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Abstract: This paper presents an approach for stabilization of equilibria in recurrent fuzzy
systems. This type of dynamic fuzzy systems being defined via linguistic rules can be interpreted
as interpolation between constant gradients, and therefore as hybrid dynamical system. It is
shown that the latter viewpoint allows for a precise description of the system dynamics, but on
the other hand lacks transparency. In order to render a given equilibrium of the recurrent
fuzzy system globally asymptotically stable, local polynomial controllers are computed via
sum of squares optimization to allow only for deterministic mode transitions on a micro
level. In addition, the controlled recurrent fuzzy system can then be interpreted as finite
deterministic automaton, thus allowing for analysis of system properties on a more abstract
macro level. Relaxations are proposed in cases where recurrent fuzzy systems may not be
rendered deterministic and the method is applied to two examples.
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1. INTRODUCTION

Dynamic fuzzy systems allow not only for an approximate
modeling of system dynamics but also to a certain extent
for linguistic interpretability and thus transparency. In
particular, recurrent fuzzy systems are defined by means
of linguistic rules with constant gradients as conclusions.
Although the model being obtained via expert knowledge
or measurement data (see, e.g., Schwung et al. (2011)) may
capture the plant dynamics reasonably well, simplicity of
the rule base comes at the cost of a complicated model
structure, which has to be considered for synthesis of
stabilizing controllers.

It was shown in Adamy and Kempf (2003) that recurrent
fuzzy systems may exhibit an automaton-like behavior,
and if operated at core position vectors only, they behave
equivalently to finite automata. Due to the possibility of
further insight into the system dynamics, this motivates
to study recurrent fuzzy systems from the perspective of
hybrid automata as discussed, e.g., in Henzinger (2000),
splitting the system into discrete-time and underlying
continuous-time dynamics. The feedback synthesis concept
for stabilization of known equilibria, which we present
here, is based on two main ideas: The first stems from
supervisory control discussed in Ramadge and Wonham
(1987) or Heymann and Lin (1998) for discrete event sys-
tems, and in Koutsoukos et al. (2000) for hybrid systems,
which aims at control of a process such that a certain
sequence of discrete states is obtained. The second idea
is due to the polyhedral partitioning of the state space,
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motivating a local control concept as discussed in Belta
and Habets (2006) or Lin and Broucke (2006). Their aim
is to steer all trajectories starting within a region towards
a particular facet, although their approach is limited to
cases where the system is input affine and the input matrix
constant. A similar idea was carried out in Girard and
Martin (2012), where a simplex partition was used in
combination with linearization of the system dynamics
and robust local controllers. In contrast to them, we make
use of the underlying hypersquare decomposition of recur-
rent fuzzy systems and in addition use local polynomial
controllers obtained via sum of squares optimization. The
idea of utilizing abstractions from the system dynamics in
order to reduce the control problem to a path planning
problem was also applied to discrete-time linear systems
in Tazaki and Imura (2008). One benefit of our approach
is the fact, that no global Lyapunov function has to be
computed, as was done in Mojica-Nava et al. (2010) in
order to prove stability for switched systems. In addi-
tion, we attempt to utilize local controllers such that the
controlled recurrent fuzzy system becomes deterministic
in the discrete mode changes, which again supports the
idea of system interpretability. Thus, methods from sum of
squares optimization, hybrid systems and graph theory are
utilized in order to stabilize known equilibria in recurrent
fuzzy systems.

The remainder is organized as follows: In Sec. 2, basic
definitions of recurrent fuzzy systems are briefly reviewed
and the hybrid system representation of the system class
under consideration is given. Sec. 3 then introduces a
finite automaton representation, allowing for a precise
separation between discrete and continuous dynamics of
the hybrid system. Then, a synthesis method for local
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controllers based on sum of squares is introduced in Sec. 4.
Sec. 5 then discusses the design of the controlled discrete
system, whereas it is distinguished between cases where 1)
a deterministic discrete behavior may be achieved and 2)
nondeterminism has to be taken into account. Simulation
results of both cases applied to examples are then given in
Sec. 6. Concluding remarks are given in Sec. 7.

2. PRELIMINARIES

The following briefly reviews the definition of recurrent
fuzzy systems (RFS) and introduces necessary notations.
Further insights on RFS can be found in Adamy and
Kempf (2003) and Adamy and Flemming (2006).

RFS are defined in the input state space Z = X ×
U ⊆ RN+M with states x ∈ [xmin,xmax], and inputs
u ∈ [umin,umax]. The dynamics of the system are defined
linguistically by a finite number of linguistic differential
equations

If x1 = Lx1
j1
, and . . . , and xn = Lxn

jn
,

and u1 = Lu1
q1 , and . . . , and um = Lum

qm ,

then ẋ1 = Lẋ1
w1
, and . . . , and ẋn = Lẋn

wn
,

(1)

with the complete set of rules forming the rule base.
Linguistic values in the i-th dimension of the state- and
input variables are denoted Lxi

ji
and Lui

qi , describing them
in qualitative terms (e.g., low or high).

