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Abstract: Autonomous vehicles are becoming a reality that in the next future will most probably start
populating everyday roads. Such vehicles can, on the one hand, increase safety through automated
driving, and, on the other, be a means of transportation also for people with disabilities who cannot
move alone on commercial cars. Within this class of vehicles, mechanical layouts that allow an actuator
redundancy coupled with electric propulsion appear particularly interesting, as they make it possible to
design motion controller that can optimally blend multiple objectives, both dynamic, safety and driver-
oriented. This paper considers such setting and concentrates on the design of a path-following algorithm
with minimum-time features, with the aim of combining performance and energy-oriented optimization
of the vehicle motion. The effectiveness of the approach is assessed by means of simulation tests carried
out on the CarSim vehicle simulation environment.

1. INTRODUCTION

Active vehicle dynamics controllers, introduced in commercial
cars during the 1980s with anti-lock braking systems, [Savaresi
and Tanelli, 2010] and traction controllers, and extended more
recently with lateral stability control systems, [van Zanten,
2002], are recognized today as indispensable tools to ensure
safe motion of the vehicle. The next generation of electronic
aids is expected to evolve toward the full automation of the
vehicle and, eventually, the release of humans from driving
duties. This can bring enormous benefits to vehicle users.
To start with, releasing the driver from the tedious manual
driving operations may allow focusing on more productive
and enjoyable tasks, [Coelingh and Solyom, 2012]. From a
safety point of view, cars that are “impossible” to crash can
be envisioned, which can further reduce road fatalities. From
a social standpoint, the possibility of having disabled people
(e.g., visually impaired) driving without the assistance of other
humans represents another example of the impact that such
technologies can bring to people’s lives [Urmson, 2012].

Within this interesting context, the present work focuses on
path-following controller, with particular attention to vehicle
configurations with highly redundant actuators. The main chal-
lenge in the development of path-following algorithms for
ground vehicle lies in the complexity of the dynamic models,
especially for the nonlinear mechanisms associated with the
friction forces between the tyre and road. One way to deal
with such issues is to rely on idealized assumptions, derived
mainly from the mobile robots literature, such as pure rolling
of the tyres and zero side-slip, to derive simple, but practical,
vehicle kinematic models, [Morin and Samson, 2008], which
can be possibly extended to comprise the actuators dynamics,
as discussed in e.g., [Werling et al., 2010]. Nonetheless, since
these approaches do not take into account the tyre-road fric-

tion forces, together with the limited validity of pure-rolling
and zero side-slips assumptions, they end up confining the
applicability of kinematic-based controllers to low-speed ma-
noeuvres, [Werling et al., 2010]. To improve such models,
approaches have been proposed which make use of the bicy-
cle model, see e.g., [Ferrara and Vecchio, 2009]. The main
shortcoming in this case is related to the assumption that the
lateral and longitudinal vehicle dynamics are decoupled, which
forces to design the path following algorithm under the as-
sumption that the vehicle longitudinal speed is constant through
the corners, imposed by a (longitudinal) velocity regulator that
operates independently from the lateral motion controller.

To overcome these limitations, the proposed path following
controller will employ a nonlinear two-track vehicle model,
with nonlinear tyre forces and dynamic load transfer. Although
this leads to increased modeling complexity, it will be shown
that the model can be effectively employed and that it is
instrumental to allow the path-following controller to operate
the vehicle near its adhesion limits. The redundant architecture,
with four in-wheel-motors (4IWM) and four wheel-steer (4WS)
is the enabling technology that allows us to handle, within a
nonlinear framework, the min-time path following problem.

The main contributions of the work are the adaptation to auto-
motive applications of the convex formulation of the minimum-
time path following problems that was devised in robotics [Ver-
scheure et al., 2009][Pfeiffer and Johanni, 1987]. It will be
shown that, thanks to the specific vehicle platform, we can ex-
plore trade-offs between performance and energy consumption.
Specifically, for a given, pre-specified path, the user can config-
ure the controller so that the vehicle travels through the path
i) in minimum-time; ii) with minimum-energy; or iii) pursuing
trade-off between the two. Consequently, in contrast to the clas-
sical path-following setting in which the vehicle velocity is kept
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Fig. 1. Two-track vehicle model.

constant, [Morin and Samson, 2008], the proposed controller
generates appropriate speed profiles that take into account the
adhesion limits of the car and the user’s preferences (lap-time
vs energy consumption).

