
Continuous-time linear MPC algorithms based
on relaxed logarithmic barrier functions ⋆

Christian Feller ∗ Christian Ebenbauer ∗

∗ Institute for Systems Theory and Automatic Control,
University of Stuttgart, Pfaffenwaldring 9, 70550 Stuttgart

e-mail: {christian.feller,ce}@ist.uni-stuttgart.de

Abstract: In this paper, we investigate the use of relaxed logarithmic barrier functions in the
context of linear model predictive control. In particular, barrier function based continuous-time
algorithms are considered, in which the control input is obtained as the sampled output of a
continuous-time dynamical system. We present suitable barrier function relaxations as well as
results on closed-loop stability and the satisfaction of state and input constraints. The results
also apply to conventional barrier function based model predictive control schemes.

1. INTRODUCTION

In model predictive control (MPC), the control action
is usually computed by the repeated on-line solution of
a finite horizon open-loop optimal control problem. The
system behavior is predicted based on a model of the
underlying plant dynamics and constraints on both the in-
put and the system states can be considered as additional
conditions in the optimization problem. Due to extensive
research in the last decades, a solid theoretical foundation
for MPC of constrained linear and nonlinear systems ex-
ists, providing well-understood concepts for ensuring sta-
bility properties of the closed loop, see Mayne et al. [2000].
In addition, various results on efficient algorithmic MPC
implementations are available, which allow to compute the
optimal control input – or at least a feasible approximation
– very rapidly, e.g. Bemporad et al. [2002], Diehl et al.
[2005], Zeilinger and Jones [2011].
This paper is concerned with a recently proposed class
of barrier function based linear MPC algorithms, which
compute a stabilizing control input based on a continuous-
time dynamical system and without the need of an explicit
on-line optimization [Feller and Ebenbauer, 2013]. The
main idea of these algorithms is to see the MPC open-
loop optimal control problem as a parameter-dependent
or time-varying optimization problem and to exploit the
fact that the evolution of the initial prediction state is
governed by the underlying continuous-time plant dynam-
ics. The algorithmic implementation relies on a stabilizing
barrier function based, and hence smoothed, reformulation
of the original open-loop optimal control problem, whose
solution is then tracked asymptotically by a Newton-
based continuous-time optimization algorithm. As shown
in Feller and Ebenbauer [2013], this allows to formulate
a continuous-time MPC algorithm which, under suitable
assumptions, ensures asymptotic stability of the closed-
loop system as well as strict satisfaction of all input and
state constraints. Other interesting approaches towards
continuous-time algorithms for real-time MPC applica-
tions, which partly also rely on barrier function based
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formulations, are discussed in Ohtsuka [2004] and DeHaan
and Guay [2007]. Results on stabilizing barrier function
based MPC schemes have been presented in Wills and
Heath [2004] and Feller and Ebenbauer [2013]. In contrast
to other procedures, which often consider the limiting
case of the barrier function weighting parameter going
to zero, these two approaches allow to guarantee asymp-
totic stability of the closed-loop system for any arbitrary
positive weighting of the barrier functions. However, the
main problem of barrier function based MPC schemes,
and in particular of the outlined continuous-time MPC
algorithms, is given by the fact that the underlying barrier
functions are only defined in the interior of the corre-
sponding constraint sets. This means that infeasibilities
are not tolerated at all, which might be a problem in the
presence of disturbances or uncertainties and particularly
with regard to the intermediate feasibility of continuous-
time trajectories that occur in the discussed continuous-
time MPC algorithms, see Feller and Ebenbauer [2013].

Motivated by the above problem setup, we consider in this
paper linear MPC formulations that are based on so-called
relaxed barrier functions, i.e., penalty function-like exten-
sions of the original barrier functions which are also defined
outside of the respective feasible sets. We present different
relaxing functions and show that, under suitable assump-
tions, it is still possible to guarantee asymptotic stability
of the closed-loop system and, in some cases, even strict
satisfaction of all input and state constraints. The results
apply both to the continuous-time MPC algorithms dis-
cussed in this paper and to conventional barrier function
based MPC schemes which compute the optimal control
input based on an iterative optimization at each sampling
instant. While the usage of relaxed barrier functions has
already been studied in the context of continuous-time
trajectory optimization, see Hauser and Saccon [2006],
there exist to the authors knowledge no results on closed-
loop stability and constraint satisfaction when considering
relaxed barrier functions in the context of MPC.
Throughout the paper we will make use of the following

notation: ‖x‖M1
:=
√

xTM1x for any symmetric positive
semi-definite matrix M1; M i

2 denotes the i-th row of a
given Matrix M2; for an arbitrary set S, S◦ will denote
the open interior and ∂S the limiting boundary.
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2. BARRIER FUNCTION BASED CONTINUOUS-
TIME ALGORITHMS FOR LINEAR MPC

In this section, we want to summarize briefly the main
results of some previous work on barrier function based
linear MPC and related continuous-time algorithms. The
following summary contains mainly the underlying key
ideas as all the detailed results and proofs can be found in
Wills and Heath [2004] and Feller and Ebenbauer [2013].