Similarly, linguistic values Lẋi

wi(j,q)
describe state deriva-

tives ẋi. In order to quantify the system dynamics, each
linguistic value Lxi

ji
, Lui

qi is associated with a crisp core
position value sxi

ji
, sui

qi . For the description of the state
derivatives, linguistic values Lẋi

wi
are associated with core

position derivatives sẋi
wi
. When using vector notation Lx

j =[
Lx1
j1
, . . . , Lxn

jn

]T , Lu
q =

[
Lu1
q1 , . . . , L

um
qm

]T and Lẋ
w(j,q) =[

Lẋ1

w1(j,q)
, . . . , Lẋn

wn(j,q)

]T
for linguistic values, and simi-

larly sxj , s
u
q , sẋw for core position and core position deriva-

tives, the more compact representation
If x = Lx

j and u = Lu
q ,

then ẋ = Lẋ
w(j,q)

(2)

is obtained. Thus, by means of the rule base, gradients
are defined at discrete points (sxj , s

u
q ) ∈ Z. Fig. 1 depicts

neighboring core positions within an RFS, showing that a
rectangular grid is induced in the input state space. The
convex hull of core positions that are connected with a
vector (x,u) ∈ Z is called elementary hypersquare, or
simply hypersquare and is denoted Hl, with l consisting
of the lower indices of the limiting core positions. For
ease of notation, we write Hi, Hj to indicate different
hypersquares if ambiguity is excluded. With a slight abuse
of notation, we also write Hx

l := Hl∩X and Hu
l := Hl∩U

denoting the state and input subspace of Hl. For a given
equilibrium x∗, the set of hypersquares containing x∗ is
denoted H0 = {Hx

j : x∗ ∈ Hx
j }, and the complement will

be denoted H1 = {Hx
j }\H0.

By using membership functions µxi
ji

(xi), µui
qi (ui) for fuzzi-

fication, a degree of membership between variables xi, ui
and core positions sxi

ji
, sui

qi is determined. If the algebraic

x1

u x2

sx1
j1

sx1
j1+1

sx2
j2

sx1
j1+2

suq

Fig. 1. Hypersquare of RFS with core position derivatives.

product is used for aggregation and implication, the simple
sum for accumulation of the single rules, and the center of
singleton method for defuzzification, the form

ẋ =
∑
j,q

sẋw(j,q) ·
N∏
i=1

µxi
ji

(xi) ·
M∏
p=1

µup
qp (up)

=
∑
j,q

sẋw(j,q) · Ξj,q(x,u)

(3)

is obtained (see Adamy and Kempf (2003)). Thus, the
derivative at any point (x,u) is given by a summation
over all core position gradients weighted by a premise
Ξj,q(x,u), which is the product of memberships in every
dimension.

The transition function in (3) is depended on member-
ship functions. Although these can be any continuous,
convex functions with µxi

ji
7→ [0, 1],

∑
ji
µxi
ji

(xi) = 1 and
µxi
ji

(sxi
ji

) = 1, we consider triangular and ramp shaped
membership functions

µxi
ji

(xi) =



xi−s
xi
ji−1

s
xi
ji
−sxi

ji−1

, xi,min ≤ sxi
ji−1
≤ xi < sxi

ji
≤ xi,max

s
xi
ji+1
−xi

s
xi
ji+1
−sxi

ji

, xi,min ≤ sxi
ji
≤ xi < sxi

ji+1
≤ xi,max

1, xi,min ≥ xi ∨ xi ≥ xi,max

0, else (4)

due to their ease of representation. By substituting (4) into
(3),

ẋ =
∑

(j,q)∈Hl

sẋw(j,q) ·
N∏
i=1

µxi
ji

(xi) ·
M∏
p=1

µup
qp (up)

= a0,l +

N∑
i=1

axi,lxi +

M∑
p=1

aup,lup +

N∑
j=2

j−1∑
i=1

axij ,l · xixj+

M∑
p=1

up

N∑
j=2

axiup,lxi + · · ·+ ax1...nu1...M ,lx1 · · ·xnu1 · · ·uM ,

(5)

is obtained. Thus, for (x,u) ∈ Hl, ẋ is a (linear) interpo-
lation between connected core position derivatives and can
be evaluated to a multi-affine polynomial in the state and
input variables. Because of the resulting non-input affine
system (5), the following assumption is made:
Assumption 1. The RFS is considered to be input affine,
such that no product terms ui ·uj occur in (5).