2. VEHICLE DYNAMICS MODEL

A two-track nonlinear vehicle model will be presented, com-
posed of 4 independent wheel drive, and 4 independent wheel
steering. To make the model tractable, the roll and pitch dynam-
ics of the EV will be neglected. The dynamic evolution of the
vehicle position p

p =
[

pX pY pψ
]T

, (1)

where the XY axis is fixed with the Earth and pψ is the angle
between the vehicle orientation and the X axis, i.e., the yaw-
angle, is defined as

Mp̈ = T(p)(F −R(p, ṗ)+D) , (2)

where M = diag([m,m, Iz]), m is the vehicle mass, Iz the yaw
inertia, D ∈ R

3 a generalized force due to the effect non-
modeled dynamics and disturbances, R(·) ∈ R

3 are resistance
forces opposing the vehicle motion, and F are the centre of
gravity (CoG) forces

F = [Fx Fy Mz]
T
∈ F⊂ R

3, (3)

with Fx being the longitudinal force, Fy the lateral force and
Mz the yaw-moment. In the sequel, it will be assumed that the
resistance forces can be decomposed into two components

R(p, ṗ) = R1+R2(p, ṗ)ṗ, (4)

where R1 ∈ R
3 is a constant term due to rolling resistance and

R2(p, ṗ)∈R
3 is a resistance term related with the aerodynamic

drag. With respect to this last component, it will be further
considered that, for α ≥ 0,

R2(p,αṗ) = α R2(p, ṗ). (5)

The matrix T(p) employed in (2), represents a transformation
between variables expressed in the vehicle local frame and the
XY axis. For example, the vehicle velocity expressed in the
local coordinates v = [vx vy ψ̇ ]

T (i.e., longitudinal, lateral and
yaw velocity) is related to dp/dt through

d p
dt

=





cos(pψ) −sin(pψ) 0
sin(pψ) cos(pψ) 0

0 0 1



v = T(p)v (6)

The generalized force/moments F are a direct consequence of
the individual friction forces, FLi,FCi, generated by each tyre

(see Fig. 1), while the set F in (3) represents the admissible set
of force/moments that can be applied to the CoG. To model
these forces, a simplified version of the well-known magic
tyre formula [Pacejka, 2002] will be employed, yielding the
combined-slip description used in [de Castro et al., 2013].
Remark 2.1. The longitudinal (FLi) and cornering (FCi) forces
of the tyre must fulfil

F2
Li +F2

Ci = F2
i ≤ (µmaxFzi)

2, i ∈ T, (7)

where T = {1l,1r,2l,2r} is set of indexes associated with the
vehicle wheels. The previous result is known in the literature
as the friction circle constraint 1 , and essentially states that the
force generated by the tyre must lie within a circle with a radius
defined by the vertical load and the friction peak µmax. The
friction circle constraint also holds for the forces defined in the
xy coordinates
Remark 2.2. the forces Fxi,Fyi are confined to the following set

F2
xi +F2

yi =

∥

∥

∥

∥

W(δi)

[

FLi
FCi

]∥

∥

∥

∥

2

2
= F2

i ≤ (µmaxFzi)
2, i ∈ T,

where W(δi) is a rotation matrix that realizes the change of
coordinates and does not affect the tyre force magnitude.

The tyre vertical forces Fzi are affected by the load transfer
between front and rear axles and left-right wheels that the
vehicle experiences when subject to longitudinal and lateral
accelerations. To model these factors, the following quasi-static
mapping will be used, [Kiencke and Nielsen, 2005]

Fz = F0
z +ρxax +ρyay, (8)

Fz = [Fz1l Fz1r Fz2l Fz2r]
T
, F0

z =
mg

2(l1 + l2)
[l2 l2 l1 l1]

T

ρx =
mh

2(l1 + l2)
[−1 −1 1 1]T

ρy =
mh

c(l1 + l2)
[−l2k f l2k f −l1kr l1kr]

T
,

where F0
z is the static force distribution, h the height of the

CoG, k f , kr represent the front and rear coefficients associated
with the lateral load transfer due to vehicle roll (see [Gillespie,
1992]), g is the gravitational acceleration, (l1, l2) characterize
the position of the CoG (see Fig. 1) and ax, ay the vehicle
longitudinal and lateral accelerations, respectively

