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Abstract: This paper considers the distributed estimation of an unstable target via constant-
gain estimators under local communications and channel fading. The communication graph is
assumed to be fixed and undirected, and the channel fading is assumed to be identical. Necessary
and sufficient conditions on communication network over which the state of the unstable target
can be estimated in the mean square sense are given for both continuous-time and discrete-
time cases, which reveal the fundamental limitation on distributed estimation induced by local
communications, channel fading, and target dynamics. In addition, our results for the case
without channel fading and the case with separate communications are consistent with the
results in the literature.
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1. INTRODUCTION

Distributed estimation and control for multi-agent systems
has attracted much attention from the control community
recently, due to its advantages such as low cost, high
scalability, simple maintenance, etc. A survey on multi-
agent systems can be found in Olfati-Saber et al. [2007],
and the consensusability condition for general linear multi-
agent systems is provided in Ma and Zhang [2010] for
the continuous-time case and in You and Xie [2011] for
the discrete-time case. Distributed estimation generally
requires to construct an algorithm for each node to esti-
mate the state of one or several targets by using only local
information. The target(s) may only transmit information
to a subset of nodes, and for those nodes who cannot get
information from the target(s) directly, we should provide
algorithms using only information from their neighboring
nodes to estimate the state of the target(s). The consensus-
based Kalman filter is studied in Olfati-Saber [2005, 2007,
2009]. Other distributed estimation algorithms using the
theory of Kalman filtering include gossip-based Kalman
filter as in Kar and Moura [2011] and diffusion-based
Kalman filter as in Hu et al. [2012]. In order to achieve
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simpler design and lower complexity than time-varying
Kalman filter, a distributed estimation algorithm with a
common static gain for both the innovation and the state-
consensus information is proposed in Zhou et al. [2013].
The estimation gain design proposed in Zhou et al. [2013]
follows the idea in Hong et al. [2006], Hong and Wang
[2009].

Channel fading represents the fluctuation experienced by
transmitted signals due to the effects of multipath and
shadowing in wireless communication systems. It has at-
tracted recurring research interests from the communi-
cation community; see, for example, Tse and Viswanath
[2005], Goldsmith [2005], Proakis and Salehi [2005]. Gen-
erally, there are two options to transmit a signal: analog or
digital. Elia [2005] considers the mean square stabilization
over analog fading channels and shows that the minimum
mean square capacity for stabilization can be given in
terms of the unstable poles of the single-input plant un-
der investigation. Xiao et al. [2012] further presents the
network requirement for both state feedback and output
feedback stabilization of multi-input-multi-output plants
over multiple fading channels. Xiao et al. [2013] deals
with the state feedback stabilization over digital fading
channels. Kalman filtering over analog fading channels is
studied in Dey et al. [2009], while Kalman filtering over
digital fading channels is addressed in Quevedo et al. [2012,
2013].
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In this paper, we consider the distributed estimation of an
unstable target under constraints on both network connec-
tivity and channel fading. Next, we summarize the contri-
bution of this paper. First of all, a framework of distributed
estimation is presented by using constant-gain estimators
introduced in Zhou et al. [2013], and it accommodates both
network connectivity and fading phenomenon. Secondly,
necessary and sufficient conditions on communication net-
work over which the unstable target can be estimated in
the mean square sense are provided for both continuous-
time and discrete-time cases. Those conditions show the
fundamental limitation on distributed estimation induced
by local communications, channel fading, and target dy-
namics. The results for two special cases: the case without
channel fading and the case with separate communication-
s, also demonstrate the consistency between our results
and the existing results in the literature.

The remainder of the paper is organized as follows. The
distributed estimation problem is formulated in Section 2,
where the communication graph, the system setup, as
well as the assumptions adopted in this paper are given.
Sections 3 and 4 provide conditions on communication
network for mean square detectablity in the continuous-
time setting and the discrete-time setting, respectively.
Finally, Section 5 concludes the paper and discusses future
work.