Due to the fact that many practical systems and all
single input systems are input affine, Assumption 1 is
not overly restrictive. Non-input affine systems can be
treated similarly by appropriate linearization techniques.
For brevity, this is not further elaborated on.
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With Assumption 1, the local dynamics (5) can be rewrit-
ten as

ẋ = AlZ(x) + Bl(x)u

= AlZ(x) + a0,l + Bl(x)u,
(6)

where Z(x) = [1 x1 x2 x1x2 . . . x1 · · ·xn]
T denotes the

vector of monomials of x and Z(x) =
[
1 Z(x)T

]T .
2.1 Further Notation

A hypersquare facet is denoted Fij with outer normal
vector nij pointing from Hx

i to Hx
j . The set of neighbors

is denoted N (Hx
i ) = {Hx

j Hx
i ∩ Hx

j 6= ∅}. The distance
between two hypersquares is given by d(Hx

i , H
x
j ) = ‖i −

j‖1. The distance between a hypersquare and a point
is defined as d(Hx

i ,x) = minj{d(Hx
i , H

x
j ) x ∈ Hx

j }.
For symmetric matrices we use the shorthand notation
He {M} = M + MT , and the Hadamard product of
two matrices of same dimension is written M1 ◦ M2.
Identity and matrix of all zeros are denoted I and 0, each
being of appropriate dimensions. Eigenvalues of M are
written λi(M), and the imaginary unit is denoted by j.
Positive and negative definiteness are denoted by � and
≺. Polynomials p(x) being a sum of squares (SOS) will
be written p(x) ∈ Σ[x], meaning p(x) =

∑
i q

2
i (x). A

multivariate polynomial P (x) being SOS is then denoted
P ∈ ΣN [x]. Clearly, p(x) ∈ Σ[x] ⇒ p(x) ≥ 0. Strict
inequality holds, if ∃ϕ(x) =

∑N
n=1

∑d
i=1 ϕnix

2i
n , s.t. p(x)−

ϕ(x) ∈ Σ[x] (see Papachristodoulou and Prajna (2005) for
details). For ease of notation, we sometimes omit ϕ(x), if
strict inequality is obvious.

3. FINITE AUTOMATON REPRESENTATION AND
PROBLEM STATEMENT

It was shown in Sec. 2 that the dynamics of a RFS
can be described by linguistic rules (2), allowing for a
transparent yet approximate system model. This rule base
representation on the other hand does not at first sight
seem to be well suited for controller design, since it
does not take the dynamics in the interpolating regions
into account. The description of the system dynamics
by piecewise polynomial functions (5) on the other hand
uniquely defines the system dynamics in Z, yet is no longer
interpretable. To fill in the gap between these two system
descriptions, we introduce in the following an intermediate
system representation based on the underlying hybrid
automaton representation of the system. The resulting
finite automaton will then serve as basis for the synthesis
of local controllers stabilizing a known equilibrium in RFS
and also allows for system analysis from an abstract point
of view.

From the piecewise defined dynamic function (5) it can be
seen that RFS can be interpreted as autonomous switched
systems

ẋ = f(j, q,x,u) = fj,q(x,u) (7)
depending on Hx

j and Hu
q being active. Thus, it may also

be expressed as hybrid automaton G, which is a sixtupel
G = (Hx, δ,Z,F , I, T ). (8)

Herein, Hx = {Hx
1 , . . . ,H

x
L} represents the set of discrete

hypersquares in the state space, which in terms of hybrid

systems may also be referred to as modes. The relation
δ ⊆ Hx × Hx is the set of possible transitions between
modes. The set of continuous variables is again represented
by Z = X × U ⊆ RN+M , whereas F = {fj,q(x,u)}
denotes the set of dynamic functions describing the state
derivatives at particular modes. The initial states of the
hybrid automaton are written I = {Hx

0 ,x0} and the
terminal states T = {H0,x

∗}.
If local controllers kj(x) are applied for each mode Hx

j ,
the controlled RFS will be denoted

Gc = (Hx, δc,Z,Fc, I, T ), (9)
with Fc = {fj,q(x,kj(x))}.
Besides the transition relation δ, possible mode changes
can also be expressed via the adjacency matrix A, with

Aij =

{
1, if (Hx

i , H
x
j ) ∈ δ,

0, else.
(10)

Similarly,Ac captures possible transitions of the controlled
system. The main benefit of the automaton representation
becomes obvious with the following proposition, in which
h ∈ {0, 1}L denotes the vector of active modes, and L
being the total number of hypersquares:
Proposition 1. If a RFS is controlled such that mode
changes may only occur deterministically, i.e.

∑
j Ac,ij ≤

1, the sequence of modes is given by the discrete system
h(k + 1) = Ach(k). (11)

In this case, key properties of the RFS such as reachability,
stability or existence of limit cycles can be determined
by means of Ac. Thus, the problem statement is twofold:
First, local controllers are sought rendering Gc determin-
istic, and second, the controlled system is supposed to be
stable with respect to a given equilibrium x∗, which is
assumed as x∗ = 0 for ease of notation but without loss
of generality.