[

ax
ay

]

=







1
m

0 0

0
1
m

0







(

F −R(p, ṗ)
)

. (9)

The rotational dynamics of each wheel is given by
Jω̇i = Ti − riFLi, i ∈ T,

where J is the wheel inertia, and Ti the wheel torque, generated
by a combination of IWM (Tm,i) and brake-by-wire actuators
(Tb,i), i.e., Ti = Tm,i + Tb,i. The main limiting factors in the
actuators are the acceleration power and acceleration torque
limits associated with the IWM, yielding

T ≤ Ti ≤ T , Tiωi ≤ P, i ∈ T, (10)
where T ∈ R+ is the maximum acceleration torque that the
motor can develop, T ∈R− the maximum braking torque of the
brake-by-wire system, and P the maximum acceleration power,
1 For simplicity, the representation of the tyre-road friction forces considered
here assumes an isotropic condition, which leads to the friction circle constraint
instead of an elliptic one.
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which are assumed to be equal for all wheels. The braking
power limits are not explicitly considered here, since, due to
safety concerns, modern braking systems are generally able
to reach the friction limits. Further, it is assumed that each
wheel has independent steering capabilities, constrained to the
following sets

−δ ≤ δi ≤ δ , i ∈ T, (11)

where δ is the maximum steering range.

In summary, the vehicle model can be compactly represented
as

Mp̈ = T(p)(F −R(p, ṗ)+D) (12a)

F = BFxy (12b)

Fxyi = W(δi) [FLi FCi]
T
, i ∈ T (12c)

[

FLi
FCi

]

= F̃i(p, ṗ,ωi,δi,Fzi,θT ), i ∈ T (12d)

Fz = F0
z +

ρx

m
eT

1 (F −R)+
ρy

m
eT

2 (F −R) (12e)

Jω̇i = Ti − riFLi, i ∈ T (12f)

T ≤ Ti ≤ T , Tiωi ≤ P, −δ ≤ δi ≤ δ , i ∈ T (12g)

where F̃i ∈R
2 is the friction force, θT represents the parameters

of the friction model, Fxyi refers to the x and y force components

of the tyre i ∈ T, and eT
1 = [1 0 0]T , eT

2 = [0 1 0]T . In the
previous equations, the B matrix transforms the wheel forces
Fxy to CoG forces, while W(δi) is a change of coordinates
between tyre and vehicle frame (see de Castro et al. [2013] for
the formal definition of these variables).

3. PATH-FOLLOWING CONTROLLER

As shown in Fig. 2, the path-following controller proposed
in this work is composed of three components i) an optimal
feedforward (FF) term; ii) a cascade position-speed control
loop; and iii) a force allocation block. The main input of this
controller is the reference path pr(s) - assumed to be smooth
- that the vehicle should follow. To qualitatively specify how
fast the vehicle should go through the reference path, the user
(or the path planning layer) provides the parameter ε ∈ [0,1],
which represents a trade-off factor between the journey time
and the energy consumption of the vehicle. This information is
then used by the optimal FF to generate a suitable speed profile
vr(t), considering both the vehicle dynamics constraints and the
adhesion level at the tyre-road interface µ̂max, which may be
provided from a dedicated friction peak observer. Additionally,
the optimal FF also produces an estimate of the CoG forces
and moments F r, which, in absence of modeling errors, would
be enough to achieve a perfect tracking of vr(t). However, to
cope with modeling uncertainties and external disturbances, the
position and speed loops operate in parallel to the optimal FF in
a cascade setting. More specifically, the position loop generates
speed increments to be superimposed to the speed profile vr(t),
while the speed loop manipulates force increments that are
added to F r(t).

3.1 Optimal Feedforward

Construction of the Attainable Set of Forces The first issue
that needs to be addressed is the construction of the admissible

set of forces and moments, i.e., F ⊂ R
3, achievable by the

vehicle. In our formulation, this attainable set is dominated by
the friction constraints (F f ), as well as the torque and power
limits imposed by the IWMs (FT )

F= F f

⋂

FT . (13)

As far as the friction constraints are concerned, it is worth
recalling Remark 2.2, which states that the tyre friction limits
in the xy components are dependent on the friction peak µmax
and on the vertical load (Fzi). Thus F f might be defined as

F f = { F = BFxy ∈ R
3 | ∀i ∈ T (14)

‖Ei Fxy ‖2 ≤ µmaxFzi

= µmax

(

F0
zi +

(ρxi

m
eT

1 +
ρyi

m
eT

2

)

BFxy

)

,}

where Ei ∈ R
2×8 is a matrix that extracts the x and y compo-

nents associated with the tyre i∈T. To keep the analysis simple,
the influence of the resistance forces R were neglected in the
calculation of the vertical forces Fzi.