The notation used in this paper is mostly standard. The
symbol := means “defined as”. The set of real numbers, the
set of nonnegative real numbers, and the set of nonnegative
integers are denoted by R, R0, and N0, respectively. Use
Re(λ) and |λ| to denote the real part and the magnitude
of the complex variable λ. The kronecker product is
denoted by ⊗. Furthermore, the mathematical expectation
operator is denoted by E{·}.

2. PROBLEM FORMULATION

Consider the scenario where a set of N nodes/estimators is
deployed to estimate the state (e.g., position and velocity)
of a target. The target can transmit information to a
subset of nodes, and each node can only communicate with
its neighboring nodes. The communication graph and the
system setup are described as follows.

2.1 Communication Graph

We set βi(t) > 0 if node i can obtain information from the
target at time t, otherwise βi(t) = 0. Similarly, αij(t) > 0 if
node i can get information from node j at time t, otherwise
αij(t) = 0. Self loop is excluded by setting αii(t) = 0 for
all t ≥ 0 and i = 1, 2, . . . , N .

The interaction topology can be conveniently character-
ized by an algebraic graph G := {V , E(t)} with a vertex
set V := {v1, v2, . . . , vN} and an edge set E(t) := {(i, j) :
i, j ∈ V}. The vertex vi represents the i-th node, and
(i, j) ∈ E(t) if node i can get information from node j
at time t, i.e., αij(t) > 0. Define the neighbor set of
node i at time t by Ni(t) := {j : (i, j) ∈ E(t)}. The
weighted adjacency matrix of G is defined as G(t) :=
[αij(t)]i,j=1,2,...,N . The corresponding degree matrix is giv-
en by D(t) := diag{d1(t), d2(t), . . . , dN (t)} with di(t) :=
∑N

j=1 αij(t). Then, the Laplacian of G is Lp(t) := D(t) −

G(t). For the convenience of later analysis, further let
Bp(t) := diag{β1(t), β2(t), . . . , βN (t)} and

Hp(t) := Bp(t) + Lp(t). (1)

2.2 System Setup

The dynamics of the target is described by

δx0(t) = Ax0(t) + w0(t), (2)

where x0(t) ∈ R
m is the state of the target, and w0(t) ∈

R
m represents the white process noise with zero mean

and covariance matrix Q. In the continuous-time setting 1 ,
δx0(t) = ẋ0(t), t ∈ R0, while in the discrete-time setting,
δx0(t) = x0(t+ 1), t ∈ N0.

On the basis of the communication graph described in
Section 2.1, the i-th node gets information from the target
and its neighboring nodes via analog fading channels
according to

yi(t) = βi(t) [ηi(t)Cx0(t) + vi(t)] ,

zij(t) = αij(t) [ξij(t)Cxj(t) + nij(t)] ,
(3)

where yi(t) ∈ R
q and zij(t) ∈ R

q are channel outputs,
xj(t) ∈ R

m denotes the estimation of the target’s state at
node j, vi(t) and nij(t) are the zero-mean white communi-
cation noises with covariance matrices Rvi and Rnij , and
ηi(t) ≥ 0, ξij(t) ≥ 0 represent the random channel fading
gains which are assumed to be known at node i. Note that
the network connectivity is characterized by αij and βi,
while the channel fading is described by ξij and ηi.

In this situation, the sum of innovation and state-
consensus information at node i can be constructed as

φi(t) :=yi(t)− ηi(t)βi(t)Cxi(t)

+

N
∑

j=1

[zij(t)− ξij(t)αij(t)Cxi(t)]

=yi(t)− ηi(t)βi(t)Cxi(t)

+
∑

j∈Ni(t)

[zij(t)− ξij(t)αij(t)Cxi(t)] .