To solve this task, the following two main problems are
addressed in the sequel:
Problem 1. Find a local controller ki(x) for Hx

i such that
a mode transition (Hx

i , H
x
j ) ∈ δ is effectuated in finite

time. In addition, ∀Hx
i ∈ Hx

0 , x(0) ∈ Hx
i find a local

controller ki(x) such that the condition limt→∞ x(t)→ x∗

holds.
Problem 2. Assign local controllers ki(x) for every Hx

i
such that limk→∞ h(k) = h∗, hi = 1, x∗ ∈ Hx

i .

4. SUM OF SQUARES BASED SYNTHESIS OF
LOCAL FACET CONTROLLERS

In this section, a solution to Problem 1 is presented, which
is based on sum of squares optimization. The following
definitions are akin to Belta and Habets (2006) and Lin
and Broucke (2006):
Definition 1. (Exit and Blocked Facets). A facet Fij =
Hx

i ∩Hx
j is said to be an exit facet, if nT

e,ij ·ẋ > 0,∀x ∈ Fij .
It is said to be a blocked facet, if nT

b,ij · ẋ < 0,∀x ∈ Fij .

If the dynamics of a hypersquare can be controlled such
that it has only one exit facet and blocked facets else, the
following definition applies:

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6942



Definition 2. (Strict Facet Controllability). A RFS is said
to be strictly facet controllable within an elementary hy-
persquare Hx

i with respect to an exit facet Fij , if for every
x(0) ∈ Hx

i there exists a trajectory x(t) such that the
mode transition (Hx

i , H
x
j ) ∈ δ occurs in finite time.

For now, we assume the RFS to be strictly facet con-
trollable. In Sec. 5.2, the case is considered where this
assumption is not justified.

In order for all trajectories in Hx
i to exit the hypersquare

in finite time, it must not contain equilibria or limit cycles.
Both are ensured not to exist, if ẋn > 0 or ẋn < 0 for
some n ∈ 1, . . . , N . If in addition it is assured that only
Fij is an exit facet, and Fik, k 6= j are blocked facets,
the following sufficient conditions are obtained ensuring a
mode transition (Hi, Hj) in finite time:

nT
e,ij · ẋ > 0, ∀ x ∈ Hx

i , (12a)

nT
b,ik · ẋ < 0, ∀ x ∈ Fij . (12b)

By utilizing a local polynomial feedback u = ki(x) =
Ki(x) ·Z(x) = Ki(x) ·Z(x) + k0,i, the SOS conditions

nT
e,ij ·

(
Aiq + Biq(x)Ki(x)

)
· . . .

·Z(x) ∈ Σ[x], ∀x ∈ Hx
i , (13a)

− nT
b,ik ·

(
Aiq + Biq(x)Ki(x)

)
· . . .

·Z(x) ∈ Σ[x], ∀x ∈ Fik, j 6= k, (13b)
have to hold ∀Hu

q ∈ U . Applying the generalized S-
procedure (see Parrilo (2000)) then yields

nT
e,ij ·

(
Aiq + Biq(x)Ki(x)

)
Z(x) . . .

− tijq(x)εi(x) ∈ Σ[x], (14a)

− nT
b,ik ·

(
Aiq + Biq(x)Ki(x)

)
Z(x) . . .

− tikq(x)ϕij(x) ∈ Σ[x], k 6= j, (14b)

tijq(x) ∈ Σ[x]. (14c)
Therein, εi(x) is an ellipsoidal outer approximation of Hx

i ,
which is obtained by considering the bounding hyperplanes[

ET
ij eij

] [x
1

]
≥ 0, j = 1, . . . , 2N (15)

of Hi. Using Ei = [. . . Eij . . .] and ei = [. . . eij . . .], the
outer ellipse is then obtained as

εi(x) =

{
x −

[
x
1

]T[
ET

i Ei Eiei
eTi Ei eTi ei − 1

] [
x
1

]
≥ 0

}
. (16)

Furthermore, facets Fij in (14) are approximated via

ϕij(x) =
{
x ε(x) > 0, (nT

ij · x) = (nT
ij · xfp,ij)

}
(17)

with xfp,ij being an arbitrary point on Fij .

Although the introduction of approximating ellipsoidal
regions introduces a certain degree of conservatism since
Hx

i ⊂ εi(x), computational complexity is reduced com-
pared to consideration of strict polygonal regions.