Remark 3.1. F f is a convex set in R
3.

As for the power and torque constraints introduced by IWMs,
we will approximate them using the following set

FT (vx)≈ {F = [Fx Fy Mz]
T
, | Fx ≤ nT F , Fxvx ≤ nT P}(15)

where nT = 4, F = T/ri. The basic idea of the above formu-
lation is to translate the torque and power limits of the wheel-
motors to the CoG longitudinal force and speed.

Path Following Problem As a starting point for the design
of the optimal FF controller, it is worth noticing that, if the
equations of motion were ideal ( D ≡ 0), and if the position
error at the initial instant zero (p(0) = pr(0), then the perfect
tracking of pr would be ensured if
(

T−1(pr)M
)

p̈r +R2(pr, ṗr)ṗr +R1 = F r, F r ∈ F (16)

where F r is the feedforward force term. Given that the refer-
ence path is specified in the path coordinate s, i.e. pr(s), the first
and second time derivative of pr take the form

ṗr(s) =
d pr(s)

dt
=

d pr(s)
ds

ds
dt

= p′
r(s)ṡ (17)

p̈r(s) =
d2 pr(s)

dt2 = p′′
r (s)ṡ

2 +p′
r(s)s̈. (18)

Inserting these relations into (16), and after some straightfor-
ward algebraic manipulations, one gets

m(s)s̈+ r2(s)ṡ
2 + r1 = F r, F r ∈ F, (19)

where

m(s) = T−1(pr(s))Mp′
r(s)

r2(s) = T−1(pr(s))Mp′′
r (s)+R2(pr(s),p

′
r(s))p′

r(s)

r1 =R1 . (20)

Notice that, to determine r2, (5) and the fact that ṡ > 0 (speed
reversals along the reference path are not allowed) were used.
Finally, the vehicle speed (in the local coordinates) can also be
expressed as a function of s in the form

vr(s) = T−1(pr(s))p′
r(s)ṡ = ṽr(s)ṡ. (21)
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Convexification We will now discuss a series of practical
modifications, which will ultimately lead to a convex formula-
tion of the optimal feedforward controller. First, the change of
independent variable suggested in [Pfeiffer and Johanni, 1987,
Verscheure et al., 2009] will be adopted: instead of time (t), we
will consider the normalized distance in the reference path, s, as
independent variable. This means that ṡ= ds/dt, which enables
us to rewrite the journey time as

T =
∫ T

0
1dt =

∫ s(T )

s(0)

ds
ṡ

=
∫ 1

0

1
ṡ

ds. (22)

Furthermore, with this change of variable, the terms s̈ and ṡ2

appear linearly in (19). This observation leads to a second
change of variable, [Pfeiffer and Johanni, 1987, Verscheure
et al., 2009]

a(s) = s̈2, b(s) = ṡ2, (23)

where

a(s) =
dṡ
dt

= ṡ
dṡ
ds

=
1
2

dṡ2

ds
=

1
2

d(b(s))
ds

. (24)

Thus, with the introduction of a(s) and b(s), the nonlinear
differential relation (19) is decoupled into two parts: one affine
constraint (m(s)a+r2(s)b+r1 =F r), and one linear differen-
tial equation (24).

