative approach to constrained control is the so-
called vertex control (Gutman and Cwikel [1986]) with re-
cent modifications to enhance robustness and performance
(Nguyen et al. [2013]). In this approach, knowledge of an
admissible input at each vertex of the operating region is
used to design the overall controller. However, it is often
difficult to find an operating region such that an admissible
input exists at all vertices - and the number of vertices may
itself be prohibitively high for high-dimensional systems.
Accordingly, the study of invariant and contractive sets
? This work was supported in part by the project Connections be-
tween constrained control design and the theory of positive dynamical
systems of the French/Norwegian Aurora programme.

has a long history in control. An early contribution for dis-
crete time systems is given by Bitsoris [1988]. Hennet and
Lasserre [1993] extends these results to the construction
of more complex positively-contractive sets. A complete
review of the contributions in this area is beyond the scope
of this paper, and we instead refer the interested reader to
Blanchini [1999] and the references therein.

There is also a substantial body of recent work on the
calculation of Robust Positively Invariant (RPI) sets,
see, e.g., Tahir and Jaimoukha [2012] and the references
therein. These works typically optimize the volume of
the RPI set with respect to linear state feedback, and a
motivation is to use the RPI set as a terminal set in a
robust MPC. However, our aim is to find a low complexity
controlled contractive set for design of a simplified MPC-
type controller, which implies that the controller will be
non-linear (typically Piece-Wise Affine, PWA).

Dorea and Hennet [1999] provide an iterative procedure
for constructing successively tighter outer approximations
to a contractive set. This (by now classical method) is the
starting point of our approach and will be presented in sec-
tion 2, where disadvantages are pointed out as motivations
for the present work. We go on to introduce conservative
assumptions which allow a non-iterative procedure to cal-
culate a particularly simple controlled contractive set. In
its basic form, this non-iterative procedure requires the
system’s A-matrix to be diagonalizable with real eigenval-
ues and -vectors. In section 3, it is shown that oscillatory
systems can also be handled, provided the oscillatory dy-
namics is sufficiently contractive. Section 4 is devoted to
identifying an initial set of the required form from which
the controlled contractive set can be calculated. Section
5 details how the contractive set can be used to design
low-complexity constraint control, and illustrates this with
an example. The final section contains conclusions and
directions for further work.
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2. FINDING A LOW-COMPLEXITY CONTROLLED
CONTRACTIVE SET

Consider the discrete-time system

xt+1 = Axt +But (1)

with state constraints given by X = {x|Hxx ≤ h} and
input constraints U = {u|Huu ≤ ku}. It is assumed that
h > 0 and ku > 0, such that X and U contain the origin
in their respective interiors.

Definition 1. A closed convex set P ∈ X with the origin in
its interior is called controlled γ-contractive and admissible
if, for a given γ ∈ [0, 1) and for all x ∈ P there exists an
u ∈ U such that Ax+Bu ∈ γP .

Whenever the more compact term controlled (γ-)contractive
set is used it is assumed that the required input is also
admissible, i.e., that the required input also fulfills the
relevant constraints.

2.1 The method of Dorea and Hennet

The method of Dorea and Hennet [1999] starts with some
initial polytopic set P0 = {H0x ≤ k0} containing the origin
in its interior. If the initial set is closed, the final set is
also guaranteed to be closed. The initial set P0 could for
instance be the state constraints - and if this is not closed it
could be intersected with some large ’box’ (minimum and
maximum constraints on each state). The method then
proceeds as follows

(1) Express the initial set, the contractiveness require-
ment, and the input constraint as a polytope in the
space of x and u:[

H0 0
H0A H0B

0 Hu

] [
x
u

]
≤

[
k0
γk0
ku

]
(2)

(2) Define P1 as the projection of this polytope onto x
(removal of redundant constraints is advised).

(3) If P0 = P1, the contractive set is identified, terminate.
Else, set P0 = P1 and go to 1.

Example 1:
Consider a spring-mass-damper system with the state
space representation

ẋ =

[
0 1
−7 −7

]
x+

[
0
1

]
u (3)

The system is discretized in time with a timestep of
0.01, and the resulting discrete time system has poles at
0.988 and 0.944. Next we run 100 iterations of Dorea and
Hennet’s algorithm, with a desired contraction factor of
0.99 and input constraints of u ∈ [−10 10]. This results
in the array of polytopes shown in Fig. 1. We see that
the procedure hasn’t converged even after 100 iterations,
and upon inspection it is found that the final polytope -
although apparently of a simple shape - is the intersection
of 62 halfspaces.

