Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

A Decentralized Asymmetric Weighting

Approach for Improved Convergence of

Multi-Agent Systems with Undirected
Interaction

Ann-Kathrin Schug* Annika Eichler * Herbert Werner *

* Institute of Control Systems, Hamburg University of Technology,
Germany (e-mail: {ann.schug},{annika.eichler}, {h.werner} @tuhh.de)

Abstract: This work considers the convergence rate of multi-agent systems with discrete-time
single-integrator dynamics and undirected interaction topologies. In recent work it has been
proven that in case of lattice interaction topologies the convergence rate can be bounded away
from zero, independent of the network size, using asymmetric weightings that give the interaction
graph a preferred communication direction. Approximation methods for more general graphs,
based on relative angles between agents, are presented, which suggest that the convergence rate
is bounded away from zero as well. This work proposes alternative approximation methods, that
improve the convergence rate compared to previous approximation methods. Furthermore it is
shown that the improvement of the approximation methods degrade in comparison to other
weighting approaches, the more the considered topology differs from a lattice graph. Therefore
an iterative algorithm is proposed, that extends the idea of a preferred communication direction
to general graphs, which are not similar to lattices or where the relative angles are not known.
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1. INTRODUCTION

There is a wide range of problems, where communicating
agents in a network or members of a group should agree
on a common value, by iteratively aggregating information
from their neighbors until consensus is reached. This task
is called distributed consensus problem and has received
considerable attention over recent years, due to its wide
range of applications, e.g. in multi-vehicle rendezvous,
data fusion in large sensor networks, cooperative or forma-
tion control of multi-agent systems, task assignment, etc.
See Murray (2007); Ren and Cao (2011) and the references
therein for an extensive list of applications.

One important issue in distributed consensus is the con-
vergence rate, which determines the number of iterations,
that are necessary until consensus is reached within a
prescribed bound. A consensus protocol with a small
convergence rate needs many iterations and is thus less
useful in practice. Therefore much effort has been spent on
analyzing and optimizing the convergence rate for various
types of consensus protocols. Here discrete-time single-
integrator systems are considered, where the convergence
rate is determined by the choice of weights with which the
information from different neighbors is weighted. Here one
can distinguish between determining the weights centrally
or in a distributed way. In the first case the interaction
graph has to be fixed and known a priori. In Xiao and
Boyd (2004) the weighting is optimized centrally for a fixed
and undirected graph, i.e. symmetric interaction topology,
by solving an LMI problem, which results in symmetric
weighting factors. In Kim et al. (2009) the same has been
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done for directed graphs using gth-order spectral norm
minimization and gradient sampling. There the auxiliary
conclusion has been drawn that for symmetric interaction
- which will be considered in this paper - symmetric
weightings represent a local minimum of the convergence
rate optimization, while asymmetric weighting can lead
to better results. This is confirmed in Mangoubi et al.
(2013), whose results on periodic gossip algorithms can be
extended to the deterministic case considered here. The
convergence rate of centralized and distributed weighting
approaches is analyzed and bounded in Olshevsky and
Tsitsiklis (2011). All the approaches discussed there for
different graphs have in common that the upper and
lower bounds of the convergence rate scales with 1/N3
or 1/N?, where N is the number of agents. That means
that for large scale systems the convergence rate can be
very small. Similar bounds, that scale with 1/N%/P on
the convergence rate for the special class of D-dimensional
lattices are given in Hao and Barooah (2012), if symmetric
weights are used. Motivated by that result, it is shown
that with asymmetric weights, bounds independent of N
can be found for lattices, such that even for infinitely large
lattices the convergence rate can be bounded away from
zero. Furthermore Hao and Barooah (2012) propose an
distributed approximation method of the result for lattices
to graphs, where the positions are known and the structure
is similar to lattices. This approximation method is further
examined in this work. In addition the method is extended
to graphs, where no knowledge of the position is required.
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1.1 Outline

In Section 2 basic concepts of graph theory are reviewed
with a focus on lattices and the concept of asymmetric
weightings. This concept is extended in Section 3 to
general graphs; in Subsection 3.1 to graphs similar to
lattices and in Subsection 3.3 to general graphs. Numerical
examples are given for each case. Conclusions are drawn
in Section 4.