Another aspect that deserves discussion is the convexity of
the admissible set F, which is the result of the friction limits
(F f ) and the torque/power constraints of the electric motors
(FT (vx)). While the convexity of F f was already established in
Remark 3.1, the set FT (vx) requires further analysis. From (15),
it is clear that the power and torque limits affect mainly the
Fx component of F ; thus, it is more practical to analyse these
constraints in the domain (vx,Fx), i.e.,

ΩT = {(vx,Fx) ∈ R
2 : Fxvx ≤ nT P, Fx ≤ nT F}. (25)

As depicted in Fig. 3.1.3, when the vehicle exceeds the nominal
speed Vn = P/F the power constraints make the set ΩT non-
convex, which is a relevant obstacle to the determination of a
global optimal solution for the optimization problem, [Boyd
and Vandenberghe, 2004]. To mitigate this issue, a convexifica-
tion technique will be used to handle the power constraint. The
idea is to approximate the non-convex constraint Fxvx ≤ nT P
with a linear inequality, characterized by the points (V ,nT F),
and (V ,nT P/V ). The points V ≤ Vn and V ≥ Vn are tuning
parameters: a wise rule of thumb is to select V close to the
point where the aerodynamic drag overcomes the maximum

x

xn

T

Fig. 3. Non-convex set of the power limits introduced by the
electric motors.

power of the vehicle. The linear approximation of ΩT can also
be expressed as

Ω̂T = {(vx,Fx) : Fx ≤ (vx −V )γ̃p +nT F , Fx ≤ nT F}

where γ̃p = nT
P/V−F

V−V
. Now, notice that, after introducing the

new variable b, and taking into account (21), the vehicle longi-
tudinal speed is given by vx = e1

T ṽr(s)ṡ= e1
T ṽr(s)

√

b(s). This
implies that the power constraints in Ω̂T , although being linear
in vx, become nonlinear when we include the new variable b(s):
in fact, they also lose the convexity property, which is even
worse for our purposes here. This issue spurred us to find an
alternative convexification technique that can be applied to the
space (Fx,b(s)). With this goal in mind, it is convenient to first
relate vx and b as

b =

(

vx

e1
T ṽr(s)

)2

. (26)

Now, recall that the linear approximation in (Fx,vx) was charac-
terized by a half-plane that passes through the points (V ,nT F),
(V ,nT P/V ). One alternative way of dealing with the linear
approximation with b(s) is to translate this half-plane to the
space ((Fx,b(s)), using, for that purpose, the relation (26). The
resulting linear approximation of the power constraint is then
obtained as

Fx ≤ γp(s)(b−b(s))+nT F , γp(s) = nT
P/V −F

b(s)−b(s)
. (27)

where

b(s) =

(

V
e1

T ṽr(s)

)2

, b(s) =

(

V
e1

T ṽr(s)

)2

. (28)

Although this constraint will introduce approximation errors,
it is a practical approach to handle the power limitation of the
electric motors.
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In the light of the above considerations, the final path following
problem can be posed as

min
F r ,a,b

ε
∫ 1

0

1
√

b(s)
ds+(1− ε)

∫ 1

0
F r(s)

T WF r(s)ds

s.t. m(s)a(s)+ r2(s)b(s)+ r1 = F r(s)
d
ds

b(s) = 2a(s), b(0) = ṡ2
0, b(s)> 0

F r(s) ∈ F f , eT
1 F r(s)≤ nT F

eT
1 F r(s)≤ γp(s)(b(s)−b(s))+nT F , s ∈ [0,s].

(29)

Notice that, to (indirectly) penalize the energy consumption, a
quadratic term in the forces F r was incorporated into the cost
function. This penalization is controlled through the diagonal
weight matrix W = diag{w1,w2,w3} and the parameter ε ∈
[0,1], which describes the trade-off factor between the min-time
and the energy consumption goals.
Remark 3.2. The above optimization problem is convex.

This convex property was already pointed out by [Verscheure
et al., 2009] in a robotic context, and it is extended here for
the minimum-time path following of autonomous vehicles. In
comparison with the minimum-time path-following problem of
robotic manipulators, [Pfeiffer and Johanni, 1987, Verscheure
et al., 2009], the main differences in the vehicle case are due to
the power limits constraints (FT ) and friction circle (F f ).

Collocation Method To facilitate the resolution of (29), we
adopted a direct optimization approach, also known as col-
location [Betts, 2010]. This means that the dynamic equa-
tions in (29) were discretized (through the trapezoidal method),
yielding a discrete optimization problem that was solved with
the help of the SDPT3 numerical solver. After extracting the
numerical solution, the time-domain variables can then be re-
trieved using the relation (22); variables of particular interest
are the feedforward term F r(t), the reference trajectory pr(t)
and the speed profile vr(t).