(4)

The following constant-gain distributed estimators are
employed in this paper:

δxi(t) = Axi(t) + Lφi(t), ∀i = 1, 2, . . . , N, (5)

where L is the constant estimation gain to be designed.
Note that only local information is required at each esti-
mator.

Denote the estimation error at node i by ei(t) := xi(t) −
x0(t). According to (2)-(5), we have

δei(t) =δxi(t)− δx0(t)

=Axi(t) + Lφi(t)−Ax0(t)− w0(t)

=Aei(t)− Lηi(t)βi(t)Cei(t) + Lβi(t)vi(t)

+ L
∑

j∈Ni(t)

ξij(t)αij(t)C[ej(t)− ei(t)]

+ L
∑

j∈Ni(t)

αij(t)nij(t)− w0(t).

(6)

1 A mathematically precise expression for the continuous-time s-
tochastic system (2) is dx0(t) = Ax0(t)dt + dw0(t) and the theory
of stochastic differential equations applies here. We use ẋ0(t) =
Ax0(t) + w0(t) for (2) with a slight abuse of notation, which would
not affect the results obtained in this paper.
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Let e(t) := [e1(t)
′ e2(t)

′...eN(t)′]′ and P (t) := E{e(t)e(t)′},
where the expectation is taken over {w0}t0, {ηi}

t
0, {vi}

t
0,

{ξij}t0, and {nij}t0. The mean square detectability is de-
fined as follows.

Definition 1. The target (2) is mean square detectable via
constant-gain distributed estimators (5), if P (t) is well
defined for all t ≥ 0 and

lim
t→∞

P (t) ≤ M, (7)

where M > 0 is a constant matrix. 2

2.3 Assumptions

Next, we list assumptions adopted throughout this paper
on communication graph, channel fading, and target dy-
namics, respectively.

Assumption 1. The graph G is assumed to be

(a) undirected: αij(t) = αji(t) for all t ≥ 0 and i, j =
1, 2, . . . , N ;

(b) connected: at least one node in each maximal con-
nected branch 2 of G receives information from the
target for all t ≥ 0;

(c) fixed: βi(t) = βi, αij(t) = αij , for all t ≥ 0 and
i, j = 1, 2, . . . , N , where βi and αij are constant
scalars. 2

Assumption 2. The channel fading is assumed to be iden-
tical, i.e., all communication channels experience the same
analog fading as

ηi(t) = ξij(t) = ξ(t), ∀i, j = 1, 2, . . . , N, (8)

where ξ(t) ∈ R is white with mean µξ 6= 0 and covariance
σ2
ξ ≥ 0. 2

Assumption 3. The pair (A,C) is assumed to be de-
tectable, A is unstable, and C has full-row rank. 2

Under (a) and (b) of Assumption 1, it has been proved in
Hong et al. [2006] that Hp(t) defined in (1) is positive
definite for all t ≥ 0. Further under Assumption 1(c),
Hp(t) is reduced to a constant matrix Hp > 0, and thus
there exists a unitary matrix Up such that UpHpU

′
p =

Λp = diag{λp1, λp2, . . . , λpN}, where λp1, λp2, . . . , λpN are
eigenvalues of Hp with ordering 0 < λp1 ≤ λp2 ≤ · · · ≤
λpN . In addition, under Assumption 1(c), the condition
(7) for mean square detectability can be replaced by
limt→∞ P (t) = M for some M > 0. In view of the
linearity of estimation error dynamics (6), when only the
mean square detectability is concerned, we can ignore all
additive noises in the system by assuming that w0(t) =
0, vi(t) = 0, nij(t) = 0 for all t ≥ 0 and i, j = 1, 2, . . . , N ,
without loss of generality. In this case, the estimation error
dynamics (6) becomes

δei(t) =Aei(t)− Lηi(t)βiCei(t)

+ L
∑

j∈Ni(t)

ξij(t)αijC[ej(t)− ei(t)], (9)

and the condition (7) for mean square detectability is
further reduced to limt→∞ P (t) = 0. If the network is also
identical as in Assumption 2, then we have

2 The graph G̃ = {Ṽ, Ẽ(t)} is a maximal connected branch of G, if
Ṽ ∈ V , Ẽ(t) ∈ E(t), no other vertices in V − Ṽ connected to G̃, and G̃
is connected.