2.1 Linear model predictive control

We consider discrete-time linear systems of the form

x(k + 1) = ADx(k) +BDu(k), (1)

where x ∈ R
n and u ∈ R

m refer to the vectors of
system states and inputs, respectively. The real matrices
AD ∈ R

n×n, BD ∈ R
n×m are obtained by discretizing the

continuous-time plant dynamics ẋ(t) = ACx(t) + BCu(t)
with a sampling time Ts > 0, where we assume (AD, BD)
to be stabilizable. In general, the linear MPC open-loop
optimal control problem for a finite prediction horizon N
is given by

J∗(x) = min
u

N−1
∑

k=0

ℓ(xk, uk) + F (xN )

s.t. xk+1 = ADxk +BDuk, x0 = x(tk) = x

xk ∈ X , k = 1, . . . , N − 1, xN ∈ Xf ⊂ X ,

uk ∈ U , k = 0, . . . , N − 1,

(2)

where the stage cost ℓ(x, u) and the terminal cost F (x)
are defined as ℓ(x, u) = ‖x‖2Q + ‖u‖2R and F (x) = ‖x‖2P
for appropriately chosen weight matrices Q = QT � 0,
R = RT ≻ 0, P = PT ≻ 0. Moreover, Xf refers to
a closed and convex terminal constraint set and u :=
{u0, u1, . . . , uN−1} denotes the sequence of control in-
puts. The constraint sets X and U are assumed to be
polytopic sets which contain the origin in their interior.
By stacking the input sequence in the extended input
vector U := [uT

0 , · · · , uT
N−1]

T ∈ R
Nm and eliminating

the predicted system states xk via xk(U, x) = Ak
Dx +

∑k−1
j=0 A

j
DBDuk−j−1, k = 1, . . . , N , problem (2) can be

rewritten as a strongly convex quadratic program (QP)
which is parametrized by the current system state x:

J∗(x) = min
U

1

2
UTHU + xTFU + xTY x (3a)

s.t. GU ≤ w + Ex , (3b)

where 0 ≺ H = HT ∈ R
nU×nU , F ∈ R

n×nU , Y ∈ R
n×n,

G ∈ R
q×nU , w ∈ R

q, and E ∈ R
q×n with nU = Nm.

Definition 1. Let the feasible sets UN (x) and XN be de-
fined as UN (x) := {U ∈ R

nU : uk ∈ U , k = 0, . . . , N − 1,
xk(U, x) ∈ X , k = 1, . . . , N − 1 , xN (U, x) ∈ Xf} and
XN := {x ∈ X : UN (x) 6= ∅}, respectively.
Definition 2. For U ∈ R

nU , let the projection P(U) :
R

nU → R
m be defined as P(U) = [Im 0 · · · 0]U .

An idealized MPC scheme may then be implemented in
the following way: i) measure the current system state x =
x(tk), ii) compute the optimal input vector U = U∗(x) by
solving (3), iii) apply the first input u(x) = u∗

0(x) = P(U)
to the plant, iv) shift the horizon and repeat the procedure
at the next sampling instant. More details on idealized
MPC schemes as well as results on stability and recursive
feasibility can be found in Mayne et al. [2000].

2.2 Barrier function based MPC with guaranteed stability

As in the context of interior point methods, suitable
barrier functions allow to eliminate the inequality con-
straints in (2) by including them into the cost function.
As discussed later, the use of barrier functions results
in an unconstrained and “smoothed” representation of
problem (2) which can then be tracked by asymptotic
tracking algorithms, see Section 2.3.

Let us consider the following barrier function based open-
loop optimal control problem

J̃∗(x) = min
u

{

ℓ̃0(x0, u0) +

N−1
∑

k=1

ℓ̃(xk, uk) + F̃ (xN )

}

s.t. xk+1 = ADxk +BDuk, x0 = x(tk) = x,

(4)

with ℓ̃0(x, u) := ℓ(x, u) + εBu(u), ℓ̃(x, u) := ℓ(x, u) +

εBu(u) + εBx(x), F̃ (x) := F (x) + εBf(x), where Bu(·),
Bx(·) and Bf (·) are suitable convex barrier functions with
domains U◦, X ◦, and X ◦

f with Bu(u) → ∞ for u → ∂U ,
Bx(x) → ∞ for x → ∂X , and Bf (x) → ∞ for x → ∂Xf .
The positive scalar ε > 0 is the barrier function weighting
parameter, which determines the influence of the barrier
function values on the cost objective. Two different ap-
proaches towards the stabilizing design of barrier function
based MPC schemes have been presented in Wills and
Heath [2004] and Feller and Ebenbauer [2013], which are
both based on the concept of so-called gradient recentered
barrier functions and on the standard approach of using
the value function J̃∗(x) as a Lyapunov function for the
closed-loop system, see Mayne et al. [2000].