Changing the desired contraction factor to 0.98, the pro-
cedure still hasn’t converged after 100 iterations, but this
time the final polytope is described by the intersection of
only 10 halfspaces.
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Fig. 1. The result of 100 iterations with Dorea and Hen-
net’s method.

2.2 Lessons from 1d

Consider the system xt+1 = axt + but, with x ∈ [−kx kx]
and u ∈ [−ku ku]. Using Dorea and Hennet’s method, we
therefore get the following polytope in (x, u)-space:

−1 0
1 0
−a −b
a b
0 −1
0 1


[
x
u

]
≤


kx
kx
γkx
γkx
ku
ku

 (4)

In this case the projection is rather trivial, resulting in−1
1
−1
1

x ≤
 kx

kx
(γkx + bku)/a
(γkx + bku)/a

 (5)

Clearly, either the first or the second pair of inequalities
will be redundant. We will focus on the case when the
first pair of inequalities is redundant (as in the opposite
case the procedure has converged). We see that the i’th
polytope can be described by[

−1
1

]
x ≤ kx,i

[
1
1

]
(6)

where kx,i = (γ/a)kx,i−1 + bku/a. That is, the iteration
converges as a first order process, and the convergence is
very slow if γ and a are close. In this case, it is also trivial to
calculate the steady state value of the iteration. Note that
if γ/a > 1, kx,i will diverge - however, this corresponds to
the case where the second pair of inequalities is redundant
in the result of the projection above.

2.3 Particular choice of initial constraint set

Introduce four assumptions about the system and problem
formulation:

(1) The matrix A is diagonalizable.
(2) The matrix A has real eigenvalues.
(3) The matrix H0 describes ’box constraints’ (min/max

constraints) in terms of the modes of the matrix A
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(4) The matrix Hu describes simple ’box constraints’ in
the inputs.

The first assumption will be fulfilled for many systems.
The second assumption is probably a little more restric-
tive, and will be relaxed in the next section. The fourth
assumption is quite natural - it is rare that the constraints
in the inputs depend on each other. The third assumption
is clearly restrictive, and would require the initial ’box
constraints’ in terms of the modes of the matrix A to be
fitted to lie within the actual state constraints (i.e., the
resulting operating region will typically be restricted by
this choice of constraints).

Let V be the eigenvector matrix of A (normalized to have
columns of unit length), such that V −1AV = Λ, where Λ is
the (diagonal) eigenvalue matrix. The Dorea and Hennet
procedure then yields

[
V −1

−V −1

] [
0
0

]
[
V −1A
−V −1A

] [
V −1B
−V −1B

]
[

0
0

] [
I
−I

]


[
x
u

]
≤


k0
k0
γk0
γk0
ku
ku

 (7)

Substituting x̃ = V x, this yields

[
I
−I

] [
0
0

]
[

Λ
−Λ

] [
V −1B
−V −1B

]
[

0
0

] [
I
−I

]


[
x̃
u

]
≤


k0
k0
γk0
γk0
ku
ku

 (8)

The inequalities in (8) have been arranged in three groups
of inequalities. The Fourier-Motzkin projection algorithm
uses (positive) linear combinations of inequalities to re-
move the dependency on the variable that is to be elim-
inated in the projection. Ignoring for now the possibility
of linear combinations involving only the second group of
inequalities leading to non-redundant lower-dimensional
constraints after the projection, one is left with a similarly
simple problem as in the 1d case. The orientation of the
constraints do not change between iterations, making the
number of constraints constant (= 2n) for each iteration.
This is illustrated in Figure 2, where for the same dynami-
cal system as in example 1 we start with initial constraints
aligned with the modes of the system. We see that at each
iteration we get the same number of constraints. Here γ
is chosen as 0.98, and we see that the iterations make
the polytope shrink only along the mode corresponding
to the eigenvalue that is larger than 0.98. Convergence is
not faster than before. However, in this case it is trivial to
calculate the polytope to which the iteration will converge
- shown in solid red in the figure. The calculation of the
converged (red) polytope in Fig. 2 has been verified by
performing an iteration of the Dorea and Hennet algo-
rithm, returning the same polytope as the starting point.
For a multiple-input state space model we find that the
iterations for the γ-contractive set for the mode described
by eigenvector/eigenvalue pair c (c ∈ [0, . . . , nx]) are given
by

kc,i = (γ/λc)kc,i−1 +

nu∑
r=1

(
|[V −1B]c,r|ku,r

)
/λc (9)
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Fig. 2. The result of 100 iterations with initial constraints
along system modes - and final polytopic convergence
limit set.