In addition to constraints of the controlled dynamics in
Hx

i , constraints on the input umin ≤ ki(x) ≤ umax,∀x ∈
Hx

i have to be taken into account as well to avoid satura-
tion. This is ensured by means of the following equations:

(
K

T

iq(x) ·Z(x)− umin,q

)
− tsl,iq(x)εi(x) ∈ Σ[x], (18a)(

umax,q −K
T

iq(x) ·Z(x)
)
− tsu,iq(x)εi(x) ∈ Σ[x], (18b)

ts{l,u},iq(x) ∈ Σ[x]. (18c)

Finally, the summarized equations read
Find Ki(x),k0,i,

s.t. ∀Hu
q ∈ U , (14), (18).

(19)

Lemma 1. The solution to (19) solves Problem 1 for
(Hx

i , H
x
j ) ∈ δ, i 6= j.

By the same line of reasoning, a solution to Problem 1 is
found for Hx

i ∈ H0. In order to disable mode transitions,
that is (Hx

i , H
x
j ) /∈ δc, i 6= j, all facets have to be blocked,

which can be ensured via (14b). Then, it remains to ensure
x(t) → 0 as t → ∞. Assuming a polynomial Lyapunov
function V (x) = Z(x)TPZ(x), local asymptotic stability
holds, if P � 0 and

V̇ (x) = He
{
ZTPM(x)

(
(Aiq + Biq(x)Ki(x))Z+

. . .+ a0,iq + k0,i

)}
< 0, ∀x ∈ Hx

i \{0}, (20)

where the abbreviation M(x) := ∂Z(x)/∂x was used. By
further introducing the shorthand notation Ãiq = Aiq +
Biq(x)Ki(x), ã0,iq = a0,iq +k0,i, (20) can be rewritten as

−
[
Z
1

]T[He{PMÃ(j,q)

}
∗(

PMã(j,q)

)T
0

] [
Z
1

]
> 0, ∀x ∈ Hx

i \{0},

(21a)
and by utilizing the generalized S-procedure

−

[
He
{
PMÃiq

}
∗

(PMãiq)
T

0

]
− Tiq(x)εi(x) ∈ ΣN+1[x], (22a)

Tiq(x) ∈ ΣN+1[x]. (22b)

Thus, the final feasibility problem is obtained, which again
takes bounds on the control input into account:

Find Ki(x),k0,i , (23a)
s.t. ∀Hu

q ∈ Hu, (18), (22), (23b)
P � 0, (23c)

tijq(x) ∈ Σ[x], (23d)

− nT
b,ij ·

(
Aiq + Biq(x)Ki

)
Z(x)

− tijq(x)ϕij(x) ∈ Σ[x]. (23e)
Lemma 2. The solution to (23) solves Problem 1 for all
Hi ∈ H0.

Due to bilinear terms PKi(x), Pk0,i(x) in (22), the
question arises on how to obtain a feasible solution to (23).
One approach would be by a linearization approach (path-
following) akin to Hassibi et al. (1999), whereas an initial
solution for ki(x) may be obtained by first neglecting (22).
In some cases, setting, e.g., P = I, may already lead to a
solution as well. An alternative approach for solving (23) is
by appropriate variable substitution, which again leads to
a feasibility problem being linear in the decision variables,
as shown in Gering et al. (2013).

The advantage of this SOS-based approach is the inde-
pendence of the local sub problems to be solved, since no
global Lyapunov function is involved.
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5. GLOBAL HYBRID CONTROL OF RFS

5.1 Hybrid Control of Strictly Facet Controllable RFS

With the previous discussion on local controllers, it is
obvious to select controllers such that certain mode tran-
sitions are disabled and the set H0 is reached from every
hypersquare in order to obtain stability. More precisely,
if local controllers ki(x) are found such that for every
Hx

i , there exists a path (Hx
i , . . . ,H

x
0 ), Hx

0 = Hx
j ∈ H0,

then the controlled RFS (9) is asymptotically stable. Thus,
the search for appropriate controllers is linked to a search
on the graph described by δc, for which efficient search
algorithms exist (see, e.g., Hart et al. (1968)).

A practical approach for design of allowed mode transi-
tions in Gc is by determining Ac by means of a discrete
feasibility problem, such that the conditions

Ac,ij =

1,
(Hi, Hj) ∈ δ, d(Hx

j ,x
∗) ≤ d(Hx

i ,x
∗),

j = arg min
k∈N (i)

d(Hx
k ,x

∗),

0, else, (24a)∑
j

Ac,ij = 1, (24b) Ac ◦AT
c = 0, (24c)

λj(Ac + AT
c ) < max

i
λi(Ac + AT

c ), i 6= j (24d)

hold.
Theorem 1. If for strict facet controllable RFS, local con-
trollers are determined by (19) and (23), (24) hold, then
the equilibrium x∗ of the system is asymptotically stable
in Z.