δei(t) =Aei(t)− Lξ(t)βiCei(t)

+ L
∑

j∈Ni(t)

ξ(t)αijC[ej(t)− ei(t)], (10)

and

δe(t) = [(I ⊗A)− ξ(t)Hp ⊗ LC]e(t). (11)

Remark 2. To focus on the case with fixed undirected
graph and identical channel fading simplifies later analysis
and can still characterize the fundamental limitation on
distributed estimation induced by local communications
and channel fading. The case with directed switching
topology and nonidentical channel fading is one of our
future research directions. 2

Under Assumption 3, we can take (A,C) to be of the form:

A =

[

As 0
0 Au

]

, C = [Cs Cu], (12)

where As is stable, all poles of Au are unstable, and
(Au, Cu) is observable.

In the following two sections, we will establish conditions
for mean square detectability in both continuous-time and
discrete-time settings.

3. CONTINUOUS-TIME CASE

The proposition below summarizes a series of necessary
and sufficient conditions for mean square detectability in
the continuous-time setting.

Proposition 3. Suppose Assumptions 1-3 hold. The fol-
lowing statements are equivalent in the continuous-time
setting.

(a) The target (2) is mean square detectable via constant-
gain distributed estimators (5).

(b) There exists an L such that the sequence {P (t)}t≥0

computed by

Ṗ (t)

=(I ⊗A)P (t) + P (t)(I ⊗A′)− µξ(Hp ⊗ LC)P (t)

+ σ2
ξ (Hp ⊗ LC)P (t)(Hp ⊗ C′L′)

− µξP (t)(Hp ⊗ C′L′)

with any P (0) ≥ 0 is convergent to 0 as t approaches
∞.

(c) There exist P > 0 and L such that

0 >(I ⊗A)P + P (I ⊗A′)− µξ(Hp ⊗ LC)P

+ σ2
ξ (Hp ⊗ LC)P (Hp ⊗ C′L′)

− µξP (Hp ⊗ C′L′).

(d) There exist W > 0 and L such that

0 >(I ⊗A′)W +W (I ⊗A)− µξ(Hp ⊗ C′L′)W

+ σ2
ξ (Hp ⊗ C′L′)W (Hp ⊗ LC)

− µξW (Hp ⊗ LC).

(e) There exist Pi > 0, i = 1, 2, . . . , N , and L such that

0 >APi + PiA
′ + σ2

ξλ
2
piLCPiC

′L′

− µξλpiLCPi − µξλpiPiC
′L′

(13)

for all i = 1, 2, . . . , N .
(f) The target (2) is mean square detectable via constant-

gain distributed estimators (5) with (A,C) replaced
by (Au, Cu) given in (12). 2
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Consider the linear matrix inequality








SA+A′S − Y C − C′Y ′

√

1

ḡ
Y C

√

1

ḡ
C′Y ′ −S









< 0, (14)

and define

gc :=























m
∑

k=1

max{2Re(λk(A)), 0}, if q = 1;

max
k=1,2,...,m

{2Re(λk(A))}, if q = m;

inf
S>0,Y

ḡ, s.t. (14), otherwise,

(15)

where λ1(A), λ2(A), . . . , λm(A), are the eigenvalues of A
counting algebraic multiplicity. The next lemma is vital in
obtaining explicit conditions on network connectivity and
channel fading for mean square detectability.

Lemma 4. Under Assumption 3, there exists a solution
P0 > 0 to the following modified Riccati inequality in the
continuous-time setting

0 > AP0 + P0A
′ − τP0C

′(CP0C
′)−1CP0, (16)

if and only if τ > gc. 2

Proof. In view of the equivalence between Proposi-
tion 3(a) and 3(f), we assume that all the eigenvalues of A
are in the closed-right half of the complex plane without
loss of generality.