and again we find that the steady state value of kc can be
expressed in an analytic form, thus avoiding any iterative
procedure.

Above we ignored the case when linear combinations
within the second group of inequalities in (8) lead to non-
redundant constraints after projection. These are cases
where the required input usage for the different modes
conflict, and the resulting limitation in contraction factor
(if such a simple contractive set is desired) does not result
from input constraints. A simple way of testing whether
this is a problem, is to perform one iteration of the Dorea-
Hennet algorithm, and verify that the set does not change.
If this fails, one may calculate the minimum achievable
contraction factor for a given set by solving the bi-level
optimization problem (Colson et al. [2005]):

maxxγ
∗ (10a)[

V −1

−V −1

]
x ≤

[
k
k

]
(10b)

[γ∗ u∗] = arg minγ,u0.5γ2 (10c)[
V −1

−V −1

]
(Ax+Bu) ≤ γ

[
k
k

]
(10d)[

I
−I

]
u ≤

[
ku
ku

]
(10e)

3. OSCILLATORY MODES

It was noted previously that the simple approach devel-
oped above is not directly applicable to oscillatory modes,
corresponding to a complex conjugate pair of eigenvalues.
However, if such oscillatory modes are sufficiently contrac-
tive, a low-complexity contractive set may nevertheless
be found. We will use simple considerations involving the
magnitude of the complex-conjugate eigenvalues to find
a simple contractive set and a conservative estimate for
the corresponding contraction factor. This conservative
estimate may afterwards be improved using the results of
Bitsoris [1988] or Hennet and Lasserre [1993]. Consider the
eigenvalue decomposition of the A matrix, A = V ΛV −1,
which for oscillatory modes yield

Λ = diag ( · · · λr + iλi λr − iλi · · · ) (11a)

V = [ · · · vr + ivi vr − ivi · · · ] (11b)

where λr and λi are scalars, and vr and vi are column
vectors of length nx. Instead of fully diagonalizing A, we
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choose instead to use the similarity transform resulting in
a 2× 2 block for each oscillatory mode, i. e.,

A = VbΛbV
−1
b (12a)

Λb =



λ1 0 · · · · · · · · · 0
0 λ2 0 · · · · · · 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . . λr λi

. . .
...

. . .
. . . −λi λr

...

0
. . .

. . . · · · · · ·
. . .


(12b)

Vb =


...

...
...

...
...

...

v1 v2
... vr vi

...
...

...
...

...
...

...

 (12c)

Consider next Figure 3. A contractive oscillatory mode
corresponding to a pair of complex conjugate eigenvalues
of magnitude |λ| starting inside the outer circle will by
necessity in the next timestep be inside the inner circle.
Consequently, a mode starting inside the outer square will
in the next timestep end up inside the inner square. Simple
geometric considerations then show that there exists a
contraction factor

γ ≥ |λ|
√

2 (13)

for the square-shaped set. Clearly, selecting a square
contractive set is conservative, a less conservative bound
could be derived for polytopic shapes (typically in the
shape of a regular polygon) that more closely approximate
the circle.

(r,r)

(|λ|r,|λ|r)

Fig. 3. Finding a polytopic contractive set for a contractive
oscillatory mode.

4. CALCULATING AN INITIAL SET ALIGNED
WITH THE MODES OF THE SYSTEM

This section addresses the fulfillment of assumption 3
above. The methods of sections 2-3 make it straight
forward to find a low-complexity controlled contractive
set (if this low-complexity set exists for the specified
contraction factor), with calculations that are decoupled

for each mode (or pair of oscillatory modes). However, even
though the magnitude of each mode is acceptable with
respect to the original constraints, it does not necessarily
follow that the overall state fulfills the constraints. This is
illustrated in Fig. 4.