3.2 Speed and Position Controller

In order to gain robustness against disturbances, the motion
controller also incorporates a cascade position-speed feedback
loop (see Fig. 2). The goal of this feedback loop is to track the
speed profile vr and position setpoint pr - obtained during the
optimization process -, using a corrective force demand ∆F as
virtual control input. Toward this goal, a sliding mode control
law, endowed with conditional integrators, was employed in
the design of the feedback loops. Due to space constraints, the
details regarding the design of this controller are omitted here;
the interest reader is referred to [de Castro, 2013] for additional
information.

3.3 Force allocation

The last step in the controller design consists in allocating the
CoG’s force demands F

∗ = F r +∆F into wheel torques Ti
and steer angles δi. Given the high level of redundancy in
the vehicle platform, the allocation solution is, in general, not
unique, which paves the way to the pursuit of secondary goals,
such as the minimization of the energy consumption of the ac-
tuators and/or the friction utilization of the tyres. In order tackle
this challenge, our solution to the force allocation problem was
decomposed into two steps. In the first step, we assumed that
the xy forces of the tyres (Fxy) can be independently controlled,

i.e., they can be regarded as a second virtual control. Based
on this assumption, the xy force distribution was determined
through a quadratic programming (QP) optimization problem,
which targets the minimization of the tyre’s friction usage,
constrained by friction limits, power restrictions of the motors
and (12b). The second step of the allocation process, relies on
inversion of the tyre forces (not discussed here due to space
limits), i.e., using the Fxy obtained in the first allocation step,
and the vehicle state v, find the torque (Ti) and steer (δi) that
produces the necessary tyre forces. Additional details on this
force allocation process can be found in [de Castro, 2013].

4. SIMULATION RESULTS

To evaluate the performance of the proposed approach, sim-
ulation tests were carried out with the full vehicle model in
the CarSim simulation environment. This allows us to test the
robustness against unmodeled dynamics. The vehicle model is
that of a B-Class sports car, available in the default CarSim
library. It is assumed that the reference path is pre-specified
before the start of the simulation, so that the convex optimal
problem in the motion controller is solved (off-line) generating
the FF components F r, vr, pr. Further, Gaussian noises were
added to the measured variables. The speed and position feed-
back loops, together with the control-allocation layer, impose
(on-line) the tracking of this pre-specified motion. The default
settings employed in the simulation are: i) zero vehicle side-slip
reference; ii) µmax = 1: dry asphalt; iii) ε = 1: minimum-time
goal; iv) equal penalization for all the forces.

To test the performance on a varied track, the 2.2km Norising
circuit was used. The results of the minimum-time path follow-
ing for this track are presented in Fig. 4. By inspecting the sub-
figures, one may note that i) the tracking errors are small, with
a peak position error smaller than 0.5m, ii) the FF components
generated by the optimal approach produce a control action
that is very close to the feedback term (particularly as far as
vx and vy are concerned), which proves the usefulness of the
FF in achieving good control performance; and iii) the torque
distribution between the four wheels is largely dependent on
the load transfer that the vehicle is subject to, i.e., the wheels
with larger vertical load receive more torque so as to keep
the overall friction use low. Taking into account the control
allocation formulation, which aims to minimize the friction use,
the allocation results agree with the expectations. Further, to
evaluate the trade-off between energy and performance metrics
along the track, Fig. 5 shows the energy vs. performance trade-
off curve, which demonstrates that, if the user is willing to
sacrifice lap-time, the energy gains can be very significant, e.g.,
increasing the lap-time by 20% allows energy savings up to
55%.

5. CONCLUDING REMARKS AND OUTLOOK

In this work, a path following algorithm for highly redun-
dant electric vehicles, endowed with 4IWMs and 4WS, was
proposed. It is composed of a multi-layer control architecture
that takes care of the vehicle motion control and of the force
allocation step, allowing a multi-objective optimization which
is enabled by the actuator redundancy. Simulation results car-
ried out in the high-fidelity CarSim simulator demonstrated the
effectiveness of the overall approach, both in normal driving
condition, and in extreme conditions (with high side-slip). Sen-
sitive studies also revealed the trade-offs between lap-time and
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Fig. 4. Simulation results for the track evaluation.

energy consumption that the path following controller can pro-
vide. Future work will address the interaction between the path
following algorithm with the path-planning layer, using real-
time solvers for the generation of the feed-forward component
of the motion controller.
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