Note that the existence of P0 > 0 to (16) is equivalent to
the existence of P0 > 0 and L0 to

0 > (A−L0C)P0 + P0(A
′ −C′L′

0) +
1

τ
L0CP0C

′L′
0, (17)

which is further equivalent to (14) with S = P−1
0 , Y =

SL0, and ḡ = τ . Observe that (14) holds for all ḡ ≥ ḡa if
(14) is true for some ḡ = ḡa. Therefore, the optimization
in the last line of (15) provides the critical value of τ for
any q = 1, 2, . . . ,m.

Next, consider the special case: q = 1. We will first show
the necessity. Note that (16) is equivalent to

0 > P
− 1

2

0 AP
1

2

0 + P
1

2

0 A′P
− 1

2

0 − τP
1

2

0 C′(CP0C
′)−1CP

1

2

0 .

By taking the trace for the both sides of the above
inequality, we obtain

0 >tr(P
− 1

2

0 AP
1

2

0 ) + tr(P
1

2

0 A′P
− 1

2

0 )

− tr(τP
1

2

0 C′(CP0C
′)−1CP

1

2

0 )

=tr(A) + tr(A′)− tr(τ)

=

m
∑

k=1

max{2Re(λk(A)), 0} − τ.

(18)

Thus, the existence of P0 > 0 to (16) implies τ > gc =
∑m

k=1 max{2Re(λk(A)), 0}. To establish the sufficiency, we
note that, as shown in Xiao and Xie [2010], the existence
of P0 > 0 to (16) is also equivalent to

1 > inf
L0, s.t. (A−L0C) stable

∥

∥

∥

∥

∥

√

1

τ
C(sI −A− L0C)−1L0

∥

∥

∥

∥

∥

2

2

=
1

τ
inf

L0, s.t. (A−L0C) stable

∥

∥C(sI −A− L0C)−1L0

∥

∥

2

2

=
1

τ

m
∑

k=1

max{2Re(λk(A)), 0},

where the last equation follows from Theorem II.1 of
Braslavsky et al. [2007]. Therefore, τ > gc also implies
the existence of P0 > 0 to (16).

For the case q = m, (16) becomes

0 > AP0 + P0A
′ − τP0. (19)

It follows from the property of generalized eigenval-
ue as studied in Boyd et al. [1994] that τ > gc =
maxk=1,2,...,m{2Re(λk(A))} is a necessary and sufficient
condition for the existence of P0 to (16). 2

The next theorem gives conditions on communication
network over which the target with unstable dynamics can
be estimated in the continuous-time setting.

Theorem 5. Under Assumptions 1-3, the target (2) is
mean square detectable via constant-gain distributed esti-
mators (5) in the continuous-time setting if

τc :=
µ2
ξ

σ2
ξ

×
4λpNλp1

(λpN + λp1)2
> gc, (20)

and only if
µ2
ξ

σ2
ξ

> gc. (21)

Moreover, if (20) holds, then there exists a solution P0 > 0
to the modified Riccati inequality (16) with τ = τc, and
an estimation gain ensuring the mean square detectability
is given by

Lc =
2µξ

(λpN + λp1)σ2
ξ

P0C
′(CP0C

′)−1, (22)

where P0 > 0 is any solution to (16) with τ = τc. 2

Proof. First, the sufficiency of (20) will be shown. Based
on Lemma 4, (20) is equivalent to the existence of P0 > 0
to (16) with τ = τc. Using the estimation gain given in
(22) and Pi = P0, i = 1, 2, . . . , N , we can derive that the
right hand side of (13) in Proposition 3 becomes

AP0 + P0A
′ + σ2

ξλ
2
piLcCP0C

′L′
c − µξλpiLcCP0

− µξλpiP0C
′L′

c

=AP0 + P0A
′ +

(

λ2
pi

λpNλp1
−

λpi

λp1
−

λpi

λpN

)

× τcP0C
′(CP0C

′)−1CP0

=AP0 + P0A
′ −

[

1−

(

λpi

λp1
− 1

)(

λpi

λpN

− 1

)]

× τcP0C
′(CP0C

′)−1CP0.