Proof. With Lemma 1 it follows, that mode transitions
(Hx

i , H
x
j ) are effectuated in finite time if indicated by

Ac,ij = 1. Due to (14), the modes change deterministically.
Lemma 2 also ensures x→ x∗ if x ∈ H0. Thus it remains
to show that the sequence Hx

i (k) converges. As necessary
condition, deadlocks must be excluded, that is Aji = 0
if Aij = 1, which is ensured via (24c). Furthermore, the
graph described by Ac must be weakly connected. Weak
connectivity holds, if the underlying undirected graph
Ac + AT

c has a maximum eigenvalue with multitude of
1 (see Gross and Yellen (2004)), which is ensured by
(24d). Because the distance measure d(Hx

i ,x
∗) induces

a Lyapunov function for the macro dynamics (11), the
system is stable in the sense of Lyapunov, and furthermore,
due to the weak connectivity, it is ensured that no cycles
occur between hypersquares {Hx

i } with d(Hx
i ,x

∗) > 0.
Thus, H0 is reached in finite time.

Besides this sufficient condition for a stabilizing hybrid
controller, the advantage of the proposed method by The-
orem 1 clearly is in the resulting automaton-like behavior
of the controlled RFS, which resembles to the idea of
transparency of the RFS model itself.

5.2 Approximation for Hybrid Control of General RFS

The major drawback of the algorithm is its restriction to
RFS with strictly facet controllable hypersquares. Loosely
speaking, if this property has to hold for all facets of
a hypersquare, it requires the possibility of independent
control of the individual states in order to obtain a

controlled RFS with deterministic hypersquare transitions.
Thus, in the strict sense, the applicability is limited to a
narrow subclass of RFS.

On the other hand, the idea may be carried over to general
RFS by relaxing the SOS-conditions for local controllers
in Sec. 4, if instead of (19), the optimization problem

max
Ki(x),k0,i

∑
j,q

αijq, (25a)

s.t. ∀Hu
q ∈ U , (18), (25b)

nT
e,ij ·

(
Aiq + Biq(x)Ki(x)

)
Z(x) . . .

− tijq(x)εi(x)− αijq ∈ Σ[x], (25c)

− nT
b,ik ·

(
Aiq + Biq(x)Ki(x)

)
Z(x) . . .

− tikq(x)ϕij(x)− αijq ∈ Σ[x], k 6= j, (25d)
tijq(x) ∈ Σ[x] (25e)

is solved for all Hx
i ∈ Hx

1 . Similarly, relaxing (23) leads to

max
Ki(x),k0,i

∑
j,q

αijq, (26a)

s.t. ∀Hu
q ∈ U , (18), (22) (26b)

P � 0 (26c)
tijq(x) ∈ Σ[x] (26d)

− nT
b,ij ·

(
Aiq + Biq(x)Ki

)
Z(x)

− tijq(x)ϕij(x)− αijq ∈ Σ[x], (26e)
through which a local stabilizing controller is obtained for
all Hx

i ∈ Hx
0 . Note that the exact conditions (19) and (23)

are recovered, if αijq ≥ 0.

The design of Ac as discussed in Sec. 5.1 on the other
hand remains exactly the same, which now might be
referred to as reference automaton of the controlled RFS.
Then, transparent and plausible design of stabilizing local
controllers is still possible, although stability can no longer
be guaranteed by means of Theorem 1 and thus has to
be verified numerically instead. In addition, although Ac
is deterministic, this is not necessarily the case for the
RFS. As a consequence of the non-deterministic mode
changes, chattering effects may now occur, which have
to be taken into consideration. In such a case, the effect
of chattering may be lessened by hysteresis switching of
the local controllers. Although the resulting vector field is
in general also discontinuous if Gc has only deterministic
mode changes, chattering in this case cannot occur, since
after every transition (Hx

i , H
x
j ), the facet Fji is blocked.

6. NUMERICAL EXAMPLES

In order to illustrate the aforementioned concept, we con-
sider two examples of RFS, for which stabilizing controllers
are computed. Although the general idea of RFS is to
approximately model plant dynamics based on expert
knowledge or measurements in the absence of exact nu-
meric models, they are in this case obtained from nonlinear
differential equations for simplicity.
Example 1. First, we consider an omnidirectional robot as
discussed in Campion et al. (1996). Since robots of this
type have off-centered castor wheels or Swedish wheels
rather than fixed wheels, they can move in any direction in
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the plane at each position. Its continuous time dynamics,
which serve here as kinematic reference model, are given
by [

ẋ1
ẋ2
ẋ3

]
=

[
cosx3 − sinx3 0
sinx3 cosx3 0

0 0 1

]
·

[
u1
u2
u3

]
, (27)

where (x1, x2) ∈ R2 is the robot’s absolute position in the
plane, x3 ∈ [−π, π] is the rotational angle around the yaw
axis and ui are the control inputs.