Definition 3. (Gradient recentered barrier function).
Let B : D → R be a convex barrier function on an open
convex set D with 0 ∈ D. Then, the function B̄ : D → R

defined as B̄(z) = B(z) − B(0) − [∇B(0)]Tz is called
the gradient recentered barrier function for B around the
origin [Wills and Heath, 2004].

While the use of gradient recentered barrier functions
ensures that J̃∗(x) is a positive definite function with a
unique minimum at the origin, suitable further conditions
can be imposed on the problem parameters Bx(·), Bu(·),
Xf , Bf (·), and P in order to guarantee the contraction
property

J̃∗(x+)− J̃∗(x) ≤ −ℓ̃0(x, ũ
∗
0(x)) ∀x ∈ X ◦

N , (5)

where x+ = ADx+BDũ∗
0(x) denotes the next closed-loop

system state. One possible approach to ensure satisfaction
of (5) in the context of barrier function based MPC is
summarized in Definition 4, which represents a generaliza-
tion of the main ideas used in Wills and Heath [2004] and
Feller and Ebenbauer [2013]. In the following, AK := AD+
BDK describes the closed-loop dynamics for a given local
controller u = Kx and BK(x) := Bx(x)+Bu(Kx) refers to
the corresponding combined barrier function of input and
state constraints for the set XK := {x ∈ X : Kx ∈ U}.
Definition 4. For a given stabilizing local control gain
K ∈ R

n×m, the parameters of the open-loop optimal
control problem (4) satisfy the following conditions:

i) the barrier functions Bu(·) and Bx(·) are gradient
recentered barrier functions according to Definition 3;

ii) ∃M ∈ R
n×n,M � 0, s. t. BK(x) ≤ xTMx ∀x ∈ N ,

where N ⊂ XK is a convex and compact set with
0 ∈ N ◦ and Kx ∈ U ∀x ∈ N ;

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2482



Plant

U̇ = f(U, x)
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Fig. 1. The proposed continuous-time MPC algorithm.

iii) the terminal cost matrix P ≻ 0 solves the Lyapunov
equation P = AT

KPAK +Q+KTRK + εM ;
iv) the terminal set is Xf = {x ∈ R

n : xTPfx ≤ 1} with
Pf ≻ 0 chosen s. t. Xf ⊆ N and AT

KPfAK − Pf � 0;
v) the barrier function for the terminal set constraint is

given by Bf (x) = − ln(1− xTPfx).

Based on these conditions, it can be shown that (5) holds

true, i.e., that the value function J̃∗(x) is a Lyapunov
function of the closed-loop system. This proves that the
origin of system (1) under the MPC feedback u(x) = ũ∗

0(x)
based on repeated solution of the barrier function based
open-loop optimal control problem (4) is asymptotically
stable for any x0 ∈ X ◦

N . For more details and specific
choices for the discussed parameters, please see Wills and
Heath [2004] and Feller and Ebenbauer [2013].

2.3 A stabilizing continuous-time MPC algorithm

As in the standard case, we can rewrite the barrier function
based formulation (4) in a more compact form as

J̃∗(x) = min
U

J̃(U, x) + xTY x with (6)

J̃(U, x) =
1

2
UTHU + xTFU + εBqp

c (U, x) + εBqp
f (U, x),

where the barrier functions Bqp
c (· , ·) and Bqp

f (· , ·) are de-

fined according to Feller and Ebenbauer [2013]. One way
of implementing a stabilizing barrier function based MPC
scheme is, of course, to solve problem (6) at each sampling
instant by making use of suitable iterative optimization al-
gorithms. In contrast to this, a system theoretic approach
which computes the optimal input vector Ũ∗(x) based on
a continuous-time dynamical system of the form