2. PRELIMINARIES

Consider a network with N agents and m communication
links, that is described by an undirected graph G = (V, €)
with vertex set V = {1, ..., N}, representing the agents and
edge set £ € V x V, which describes the communication
topology. For undirected graphs we have {i,j} € £ if and
only if {j,i} € €. Here {i,j} € &€ implies that the ith agent
receives information from agent j. The set of neighbors of
the ith agent is defined as N; := {j € V : {i,j} € &}
The degree d; of a vertex i is equal to the cardinality of
N;. There exist different matrix representations for graphs.
Well-known is the adjacency matrix A with A4;; = 1
if {i,j} € & and A;; = 0 otherwise. As alternative
representation, the Laplacian matrix L can be determined
form the adjacency matrix as L = D — A, where D is a
diagonal matrix with D; ; = d;. The normalized adjacency
is given as A,, = V' DAVD and the normalized Laplacian

similarily.
The consensus protocol considered here is

vi(k +1) = Wizi(k) + > Wi j;(k) (1)
JEN;
for agent i, where z; is ith agent’s state at time step k
and W, ; the associated weight of edge {i,7} € £. The
consensus protocol (1) for the whole network is then

2k + 1) = Wa(k) (2)

with 2 = [z1,...,2n]T and W,; = 0 if {i,j} ¢ €&.
Since W;; > 0 and W1 = 1, the weighting matrix W is
stochastic. If the corresponding graph is connected, W is
irreducible and primitive, such that (2) reaches consensus,
and the eigenvalues of W satisfy 1 = Ay > Ao > ... >
Ay > —1. The convergence rate R is defined in Hao and
Barooah (2012) as the spectral gap

R =1—max(| |, |AnN])- (3)
2.1 Lattice Graphs

In Hao and Barooah (2012) an asymmetric weight design
for D-dimensional lattice graphs is proposed. Starting
from one-dimensional lattices, i.e. line graphs, where each
agent communicates only with its nearest neighbor, the
weights are given as

1+¢ 1—¢

Wiiv1 = 5 Wit1i = 5 (4)
where € € (0,1) is the factor of asymmetry. The diagonal
entries result from W1 = 1. Using exact formulas for

the eigenvalues of tridiagonal matrices (Yueh and Cheng,
2008), the convergence rate (3) can be lower bounded
by an expression independent of N. This method can be
applied to any D-dimensional lattice graph since they are

Fig. 1. (a) General idea of asymmetric weights and (b) its
approximation to general graphs
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In the following, 2-dimensional lattices and general graphs
in the in the 2-dimensional plane are considered.

3. GENERAL GRAPHS

We now discuss how to extend the results for lattices
to general graphs. In the following, we will distinguish
two cases: (i) graphs where the geometric positions of the
agents correspond to the topology (e.g. proximity graphs)
and which are thus ”similar” to lattices, and (ii) graphs,
where geometric positions of the agents and topology are
unrelated and the position might even not be known.

3.1 General Graphs Similar to Lattices

In Hao and Barooah (2012) the approximation of lattice
graphs to more general graphs has been studied. Here
instead of the eigenvalue problem of the weighting matrix,
the eigenvalue problem of the corresponding Laplacian
L =1 — W is considered. The eigenvalues u of L relate
to those of W as A\; = 1 — ;. The eigenvalue problem for
the one-dimensional case