In order to model the dynamics of the robot as RFS, first
the core positions {sx1

j1
} = {sx2

j2
} = {−1,−0.5, 0, 0.5, 1} are

chosen describing the spacial variables x1 and x2, whereas
{sx3

j3
} = {−π,−π/2, 0, π/2, π} are selected as core posi-

tions of the rotational angle. The core position values are
then associated with linguistic variables {Lx1

j1
} = {Lx2

j2
} =

{Lx3
j3
} = {neg./pos. big, neg./pos. small, zero} (abbrevi-

ated nb, ns, z, ps, pb). The inputs are described by the
linguistic values Lui

qi = {negative, zero, positive}, which
are associated with crisp values {sui

qi } = {−10, 0, 10}. The
state derivatives of the CTRFS are then defined linguis-
tically at core positions according to (27) and are given
in Table 1 for the example of the rule base with fixed
Lx1
j1

= Lx2
j2

= negative and Lu1
q1 = Lu2

q2 = positive.

Table 1. Rule base of Example 1 with Lx1
j1

= Lx2
j2

=
negative and Lu1

q1 = Lu2
q2 = positive

Lẋ
j

Lx3
j3

nb ns z ps pb

Lu3
q3

n n/n/n p/n/n p/p/n n/p/n n/n/n
z n/n/z p/n/z p/p/z n/p/z n/n/z
p n/n/p p/n/p p/p/p n/p/p n/n/p

For the equilibrium x∗ = [pos. small, pos. small, zero]
T , a

stabilizing controller for this strictly facet controllable RFS
is computed. The resulting trajectory for an initial value
of x0 = [−0.8, −0.8, −2]

T is shown in Fig. 2, where the
arrows indicate the robot’s orientation and the numbers
inside of the hypersquare are the distances d(Hx

i ,x
∗)

to the equilibrium with regard to the x1/x2-plane. As
can be seen from the plot, the trajectory crosses facets
always towards hypersquares with smaller distance to x∗.
In addition, the equilibrium is reached asymptotically.

−1 −0.5 0 0.5 1
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0

0.5

1

4

3

2

2

3

2

1

1

2

1

0

0

2

1

0

0

x1

x
2

Fig. 2. Trajectory of the omnidirectional robot with ini-
tial value x0 = [−0.8,−0.8,−2]T : Arrows indicate
the robot’s orientation in the x1/x2-plane, numbers
within hypersquares are the distance to [x∗1, x

∗
2]T .

Example 2. Now, stabilization is considered for an RFS,
which is not strictly facet controllable for all hypersquare
facets. The system under consideration is the well known
Van-der-Pol oscillator augmented by an input[

ẋ1
ẋ2

]
=

[
x2

−x1 + β
(
1− x21

)
x2 + u

]
, (28)

which is modeled as RFS with core positions at {sx1
j1
} =

{sx2
j2
} = {0,±1,±2}, {suq } = {0,±5}. By choice of β = 1 in

(28), the open-loop system is known to have a stable limit
cycle, which is shown in Fig. 3. By applying the relaxed
controller synthesis procedure described in Sec. 5.2, a refer-
ence adjacency matrix Ac is obtained, which is visualized
in Fig. 5b. As can be seen, mode transitions are preferably
carried out towards H0, although the actual controlled
system may behave non-deterministically.

−2 −1 0 1 2

−2

−1

0

1

2

x1

x
2

Fig. 3. Phase plot of open-loop RFS with stable limit cycle.

If on the other hand, local controllers can be found such
that mode transitions occur deterministically, then sta-
bility is already guaranteed by analyzing the eigenvalues
of Ac, which are in this case λ1,...,12 = 0, λ13 = −1,
λ14,15 = ±j, λ16 = 1. Obviously, Ac has no anti-stable
eigenvalues outside the unit disk in the complex plane,
but may show an oscillating behavior due to eigenvalues
at λ14,15 = ±j. These on the other hand correspond to an
oscillation within H0, which does not prevent trajectories
from reaching the equilibrium x∗ = 0 asymptotically.
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Fig. 4. Development of x1 and x2 in controlled RFS for
initial value of x0 = [−2.0, 2.5]T .

From Fig. 4, the development of the states of the controlled
RFS is shown for an initial value of x0 = [−2.0, 2.5]

T , from
which the asymptotic stability of the equilibrium can be
seen. Furthermore, Fig. 5a depicts the system input during
control, showing that the restriction |u| ≤ 5 holds. From
the phase plot in Fig. 6, stability of the closed-loop system
becomes apparent as well.
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Fig. 5. (a) Input u during control and (b) controlled
reference automaton with labeled hypersquares.
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Fig. 6. Phase plot of closed-loop system.