U̇ = f(U, x) , U(t0) = U0 , (7)

where x = x(t) denotes the system state related to the
continuous-time plant dynamics, has been proposed re-
cently in Feller and Ebenbauer [2013]. The main idea is to
formulate the above continuous-time dynamical system (7)
in such a way that it asymptotically tracks the opti-
mal solution of the barrier function based, and therefore
smoothed, approximation of the original MPC open-loop
optimal control problem. In short, the resulting solution
U(t) ensures satisfaction of all input and state constraints

and converges asymptotically to the optimizer Ũ∗(x(t))
as t → ∞ for all initial conditions U0 ∈ U◦

N (x0) with
x0 ∈ X ◦

N . As shown in Feller and Ebenbauer [2013], this
allows to formulate a continuous-time MPC algorithm
which guarantees, under suitable assumptions, asymptotic
convergence of the system state to the origin for all feasible
initializations U0 as well as asymptotic stability of the
closed-loop system in the case of the optimal initialization
U0 = Ũ∗(x0). A schematic illustration of the outlined
algorithm is given in Fig. 1.

3. STABILIZING LINEAR MPC ALGORITHMS
BASED ON RELAXED BARRIER FUNCTIONS

The main problem of the barrier function based MPC for-
mulation, and in particular of the outlined continuous-time
MPC algorithm, is given by the fact that the underlying
barrier functions are only defined in the interior of the
corresponding constraint sets and, hence, do not tolerate
infeasibilities at all. When considering conventional barrier
function based MPC schemes, this could be a problem in
the presence of model uncertainties or disturbances which
may drive the system state out of the feasible set X ◦

N . In
the context of continuous-time MPC algorithms, however,
the barrier function based formulation requires that all
continuous-time state trajectories are not only feasible
at the discrete sampling points but stay in the feasible
set X ◦

N for all times, which is a rather technical and
strong assumption, see Feller and Ebenbauer [2013]. One
possible approach to handle these problems is to relax the
involved barrier functions by means of suitable relaxing
penalty functions which are then also defined outside of the
respective constraint sets. In the following, we discuss the
use of relaxed logarithmic barrier functions in the context
of linear MPC algorithms and present our main results on
stability and feasibility properties of the resulting closed-
loop system.

3.1 Relaxed logarithmic barrier functions

First, we introduce the concept of relaxed logarithmic
barrier functions and discuss suitable realizations based
on different relaxing functions.

Definition 5. (Relaxed logarithmic barrier function). For
a constraint of the form z ≥ 0, z ∈ R, and a given scalar
parameter δ > 0, the function

B̂(z) =

{

− ln(z) z > δ
β(z; δ) z ≤ δ

(8)

defines a relaxed version of the logarithmic barrier function
B(z) = − ln(z), where β : R → R denotes a suitable
relaxing function satisfying dom β = (−∞,∞), β(δ; δ) =
− ln(δ), limz→−∞ β(z; δ) = ∞, and β(z; δ) strictly mono-
tone for z ≤ δ.

In general, it is advisable to choose β(· ; δ) as a strictly
convex C2 function that satisfies β′(z; δ)|z=δ = − 1

δ
and

β′′(z; δ)|z=δ = 1
δ2
. In this case, B̂(z) also is a strictly

convex function that is twice continuously differentiable
and defined on z ∈ (−∞,∞).

i) Polynomial relaxation Hauser and Saccon [2006]. The
first ideas on relaxed (or approximate) logarithmic barrier
functions as well as a suitable choice for the function β(· ; δ)
seem to have been presented by Hauser and Saccon [2006]
in the context of continuous-time trajectory optimization.
The authors make use of the polynomial relaxing function

βk(z; δ) =
k − 1

k

[

(

z − kδ

(k − 1)δ

)k

− 1

]

− ln(δ) , (9)

where k > 1 is an even integer. It is easy to verify that the
function βk(· ; δ) has all the desired properties mentioned
above. As reported in Hauser and Saccon [2006], already
k = 2 seems to work well in practice.

ii) Exponential relaxation. In order to avoid large con-
straint violations, it may be beneficial if the relaxing
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function increases very rapidly outside the border of the
feasible set. As an alternative to the polynomial relaxation
above, we propose the following relaxing function

βe(z; δ) = exp
(

1− z

δ

)

− 1− ln(δ) , (10)

which is an upper bound for, and in some sense the limit
case of, the function βk(· ; δ). Clearly, the function βe(· ; δ)
satisfies all the conditions above and allows, therefore,
a strictly convex and smooth relaxation of the original
barrier function B(z) = − ln(z). Moreover, it can be easily

shown that B̂(z) ≤ B(z) ∀z > 0 if either βk(· ; δ) or βe(· ; δ)
are used as relaxing functions.