Original state 
constraint set

Maximal magnitude of 
modes inside original 
state constraint set

Constraint set 
resulting from the 

direct application of 
maximal magnitude of 

modes Constraint set aligned 
with modes, scaled to 

fit inside original 
constrating set

Fig. 4. Original state constraint set and constraint on
individual modes.

Therefore, an initial set aligned with the modes of the
system that do not violate the state constraints is needed.
It is of course desirable that this initial set is as large
as possible, since the final set (in which the controller is
defined) will be a subset of this initial set. An algorithm
to calculate such an initial set is proposed next.

Given a system (1) with diagonalizable A-matrix A =
V ΛV −1, and state constraints Hx ≤ h. If the system
contains (sufficiently contractive) oscillatory modes, use
the matrix Vb from (12c) instead of V . It is assumed that
the state constraints describe a bounded set, otherwise
the set can be intersected with a large ’box’ to make it
bounded. In the following, it is assumed that desired initial
set is also symmetric, and thus can be represented as[

V −1

−V −1

]
x ≤

[
kx
kx

]
. (14)

Minor modifications are necessary if that is not the case. A
set aligned with the modes of the system can be calculated
by solving then following bi-level optimization problem:

max
k
J(k) = log

∏
j

kx,j

 (15a)

yi − hi ≤ 0∀i (15b)

yi = max
x

Hix (15c)[
V −1

−V −1

]
x ≤

[
kx
kx

]
(15d)

Here, j identifies the element of the vector kx, i refers
to row i of the inequality set Hx ≤ h, and there are
thus as many lower-level problems as there are such
inequalities. However, if the inequality set is symmetric,
only half of them need to be considered. The common re-
formulations of bi-level programming (Colson et al. [2005])
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apply. However, this will be practical only for cases with
few state constraints and few states.

Instead, careful examination of the geometry of the prob-
lem and the KKT conditions of the lower-level problems
will be employed. Assume that none of the constraints in
(15d) are parallel to Hi. If this assumption is violated, a
constraint on the corresponding element of k can be set
directly, and subproblem i can be removed. Consider an
initial parameter guess k∗x, and let y∗i be the corresponding
optimal solution to lower level problem i, and W a

i the
matrix collecting the left-hand-sides of the corresponding
set of active constraints. From the geometry of the problem
one can observe that W a

i is independent of the value of
k∗x. Each lower-level problem i thus imposes the following
constraint on the upper level problem

Hi [W a
i ]

−1
(kx − k∗x) ≤ (hi − y∗i ) (16)

The first and second order gradients of the objective
function are trivial to calculate:

dJ(k)

dk
=

[
· · · 1

kx,j
· · ·
]

(17a)

d2J(k)

dk2
= diag

([
· · · −1

k2x,j
· · ·
])

(17b)

It is thus simple to formulate a quadratic approximation
to the upper-level problem, where only the gradient and
Hessian of the upper-level optimization problem changes
between iterations.

Note (see, e.g., Fig. 4) that the scaling to achieve a
maximal size set aligned with system modes that is inside
the original state constraint set will depend on the weight
given to each of the modes. The objective function in (15)
maximizes the product of the elements of the vector kx.
If different weights are given to different modes, a linear
objective function may be chosen instead. In this case the
overall problem becomes a single LP problem. Clearly, if
the system has oscillatory modes, and a contractive set as
described in section 3 is desired, the two kx,j ’s associated
with the same oscillatory mode must be equal.

Example 2
Consider the following system, taken from Grieder et al.
[2004]:

xt+1 =

[
0.7326 −0.0861
0.1722 0.9909

]
xt +

[
0.0609
0.0064

]
ut

with the constraints −2 ≤ ut ≤ 2 and −100 ≤ xi ≤
100, i = {1, 2}. The largest set (in terms of the product of
the elements of k) inside the state constraints and aligned
with the modes of the system is shown in Fig. 5. Shown for
comparison are also the Maximal Output Admissible Set
(MOAS) for an LQ controller designed with unity weights
on inputs and states, and the corresponding feasible region
for an MPC controller with horizonN = 10 and the MOAS
as terminal set.