7. CONCLUSION

A method for synthesis of hybrid controllers was discussed
in order to stabilize equilibria in recurrent fuzzy systems.
For strictly facet controllable recurrent fuzzy systems,
this task was solved in a two-step procedure: First, local
controllers are computed by means of sum of squares
optimization, yielding deterministic hypersquare changes
in the controlled system. Then, the resulting controlled
hybrid system is solely described by means of a determin-
istic automaton. This allows for insight in various system
properties, such as reachability, stability, occurrence of
limit cycles, deadlocks, etc. Abstraction from the hybrid
polynomial system offers the advantage of deeper insight
into the system behavior and is therefore related to the
idea of transparent system description via fuzzy logic. By
relaxing the synthesis equations, the same approach may
be applied to non-strictly facet controllable RFS. Although
stability conditions do no longer hold in the strict sense,
the concept may still be applied.

Research on this topic is far from being finished. One
major future direction could be the extension to more
general supervisory control allowing for set point changes.
In addition, the design of nonlinear control by means of
a linear system describing hypersquare transitions lends
itself to existing linear controller design for discrete-time
systems, which might allow for explicit restrictions on the
eigenvalues of the discrete system.

REFERENCES

Adamy, J. and Flemming, A. (2006). Equilibria of
continuous-time recurrent fuzzy systems. Fuzzy Sets and
Systems, 157(22), 2913–2933.

Adamy, J. and Kempf, R. (2003). Regularity and chaos
in recurrent fuzzy systems. Fuzzy Sets and Systems,
140(2), 259–284.

Belta, C. and Habets, L. (2006). Controlling a class of
nonlinear systems on rectangles. IEEE Transactions on
Automatic Control, 51(11), 1749–1759.

Campion, G., Bastin, G., and Dandrea-Novel, B. (1996).
Structural properties and classification of kinematic and
dynamic models of wheeled mobile robots. IEEE Trans.
on Robotics and Automation, 12(1), 47–62.

Gering, S., Schwung, A., Gußner, T., and Adamy, J.
(2013). Sum of squares approaches for control of
continuous-time recurrent fuzzy systems. In Proc. of the
21st IEEE Mediterranean Conference on Control and
Automation, 271–277. Chania, Greece.

Girard, A. and Martin, S. (2012). Synthesis for constrained
nonlinear systems using hybridization and robust con-
trollers on simplices. IEEE Transactions on Automatic
Control, 57(4), 1046–1051.

Gross, J.L. and Yellen, J. (eds.) (2004). Handbook of Graph
Theory. CRC Press.

Hart, P.E., Nilsson, N.J., and Raphael, B. (1968). A
formal basis for the heuristic determination of minimum
cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2), 100–107.

Hassibi, A., How, J., and Boyd, S. (1999). A path-
following method for solving bmi problems in control.
In Proceedings of the American Control Conference,
volume 2, 1385 – 1389. San Diego, California, USA.

Henzinger, T.A. (2000). The theory of hybrid automata.
Springer.

Heymann, M. and Lin, F. (1998). Discrete-event control
of nondeterministic systems. IEEE Transactions on
Automatic Control, 43(1), 3–17.

Koutsoukos, X.D., Antsaklis, P.J., Stiver, J.A., and Lem-
mon, M.D. (2000). Supervisory control of hybrid sys-
tems. Proc. of the IEEE, 88(7), 1026–1049.

Lin, Z. and Broucke, M. (2006). Resolving control to facet
problems for affine hypersurface systems on simplices.
In Decision and Control, 2006 45th IEEE Conference
on, 2625–2630. doi:10.1109/CDC.2006.377067.

Mojica-Nava, E., Quijano, N., Rakoto-Ravalontsalama,
N., and Gauthier, A. (2010). A polynomial approach
for stability analysis of switched systems. Systems &
Control Letters, 59(2), 98–104.

Papachristodoulou, A. and Prajna, S. (2005). A tutorial
on sum of squares techniques for systems analysis.
In Proceedings of the American Control Conference,
volume 4, 2686–2700. San Diego, California, USA.

Parrilo, P.A. (2000). Structured Semidefinite Programs
and Semialgebraic Geometry Methods in Robustness
and Optimization. Ph.D. thesis, California Institute of
Technology Pasadena, California.

Ramadge, P.J. and Wonham, W.M. (1987). Supervisory
control of a class of discrete event processes. SIAM
journal on control and optimization, 25(1), 206–230.

Schwung, A., Gußner, T., and Adamy, J. (2011). Stability
Analysis of Recurrent Fuzzy Systems: A Hybrid System
and SOS Approach. IEEE Transactions on Fuzzy Sys-
tems, 19(3), 423–431.

Tazaki, Y. and Imura, J.i. (2008). Finite abstractions
of discrete-time linear systems and its application to
optimal control. In Proceedings of the 17th IFAC world
congress, 10201–10206. Seoul, South Korea.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6946