3.2 Problem setup: stabilizing model predictive control
formulations based on relaxed logarithmic barrier functions

In the following, we consider the relaxed barrier function
based MPC formulation

Ĵ∗(x; δ) = min
u

{

ℓ̂0(x0, u0) +

N−1
∑

k=1

ℓ̂(xk, uk) + F̂ (xN )

}

s.t. xk+1 = ADxk +BDuk, x0 = x(tk) = x, (11)

with ℓ̂0(x, u) := ℓ(x, u) + εB̂u(u), ℓ̂(x, u) := ℓ(x, u) +

εB̂u(u) + εB̂x(x), and F̂ (x) := F (x) + εB̂f(x), where

B̂u(·), B̂x(·), and B̂f (·) are relaxed gradient recentered
logarithmic barrier functions as defined below. We do not
indicate the explicit dependence of the relaxed barrier
functions on the relaxation parameter δ for the sake
of notational simplicity. Moreover, we will use B̂(·) to
denote the relaxed version of a barrier function based
expression B̃(·).
Assumption 1. The state and input constraints are given
in form of compact polytopic sets that contain the origin
in their interior, i.e., U = {u ∈ R

m : Cuu ≤ du} and
X = {x ∈ R

n : Cxx ≤ dx} with Cx ∈ R
qx×n, Cu ∈ R

qu×m

and du > 0, dx > 0. Moreover, we assume that the feasible
sets XN and UN (x) have nonempty interior, i.e., X ◦

N 6= ∅
and U◦

N (x) 6= ∅ ∀x ∈ X ◦
N .

Assumption 2. The barrier functions B̂u(·) and B̂x(·) for
the polytopic input and state constraints are relaxed
gradient recentered logarithmic barrier functions of the
form B̂u(u) =

∑qu
i=1 B̂u,i(u) and B̂x(x) =

∑qx
i=1 B̂x,i(x)

with, for example,

B̂x,i(x)=















− ln(zi(x)) + ln(dix)−
Ci

xx

dix
zi(x) > δ

β(zi(x); δ) + ln(dix)−
Ci

xx

dix
zi(x) ≤ δ

, (12)

where the relaxing function β(· ; δ) is chosen according to
Section 3.1 and zi(x) := −Ci

xx+dix. The barrier functions

B̂u,i(u) for the input constraints are defined analogously.

Assumption 3. The barrier function B̂f (·) for the terminal
set Xf = {x ∈ R

n|xTPfx ≤ 1} is a relaxed gradient
recentered logarithmic barrier function of the form

B̂f (x) =

{

− ln(1− xTPfx) 1− xTPfx > δ

β(1 − xTPfx; δ) 1− xTPfx ≤ δ
. (13)

Assumption 4. All relevant parameters of the open-loop
optimal control problem (11) are chosen in such a way
that the conditions in Definition 4 are satisfied, i.e., such
that a barrier function based MPC scheme relying on the
non-relaxed formulation (4) results in an asymptotically
stable closed loop satisfying the contraction property (5).

XN

− ln(z)

β(z; δ)

δ

z

x(tk+1)

x(tk)

x(tk+2)

β(0; δ)

{

Fig. 2. Intermediate infeasibility of continuous-time trajec-
tories (left) and an example of a relaxed logarithmic
barrier function (right).

Assumption 5. In the following, the relaxation parameter
δ ∈ R satisfies 0 < δ < min{d1x, . . . , dqxx , d1u, . . . , d

qu
u , 1}.

The above condition on the relaxation parameter δ ensures
that the relaxed barrier functions B̂u(u), B̂x(x), and B̂f (x)
are indeed gradient recentered barrier functions accord-
ing to Definition 3 with the unique minima B̂u(0) = 0,

B̂x(0) = 0, B̂f (0) = 0. In particular, the condition δ < 1
needs to be included due to the definition of the function
B̂f in Assumption 3. It is of course also possible to consider
individual relaxation parameters δi for the different con-
straints. Here, however, we restrict ourselves to one overall
δ for the sake of simplicity.
In the following, we will present two different approaches
that allow to guarantee for the relaxed barrier function
based formulation (11) asymptotic stability of the closed-
loop system and, in one case, strict satisfaction of state
and input constraints. Note that B̂(·) → B̃(·) in the corre-
sponding domain of definition for δ → 0, which shows that
the properties of the previously discussed barrier function
based MPC scheme without relaxations are recovered as
the relaxation parameter δ > 0 approaches zero.

3.3 Stabilization with guaranteed satisfaction of state and
input constraints

In this section, we show that for any set of initial conditions
X0 ⊂ XN there exists a choice for δ > 0 such that
the closed-loop state and input trajectories resulting from
formulation (11) stay strictly feasible and that the control
law u(x) = û∗

0(x) asymptotically stabilizes the origin
of system (1). Note that the following results can be
extended easily to the case of barrier function based MPC
of nonlinear systems.