14+ —1—=¢
i& % —1—e g; i;
2 2
,12+5 1}_ 71275 CI)N—I CDN—I
s N N

can be written as the difference equation
1P =20+ P e i — Py .
ToN 1/N2 TN 2o/N M
for i = 1,...,N with ®; = &; and &y = Py4;. This
difference equation can be continuously approximated to
1 9*0(x) e 0®(x)
2N 922 N or He(z)
for a function ®(x), that satisfies (6) at the discrete points
®; = ®()|y—i/(n+1), Which are meant to be the agents po-
sitions determined by the lattice topology. Note that here
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a fixed relationship between lattice topology and lattice
structured positioning is assumed. This can be extended
to any D-dimensional lattice. A 2-dimensional lattice is
shown in Fig. 1(a), where one agent in the center with
its neighbors is picked in Fig. 1(b). From the lattices it is
known that the weights for the neighbors 2, 3,4 and 5 are
fixed to WLQ = (1+€)/4, W173 = (1+€)/4, W174 = (1—6)/4
and W1 5 = (1 —¢)/4. From the continuous approximation
of the eigenvalue problem the idea is to introduce a con-
tinuous approximation of the weights to weight neighbors
at any general position as agent 6 shown in Fig. 1(b).
The weights of this approximation are determined by a
function g(@) that depends on the relative angle 6 between
two agents. In order to satisfy the weights in the discrete
directions given by lattice graphs, g(#) has to satisfy

1+e¢ T 1+e
(): > 5 = )
o lfs g(?h?' il—e (7)
g(m) = 4 9<2>= 1

In Hao and Barooah (2012) an approximation by linear
interpolation between the discrete points is proposed,
shown in Fig. 2. This is called ¢);, in the following. Here
with gqis, a piecewise constant interpolation, and gs,, an
interpolation with a sinusoidal function, two additional
functions are proposed, as shown in Fig. 2. The fixed
directions by the lattice are marked by black dots. To
ensure the stochastic property of W the weights are
determined as
9(0i5)

- ZkeNf; g(ei,k). ®

Note that the sinusoidal function gg, reaches negative
values for e < 1/ V2, therefore the absolute value of ggin
for larger amounts of asymmetry are used. Note that for
other methods as the optimal symmetric design by Xiao
and Boyd (2004) negative values are not excluded, but here
W is restricted to be stochastic.

Wi

In general, according to (5), a larger convergence rate can
be expected for a larger factor of asymmetry. With increas-
ing asymmetry the information exchange in the 0- and
7 /2—direction is preferred, such that the main information
flow direction is in the 7 /4—direction as shown in Fig. 1(a).
This is confirmed in Fig. 4(a), where the convergence rate,
achieved with the different approximation functions from
Fig. 2 for increasing ¢ is shown. The considered graphs
with N = 100 vertices were generated by perturbing

the positions of a (\/N XV N ) 2-dimensional lattice, with
vertices positioned at intervals of 1/v/ N, by Gaussian zero
mean noise with a standard deviation of o = 1/ (4\/ N )

Two vertices are connected if their distance is < r = 2/ VN
as in Hao and Barooah (2012). In total 100 sample graphs
were considered and the average is shown in Fig. 4(a).
As expected, the convergence rate increases with rising
e up to € = 0.8, whereby the sinusoidal approximation
outperforms the others, followed by gqis. The inflection
point at ¢ ~ 0.7 can be explained with the sinusoidal
function getting negative for ¢ < 1/4/2 = 0.707, such the
the absolute value has to be taken and thus the weighting
function is not continuously differentiable. The different
curves of the convergence rate with different approxima-
tions show that not only ¢ influences the convergence rate,
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Fig. 3. Approximation function in the xy—plane with center
of line on the 7/4—direction for ¢ = 0.6

but also the shape of the approximation function, since
it also determines, to what degree the 7/4—direction is
preferred. In Fig. 4(b) the center of line of the approxima-
tion functions in the 7/4-direction, with respect to which
they are symmetric, is plotted. For one value € = 0.6 this
is shown exemplarily in Fig. 3, where the approximation
functions from Fig. 2 are plotted in the xy—plane and the
center of line of the respective curves is shown, located on
the 7/4-axis. Based on this in Fig. 4(b) the distance from
the center of line to the origin is then shown for increasing
€. Here as well for small € the sinusoidal function leads
to largest asymmetry, which increases with & increasing
up to ¢ = 1/4/2, and confirms the shape of Fig. 4(a).
With the conjectured dependence of the center of line
on the approximation function and the increase of the
convergence rate, the shape of the approximation function
can be further optimized.