5. CONSTRAINT CONTROL DESIGN

Having a controlled contractive set, there are several possi-
ble controller design formulations possible that can utilize
the availability of such a set. Assume that a controlled
contractive set as defined by (14) has been found, and that
using the techniques of sections 2 and 3 this has been found
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MPC feasible set, N=10
LQ MOAS
Contractive set

Fig. 5. Maximal set aligned with system modes inside
original state constraints, maximal output admissible
set for LQ controller, and feasible region for MPC
controller.

to be controlled contractive with a contraction factor γ∗.
One possible control problem formulation is then

min
ut

xTt+1Qxt+1+uTt Rut (18a)

xt+1 = Axt +But (18b)[
V −1

−V −1

]
xt+1 ≤ γα

[
kx
kx

]
(18c)

where

α = max
j

kx,j
|[V −1xt]j |

and γ∗ ≤ γ < 1. From the problem formulation and the
construction of the controlled contractive set, it follows
trivially that the optimization problem is recursively fea-
sible (feasible if it is feasible for the initial state) and
exponentially stable. Note that we have here chosen an
objective function that weights the predicted state against
the input usage, under the contraction constraint. Clearly,
an alternative would be a straight forward maximization
of the rate of contraction (1− γ).

Example 3.
An 82-state distillation column model is considered (’Col-
umn A’, Skogestad [Accessed August 2013]). With level
and pressure loops closed, the model has two controlled
variables (the top and bottom compositions) and two
control inputs (manipulated variables, the reflux flowrate
and the bottom boilup). The model is scaled such that the
largest acceptable control offset is 1 (for each output), and
the largest control input is 1 (for each input). The model
is discretized with a timestep of 4 minutes (it is a slow
process). Due to the exceptionally strong coupling between
the states, the eigenvector matrix is virtually singular, and
the techniques of this paper therefore do not apply directly.
However, the model may be reduced without sacrificing
much accuracy. Accordingly, the model is reduced to 18
states, resulting in a stable model whose A-matrix has 6
real-valued eigenvalues and 6 pairs of complex-conjugate
eigenvalues. The complex-valued eigenvalues are of small
magnitude, and thus cause no problem (according to sec-
tion 3) for ensuring a reasonable contraction factor.
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First an initial set aligned with the modes of the system
is found, according to section 4. This is calculated with
the minimum and maximum constraints on each output,
and in addition specifying rather wide minimum and
maximum constraints on each state (to ensure a bounded
optimization criterion). The resulting initial set allows for
a variation in output 2 of ±1, while for output 1 the largest
variation inside the initial set is ±0.66. It is thus clear that
aligning the operating region with the modes of the system
to some extent limits the allowable operating region.

The two largest open-loop eigenvalues of the system are
λ1 = 0.98 and λ2 = 0.72. A contraction factor of 0.8
is chosen, and it is easily verified that this contraction
factor can be achieved for the initial set calculated above.
Note that the chosen contraction factor corresponds to a
decrease in the dominant closed loop time constant by
a factor of around 10. A parametric solution to (18) is
then found, with xt and α as parameters. This parametric
solution partitions the operating region into 218 partitions,
and for each of these partitions and affine state feedback
is found. Figure 6 shows the closed loop output response,

starting from y = [−0.1347 −1.0000 ]
T

.

0 2 4 6 8 10 12 14 16 18 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Timestep

O
ut

pu
t

 

 
Output 1
Output 2

Fig. 6. Controlled outputs of distillation column A.

The figure demonstrates good control with a relatively
simple explicit controller (218 partitions for an 18 state
system). This is achieved with acceptable input usage (not
shown due to space constraints).

6. CONCLUSION

A method for calculating a simple controlled contractive
set aligned with the modes of a system is described, and
a controller design based on the controlled contractive set
is proposed. These methods are applied to the controller
design for an 18-state distillation column model, resulting
in an explicit design with only 218 partitions. The pro-
posed method seems most appropriate for systems where
a single mode is significantly slower than the other modes.
The simple shape and simple calculation of the contractive
set are the main advantages of the proposed approach -
there may exist considerably larger contractive sets.

Further work is needed to consider disturbance handling
(with a guaranteed contraction factor), robustness issues,
unstable oscillatory modes, as well as repeated poles in
series (resulting in non-diagonalizable A-matrices).
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