Definition 6. Let the two positive scalars dmin and β̄(δ)
be defined as dmin = min{d1x, . . . , dqxx , d1u, . . . , d

qu
u } and

β̄(δ) = min{β(0; δ) + ln(dmin)− 1, β(0; δ)}, respectively.
Definition 7. For δ satisfying Assumption 5, let the set
Xβ(δ) be defined as Xβ(δ) := {x ∈ X ◦

N |Ĵ∗(x; δ) ≤ εβ̄(δ)}.
Note that β̄(δ) is a lower bound for the values of the

barrier functions B̂u,i(u), B̂x,i(x), and B̂f (x) evaluated at
the borders of the corresponding feasible sets, which leads
to the following result.

Theorem 8. Let the Assumptions 1-4 hold true and let the
set Xβ(δ) be defined according to Definition 7. Then, the
feedback u(x(k)) = û∗

0(x(k)) related to the relaxed barrier
function based MPC formulation (11) asymptotically sta-
bilizes the origin of system (1) under strict satisfaction of
all input and state constraints for any x0 ∈ Xβ(δ).
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Proof. The proof consists of three parts. First, we show
that the underlying input, state, and terminal set con-
straints are not violated for any x0 ∈ Xβ(δ); then, we

show that the value function Ĵ∗(x; δ) will decrease; finally,
we use this result to conclude that the closed-loop is
asymptotically stable and that the resulting input and
state trajectories are strictly feasible at all later time steps.

i) Let x∗
k|x := Ak

Dx +
∑k−1

j=0 A
j
DBDû∗

k−j−1(x), for k =

1, . . . , N . Since the cost function in (11) is a sum of pos-

itive definite terms, it holds that εB̂x,i(x
∗
k|x) ≤ Ĵ∗(x; δ),

i = 1, . . . , qx, εB̂u,i(û
∗
k(x)) ≤ Ĵ∗(x; δ), i = 1, . . . , qu, as

well as εB̂f (x
∗
N |x) ≤ Ĵ∗(x; δ). For x0 ∈ Xβ(δ) ⊂ X ◦

N ,

we have Ĵ∗(x0; δ) ≤ εβ̄(δ) and, hence, B̂x,i(x
∗
k|x) ≤ β̄(δ),

εB̂u,i(û
∗
k(x)) ≤ β̄(δ), i = 1, . . . , qu, as well as εB̂f (x

∗
N |x) ≤

β̄(δ), which shows due to the definition of β̄(δ) in Defi-
nition 6 that the infeasible parts of the barrier functions,
i.e. z < 0 in Fig. 2, are not active at x0. Due to this, the
predicted input and state trajectories are strictly feasible
and the control law u(x0) = û∗

0(x0) results in a strictly
feasible successor state x+

0 = ADx0 +BDû∗
0(x0) ∈ X ◦

N .
ii) Consider now the successor state x+

0 ∈ X ◦
N . Since the

local controller K and the terminal set Xf are chosen
according to Definition 4, it remains to show that

F̂ (AKx)− F̂ (x) ≤ −ℓ̂(x,Kx) ∀x ∈ X ◦
f (14)

in order guarantee the contraction property Ĵ∗(x+
0 ; δ) −

Ĵ∗(x0; δ) ≤ −ℓ̂0(x0, û
∗
0(x0)) ∀x0 ∈ Xβ(δ) ⊂ X ◦

N , see Mayne

et al. [2000]. For AK := AD+BDK and B̂K(x) := B̂x(x)+

B̂u(Kx), condition (14) is equivalent to

‖AKx‖2P − ‖x‖2P + ‖x‖2Q + ‖Kx‖2R + εB̂K(x)

+ εB̂f (AKx) − εB̂f(x) ≤ 0 ∀x ∈ X ◦
f . (15)

By the design of the relaxed barrier functions and the
choice of Xf and P , see i) and ii) in Definition 4, we

know that B̂K(x) ≤ BK(x) ≤ xTMx ∀x ∈ X ◦
f ⊂ XK

and, in particular, ‖AKx‖2P − ‖x‖2P + ‖x‖2Q + ‖Kx‖2R +

εB̂K(x) ≤ 0 ∀x ∈ X ◦
f . Furthermore, since the matrix Pf is

chosen according to condition iv) of Definition 4, we have
1−xTAT

KPfAKx ≥ 1−xTPfx ∀x ∈ X ◦
f , which shows, due

to the monotonicity of the relaxed barrier function B̂f (·),
that B̂f (AKx)− B̂f (x) ≤ 0 ∀x ∈ X ◦

f . With this, it follows

directly that condition (15), respectively (14), holds true.
Based on standard arguments, see Mayne et al. [2000], it

can be shown that this implies Ĵ∗(x+
0 ; δ) − Ĵ∗(x0; δ) ≤

−ℓ̂0(x,û
∗
0(x0)) ∀x0 ∈ Xβ(δ).