Numerical Comparison with Other Approaches — The
weighting approach using the approximation functions
presented in Fig. 2 is now compared with the correspond-
ing two weighting approaches in Hao and Barooah (2012),
first with the optimal symmetric weighting (OS) by Xiao
and Boyd (2004). In this centralized weighting approach
the optimal symmetric weightings are determined by solv-
ing an LMI problem. The second approach is the decentral-
ized Metropolis-Hastings method (MH), where the weights
are determined as W;; = 1/d;, if {ij} € £. Note that
this leads in general to non-symmetric weights unless the
considered graph is balanced.

The considered graphs were generated as explained in the
previous subsection for different numbers of agents V. For
each value of N, 100 sample graphs were considered and
the results were averaged. In the following the asymmetry
factor is set to € = 0.5. The logarithmic plot of the
convergence rate R over the number of agents N with a
constant € = 0.5 is shown in Fig. 5(a). For a more detailed
comparison Fig. 5(b) illustrates the stochastic distribution
of the convergence rates for N = 100. It describes the
percentage of samples which have at least a certain conver-
gence rate, thus the more a distribution function is located
to the right the faster the convergence. The non-symmetric
MH design leads to the slowest convergence rates, which
is decreasing with increasing N. This suggests that asym-
metric weights in general do not improve convergence rate
or lead to bounds away from zero, unless the asymmetry is
not randomly distributed but leads to a preferred direction
in the network. The asymmetric weight design dependent
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Fig. 5. Comparison of the convergence rate for ¢ = 0.5 in
(a) for increasing number of agents and in (b) by the
stochastic distribution for N = 100

on the angular position is in fact better than the opti-
mized symmetric design. Recall that optimized symmetric
design is a centralized approach and requires knowledge of
the graph topology, in contrast to the the weight design
approaches presented here. For the asymmetric weighting
approach, it appears that the convergence rate is bounded
away from zero independent of the size of the network. As
expected from the previous results, the sinusoidal function
outperforms the other asymmetric weighting methods.

3.2 Performance Dependence on Similarity to Lattice
Graphs

It can be expected that the asymmetric weighting meth-
ods, based on a generalization of the results for lattice
graphs to general graphs, shows best results when the
considered general graph is similar to a lattice. This is
discussed heuristically in the following. The considered
graphs with NV = 100 are generated by perturbing the

positions of a general (\/N x VN ) 2D-lattice with vertices

positioned at intervals of 1/v/N, with Gaussian zero mean
noise with standard deviations o = 0,0.005, ...,0.05. The
nodes are connected if their distance is < r, where the radii
r = 0.2,0.21,...,0.31 are considered. For each value of
(o,7), 100 samples were considered and the average taken
as result. In Fig. 6(a) the ratio Ry, /Ryvpuis shown depend-
ing on o and r, where Ry, is the resulting convergence rate
using asymmetric weighting with g¢s, and Ry obtained
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Fig. 6. (a) Ratio Rgn/Rmu and (b) distance of graphs to
lattices using (9) averaged over 100 samples

0.3

using the Metropolis-Hastings method. We consider that
ratio, since it is clear that for both methods the absolute
value of the convergence rate increases with the number of
edges, which we obtain with increasing radius, while the
ratio shows the improvement gained with the asymmetric
weightings. It can be seen that the asymmetric weighting
outperforms the MH most for small » and decreases with
rising r, while the influence of ¢ is hardly visible. The
edit distance (Gao et al., 2010) is used in graph theory
to measure the distance between graphs. In Wilson and
Zhu (2008) another quantity, based on the graph spectra,
is introduced to measure the similarity of graphs, given
a graph G with the graph spectra p; < ps < ... < pn.
Here the graph spectra can be the spectra of respective
(normalized) Laplacian matrix, (normalized) adjacency
matrix or any other matrix used to represent graphs. The
distance of G to another graph G with i1 < 1o < ... < iy
is expressed by

H[Hl u2---,uN]T—[ﬂ1 ﬂz"'ﬂN]TH~ 9)

It has been shown in Wilson and Zhu (2008) that this
quantity shows linear dependence on the edit distance and
can thus be used to quantify the notion of similarity of
graphs. Since the edit distance is cost-intensive to calcu-
late, we use the quantity (9). For the graphs considered
in Fig. 6(a), their distance to a lattice graph is shown in
Fig. 6(b) using (9). Here the spectra of the normalized
adjacency matrix are used. Small values imply strong
similarity to lattices. The analogy of the two plots confirms
the expectation that the performance of the asymmetric
weighting depends on the similarity of the respective graph
with a lattice.