It follows from 0 < λp1 ≤ λp2 ≤ · · · ≤ λpN that
(

λpi

λp1
− 1

)(

λpi

λpN

− 1

)

≤ 0, (23)

for all i = 1, 2, . . . , N . Therefore, the solvability of (16)
with τ = τc implies (13) in Proposition 3 with Pi = P0,
i = 1, 2, . . . , N , and Lc given in (22), which completes the
proof of sufficiency.

Next, we will prove the necessity of (21). Suppose the tar-
get is mean square detectable via constant-gain distributed
estimators. The condition (13) in Proposition 3 implies

0 >APi + PiA
′ −

µ2
ξ

σ2
ξ

PiC
′(CPiC

′)−1CPi. (24)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2875



It follows from Lemma 4 again that (21) is true, which
completes the proof of necessity. 2

Remark 6. Note that the sufficient condition (20) in Theo-
rem 5 shows an explicit relationship among channel fading,
local communications, and target dynamics. Reducing the
gap between (20) and (21) deserves further investigation.

We are also interested in the following two special cases.

• Case without channel fading: σ2
ξ = 0.

• Case with separate communications: βi = 1 and
αij = 0 for all i, j = 1, 2, . . . , N .

We can obtain the next corollary.

Corollary 7. Suppose Assumptions 1-3 hold.

• For the case without channel fading, the target (2)
is always mean square detectable via constant-gain
distributed estimators (5) in the continuous-time set-
ting.

• For the case with separate communications, the target
(2) is mean square detectable via constant-gain dis-
tributed estimators (5) in the continuous-time setting
if and only if (21) is true. 2

Remark 8. The above corollary is consistent with the
results in Zhou et al. [2013] and Xiao and Xie [2010] 3 . 2

4. DISCRETE-TIME CASE

We can derive the next proposition on mean square de-
tectability in the discrete-time setting.

Proposition 9. Suppose Assumptions 1-3 hold. The follow-
ing statements are equivalent in the discrete-time setting.

(a) The target (2) is mean square detectable via constant-
gain distributed estimators (5).

(b) There exists an L such that the sequence {P (t)}t≥0

computed by

P (t+ 1)

=(I ⊗A)P (t)(I ⊗A′)− µξ(Hp ⊗ LC)P (t)(I ⊗A′)

+ (µ2
ξ + σ2

ξ )(Hp ⊗ LC)P (t)(Hp ⊗ C′L′)

− µξ(I ⊗A)P (t)(Hp ⊗ C′L′)

with any P (0) ≥ 0 is convergent to 0 as t approaches
∞.

(c) There exist P > 0 and L such that

P >(I ⊗A)P (I ⊗A′)− µξ(Hp ⊗ LC)P (I ⊗A′)

+ (µ2
ξ + σ2

ξ )(Hp ⊗ LC)P (Hp ⊗ C′L′)

− µξ(I ⊗A)P (Hp ⊗ C′L′).

(d) There exist W > 0 and L such that

W >(I ⊗A′)W (I ⊗A)− µξ(Hp ⊗ C′L′)W (I ⊗A)

+ (µ2
ξ + σ2

ξ )(Hp ⊗ C′L′)W (Hp ⊗ LC)

− µξ(I ⊗A′)W (Hp ⊗ LC).

(e) There exist Pi > 0, i = 1, 2, . . . , N , and L such that

Pi >APiA
′ + (µ2

ξ + σ2
ξ )λ

2
piLCPiC

′L′

− µξλpiLCPiA
′ − µξλpiAPiC

′L′
(25)

for all i = 1, 2, . . . , N .