iii) The fact that the value function decreases shows that

Ĵ∗(x+
0 ; δ) ≤ εβ̄(δ) and hence x+

0 ∈ Xβ(δ) ⊂ X ◦
N for

any x0 ∈ Xβ(δ). By repeating this argument, we see
that the resulting closed-loop system state satisfies x(k) ∈
Xβ(δ) ∀k ≥ 0 for any x(0) = x0 ∈ Xβ(δ), which shows that
all future state and input trajectories stay strictly feasible.
Moreover, by the construction of the relaxed gradient
recentered barrier functions, one can show that Ĵ∗(x; δ)
is a well-defined, positive definite and radially unbounded
function. Hence, it can be used as a Lyapunov function
that allows to prove asymptotic stability of the origin with
a guaranteed region of attraction of at least Xβ(δ). �

Remark 9. Note that it is also possible to consider
X̌β(δ) := {x ∈ X ◦

N |Ĵ∗(x; δ) ≤ εβ̌(δ)} with β̌(δ) =
min{β(δ; δ) + ln(dmin) − 1, β(δ; δ)}. It can be shown that
in this case the relaxing parts of the underlying barrier
functions are never activated for any x0 ∈ X̌β(δ). Thus,
such an approach could be seen as an exact relaxation of
the original barrier function based MPC formulation (4).
Of course, X̌β(δ) ⊂ Xβ(δ) for any δ > 0.

The following results state some useful properties of the set
Xβ(δ) and show that the feasible set X ◦

N of the non-relaxed
barrier function based MPC scheme can be approximated
arbitrarily close by decreasing δ.

Lemma 10. Let the set Xβ(δ) be defined according to
Definition 7. Then, for any δ satisfying Assumption 5,
the set Xβ(δ) is a nonempty compact and convex set.
Furthermore, it holds that Xβ(δ) → X ◦

N as δ → 0.

Proof. Since J∗(x; δ) is a strongly convex and positive
definite function and β̄(δ) > 0 by definition, the first part
follows trivially. As β̄(δ) → ∞ for δ → 0, the second part
is a direct result of the definition of the set Xβ(δ). �

Corollary 11. For any set X0 ⊂ X ◦
N there exists a δ̄ > 0

such that the closed-loop system is asymptotically stable
and satisfies all input and state constraints for any x0 ∈ X0

if δ ≤ δ̄. In particular, the feasible set X ◦
N of the non-

relaxed case is recovered for δ → 0.

Remark 12. Note that when considering conventional bar-
rier function based MPC schemes with iterative optimiza-
tion at every sampling instant, the underlying barrier
functions are now defined globally, which makes the MPC
scheme more robust against disturbances or uncertainties.
Moreover, in the context of the continuous-time MPC
algorithm outlined in Section 2.3, the approach allows for
continuous-time trajectories which are strictly feasible at
the discrete sampling points but may activate the infeasi-
ble parts of the relaxed barrier functions in between, see
Section 3.5 as well as Fig. 2 on the previous page.

Remark 13. Depending on the set of initial conditions X0,
the parameter δ̄ that satisfies the condition X0 ⊆ Xβ(δ)
∀δ ≤ δ̄ may be very small. However, the discussed choice
for δ merely represents a sufficient condition for stability
and may be conservative. In general, a possibly much
larger value for δ could be chosen in practice without
loosing the desired closed-loop behavior.

3.4 Global stabilization with upper bounds for the maximal
violation of state and input constraints

In the previous Section, we showed how asymptotic stabil-
ity of the closed-loop system as well as strict satisfaction
of all input and state constraints can be guaranteed for
any initial condition x0 ∈ X ◦

N by choosing the relaxation
parameter δ > 0 small enough. In the following, we present
a different approach which allows to prove global asymp-
totic stabilization of the closed loop system while giving
an upper bound for the maximally occurring violation
of input and state constraints for a given δ. In contrast
to the previous discussion, we assume controllability of
the discrete-time system (1) and do not relax the barrier
function of the terminal set constraint.