3.8 General Graphs Differing from Lattices

In the previous section it has been shown that the more a
graph differs from a lattice, the smaller is the performance
increase obtained by the asymmetric weighting method,
compared to other approaches as the Metropolis-Hastings
method. Furthermore, the geometric graphs considered so
far were always related to the position of agents. If the
position is not related to the topology or is not known at
all, the approach is not useful. Therefore in the following
an approach, referred to as boss algorithm, is proposed,
where without any knowledge of positions we can make
use of the obvious advantage of the asymmetric weights,
if they give the network a preferred direction and are not
distributed randomly.
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Fig. 7. Example for boss algorithm

The idea is to select a starting node, referred to as boss
in the following. The direction originating from the boss
along the spanning tree, which would be gained in a
breadth-first search, is the resulting preferred one, the way
back the lowly weighted one. Directions between nodes,
within the same distance from the boss, are weighted
equally without preference. This is shown exemplarily in
Fig. 7, where the large black dot is selected as boss. The
preferred directions are shown in black with arcs and the
edges without preference in gray. With increasing distance
to the boss the nodes get smaller and lighter. We introduce
a vector B(k) signifying with B;(k) = 1 that agent 7 has
been assigned as boss. For the preselected boss agent vy,
we initialize B,(0) = 1, while all others start with zero.
The values B; (k) have to be exchanged between neighbors.
The weights are updated iteratively, thus (2) changes to
z(k+1) = W(k)x(k). Details are shown in Algorithm 1.

Lemma 1. Algorithm (1) leads to asymptotic convergence
in  and the weighting matrix W converges in finite time
after e(uvy)-steps, where €(uvy) is the eccentricity of the boss
vertex, which is the maximum graph distance between the
boss vertex v, and any other vertices v; € V.

Proof. With respect to the convergence of the weighting
matrix, it is clear from the algorithm (line 7,8), that if all
vertices have been assigned as boss, W does not change
anymore, thus has converged. In the first step all vertices
with graph distance one from the boss are assigned, in the
second step, those with distance two, etc. Thus after e(vy)
steps, all vertices have been assigned. If the underlying
graph, which does not change with k is connected, then
W (k) with W (k)1 = 1 and W; ; > 0 is primitive for every
k, as well as Hle W (i), thus x converges. See e.g. Ren
and Beard (2005) Theorem 3.10.

Boss-Selection It can be expected that the performance
of the boss algorithm crucially depends on the choice of the
boss vertex. In the following different possibilities due to
different properties are presented and compared. All leader
selection methods have in common, that the boss selection
has to be centrally done in advance. It seems intuitive, that
an important vertex in the network should be selected as
boss, which reminds of the leader selection problem (Clark
et al., 2012, 2013). Thus one possible boss selection is
the relaxed leader selection approach for one fixed leader
presented in Clark et al. (2012). This method optimizes
the choice of an leader with respect to the convergence
rate, for a given weighting matrix W by an LMI. Since
for the boss algorithm, the resulting weighting matrix W
(after it has converged) depends on the choice of the boss
vertex and is thus not known in the boss selection step,
the Laplacian matrix is thus taken instead. Boss selection
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Algorithm 1 Boss Algorithm

[y

Initialization: B, =1, B; =0Vi € {1,...,N \ b}

2: Iteration for time step k:

3: update g

4: for all {ij} € £ do

5: if B;(k) =0A Bj(k) =1 then
6.