3 Note that the stabilization problem, as a counterpart of the
estimation problem, is considered in Xiao and Xie [2010].

(f) The target (2) is mean square detectable via constant-
gain distributed estimators (5) with (A,C) replaced
by (Au, Cu) given in (12). 2

Consider the following linear matrix inequality












−S SA+ Y C

√

1

ḡ − 1
Y C

A′S + C′Y ′ −S 0
√

1

ḡ − 1
C′Y ′ 0 −S













< 0, (26)

and define

gd :=























m
∏

k=1

max{|λk(A)|
2, 1}, if q = 1;

max
k=1,2,...,m

|λk(A)|
2, if q = m;

inf
S>0,Y

ḡ, s.t. (26), otherwise.

(27)

The next lemma can be considered as a discrete-time
counterpart of Lemma 4, whose proof can be found in
Schenato et al. [2007].

Lemma 10. Under Assumption 3, there exists a solution
P0 > 0 to the following modified Riccati inequality in the
discrete-time setting

P0 > AP0A
′ − τAP0C

′(CP0C
′)−1CP0A

′, (28)

if and only if τ > 1− 1/gd. 2

The theorem below provides necessary and sufficient con-
ditions on communication network for mean square de-
tectability in the discrete-time setting.

Theorem 11. Under Assumptions 1-3, the target (2) is
mean square detectable via constant-gain distributed esti-
mators (5) in the discrete-time setting if

τd :=
µ2
ξ

µ2
ξ + σ2

ξ

×
4λpNλp1

(λpN + λp1)2
> 1−

1

gd
, (29)

and only if
µ2
ξ

µ2
ξ + σ2

ξ

> 1−
1

gd
. (30)

Moreover, if (29) holds, then there exists a solution P0 > 0
to the modified Riccati inequality (28) with τ = τd, and a
estimation gain ensuring the mean square detectability is
given by

Ld =
2µξ

(λpN + λp1)(µ2
ξ + σ2

ξ )
AP0C

′(CP0C
′)−1, (31)

where P0 > 0 is any solution to (28) with τ = τd. 2

Remark 12. Similarly to (20) for the continuous-time case,
the sufficient condition (29) in Theorem 11 also clearly
connects channel fading and local communications with
system dynamics for the discrete-time case. 2

The corollary below can be derived directly from Theo-
rem 11.

Corollary 13. Suppose Assumptions 1-3 hold.

• For the case without channel fading, the target (2)
is mean square detectable via constant-gain dis-
tributed estimators (5) in the discrete-time setting

if
4λpNλp1

(λpN+λp1)2
> 1− 1

gd
.

• For the case with separate communications, the tar-
get (2) is mean square detectable via constant-gain
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distributed estimators (5) in the discrete-time setting
if and only if (30) holds. 2

Remark 14. The second part of Corollary 13 is consistent
with the results in Xiao et al. [2011] and Xiao et al.
[2012] 4 , where (30) is a necessary and sufficient condition
for each individual node to estimate the target’s state
if every node can obtain information from the target
and there is no communication between any two nodes.
By comparing the first part of Corollary 13 and that
of Corollary 7, we can see that, without channel fading,
local communications may still have a negative effect on
distributed estimation in the discrete-time case, which is
negligible in the continuous-time case. 2

5. CONCLUSIONS

In this paper, the distributed estimation of an unstable
target has been addressed via constant-gain estimators un-
der constraints on both network connectivity and channel
fading. Conditions on communication network for mean
square detectablity have been given in terms of network
connectivity, channel fading and target dynamics, where
both the continuous-time case and the discrete-time case
have been considered. Our results also covers some existing
results in the literature as special cases.

Possible future research directions include distributed esti-
mation with directed switching topology and nonidentical
channel fading, and distributed control over fading chan-
nels.
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