7

8

gij (k) = 15%, g;a(k) = 3%, Bi(k +1) =1
else if B;j(k) =1A Bj(k) =1 then

: 9ij (k) = giz(k — 1), gji(k) = gji(k — 1)
9: else g;j(k) = gji(k) = %
10: end if
11: end for
12: update W
13: for all i,j € {1,..., N} do Wi;(k) = 22"
len; gi1 (k)
14: end for
15: update =

16: z(k+1) = W(k)xz(k)
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Fig. 8. Boss selection: stochastic distribution of conver-
gence rate

according to the maximum and the average degree, as used
for comparison of the leader selection in Clark et al. (2012),
are also considered. As shown in Lemma 1 W in the boss
algorithm has converged after €(v;)-steps. To consider both
extreme cases for €(vp), the central vertex with minimum
eccentricity in the network and the peripheral vertex
with maximum eccentricity are compared as possible boss
vertices as well. For small networks up to 100 vertices,
hardly a difference between the different boss selection
approaches is recognizable. With increasing network size
the boss selection according to Clark et al. (2012) and
the boss selection to to the maximum degree outperform
the others, followed by central vertex choice and the
mean degree, while the peripheral vertex choice shows the
poorest result. For N = 450 the stochastic distribution
of the convergence rate, after the weighting matrix has
converged, for 100 samples is shown in Fig. 8, where curve
labeled ”opt. LMI” is the choice due to Clark et al. (2012).
In the following we will only consider the boss selection
based on Clark et al. (2012) and the boss selection based on
the maximum degree, since they led to best results. Note
that while the weighting scheme itself is decentralized, the
choice of the boss as presented here is made centrally.
While the vertex with the maximum degree can easily be
determined by solving a certain consensus problem, this is
not possible for the solution of an LMI as needed in Clark
et al. (2012).

Numerical Comparison with Other Approaches  Fig. 9
shows the performance rate for the boss algorithm in com-
parison with previously presented methods for different
values of N. For each value of N, 100 sample graphs were
considered. To generate these graphs, the vertices for each
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Fig. 9. Comparison of boss-algorithm with other ap-
proaches

sample were randomly positioned inside the unit square,
and they were connected, if their distance was less than
3/ v/N. Notice that the convergence rate achieved with
the MH method and the asymmetric weighting with the
approximation function gg, with € = 0.5 hardly differ,
in contrast to Fig. 5(a). This is not surprising in the
light of Section 3.2, since the graphs considered here were
created completely randomly without any similarity to
lattices. The boss-algorithm with the boss selection as in
Clark et al. (2012) and the boss selection according to the
maximum degree hardly differ as well. For small N the
optimal symmetric weighting (OS) outperforms all other
considered methods. But with rising N the decrease of the
convergence rate (in logarithmic representation) obtained
with the the boss algorithm diminishes, while it keeps
constant for the optimal symmetric weighting. Thus for
N > 300 the boss-algorithm leads to better results. One
should keep in mind that while the optimal symmetric
weights are optimized centrally, with the boss-algorithm
the weights are determined in a decentralized manner.
For the boss algorithm the convergence rate for the con-
verged W is shown in Fig. 9. The number of iterations
to achieve this, depends, as shown in Lemma 1, on the
eccentricity of the initial boss-vertex. For both considered
boss-selection approaches, the average eccentricity over all
samples hardly differs: for N = 20, ¢(vp) = 1,4, and it
increases almost linearly with v/N, resulting in e(v,) = 8.7
for N = 500.

4. CONCLUSION

In Hao and Barooah (2012) it has been proven that for
the consensus protocol for discrete-time single-integrators,
for lattice interaction graphs the convergence rate can
be bounded away from zero using asymmetric weights.
Approximation methods are given to adapt this idea to
more general graphs and are confirmed for the exam-
ple of perturbed lattice graphs. Here new approximation
methods are proposed, that outperform the previous one.
With the center of line, a quality measure is given that is
expected to determine the performance of different approx-
imation functions. Furthermore the conjecture that the
approximation degrades in performance if the considered
graph differs significantly from a lattice graph, is confirmed
when the euclidean norm of the difference of the graph
spectra is used as measure of distance. To adapt the idea
of asymmetric weighting to enforce a preferred communi-
cation direction for general graphs, the boss algorithm is

proposed, where the weightings are iteratively updated.
All approaches are compared with Metropolis-Hastings
weights and optimal symmetric weightings, where the
weightings are determined centrally, and, at least for large
networks the boss-algorithm outperforms both, while hav-
ing the advantage that the weights can be determined
decentralized without global knowledge of the topology.
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