Assumption 6. The pair (AD, BD) is controllable and the
prediction horizon satisfies the condition N ≥ n, i.e.,
the matrix Ω =

[

AN−1
D BD · · · ADBD BD

]

∈ R
n×nU has

rank n. Moreover, the Assumptions 1-2 and 4 hold true and
the barrier function B̂f (·) for the terminal set constraint

is not relaxed, i.e., B̂f (x) = Bf (x).
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Theorem 14. Let Assumption 6 hold true. Then, inde-
pendently of the relaxation parameter δ, the feedback
u(x(k)) = û∗

0(x(k)) based on the relaxed barrier function
based MPC formulation (11) asymptotically stabilizes the
origin of system (1) for any initial condition x0 ∈ R

n.
Moreover, an upper bound for the maximal violation
of input and state constraints is given by ẑ(x0; δ) =
|min{ẑ1, . . . , ẑqx+qu , 0}|, where ẑi < 0 is a solution to

β(ẑi; δ) + ln(di) +
ẑi
di

− 1 =
1

ε
Ĵ∗(x0; δ) (16)

with d =: [dTx , d
T
u ]

T and i = 1, . . . , qx + qu.

Proof. Due to the above controllability assumption, there
exists for any x0 ∈ R

n an input vector U(x0) such that

xN (U(x0), x0) ∈ X ◦
f . Hence, Û∗(x0) and Ĵ∗(x0; δ) are

defined for any x0 ∈ R
n. Since the terminal state satisfies

x∗
N |x0

∈ X ◦
f , the local controller u = Kx can be used to

construct a feasible control sequence for the successor state
x+
0 = ADx0 + BDû∗

0(x0). Since all parameters are chosen
according to Definition 4, basically the same arguments as
in part ii) of the proof of Theorem 8 can be used in order

to show that Ĵ∗(x+
0 ; δ)− Ĵ∗(x0; δ) ≤ −ℓ̂0(x,û

∗
0(x0)) ∀x0 ∈

R
n. Hence, the value function Ĵ∗(x; δ) can in this case

be employed as a Lyapunov function for proving global
asymptotic stability of the origin, see part iii) of the proof
of Theorem 8. Furthermore, due to the decrease of the
value function and following the same arguments as in
part i) of the proof of Theorem 8, the values of all barrier

functions are bounded by 1
ε
Ĵ∗(x0; δ), which shows that the

element-wise worst case violations for the state and input
constraints zi(x) = −Ci

xx + dix ≥ 0, i = 1, . . . , qx, and
zj(u) = −Cj

uu + dju ≥ 0, j = 1, . . . , qu, are given by the
solutions to (16). If no solution ẑi < 0 exists, no constraint
violations will occur in the closed-loop system. �

Thus, by relaxing the state and input constraint barrier
functions, it is possible to get rid of the usually inherent
infeasibility problems and to design MPC schemes that
guarantee, under rather mild assumptions, global asymp-
totic stability of the closed-loop system. Furthermore,
along the lines of Lemma 10 and Corollary 11, we can
state the following result, which allows to satisfy a given
constraint violation tolerance for a set of initial conditions.

Corollary 15. For any given tolerance ẑmax > 0 and any
set of initial conditions X0 ⊂ X ◦

N , there exists a relax-

ation parameter δ̃ > 0 such that the maximal constraint
violation satisfies ẑ(x0; δ) ≤ ẑmax for any x0 ∈ X0 and

any δ ≤ δ̃.

Remark 16. In general, the relaxation parameter δ̃ needed
for satisfying a, possibly small, given constraint violation
tolerance for a set of initial conditions may be much larger
than the one needed for a strictly feasible stabilization
according to Section 3.3, i.e., δ̃ ≫ δ̄. In comparison, this
makes the global stabilization approach more suitable for
a practical implementation.

If the relaxing function β(· ; δ) is chosen as βe(· ; δ) or
βk(· ; δ) with k > 2, a nonlinear equation solver can
be used to find solutions of Eq. (16). In the case of
β(· ; δ) = βk(· ; δ) with k = 2, however, Eq. (16) reduces
to a quadratic equation in ẑi and a closed form expression
for the maximal constraint violation ẑ(x0; δ) can be given.
This result is summarized in the following Corollary, whose
proof is omitted here for the sake of brevity.

Corollary 17. For a given initial condition x0 ∈ R
n and

β(· ; δ) = βk(· ; δ) with k = 2, the maximal possible
violation of input and state constraints in the closed-
loop system can be computed explicitly and is given by

ẑ(x0; δ) = |min
{

δ
(

γ1 −
√

γ2
1 − γ2

)

, 0
}

| with γ1 := 2 −
δ

dmin
and γ2 := 1 + 2 ln

(

dmin

δ

)

− 2
ε
Ĵ∗(x0; δ).

Remark 18. Note that the above constraint violation sat-
isfies ẑ(x0; δ) < 0 exactly in the case γ2 < 0, which leads

to δ > δ̄ := dmin exp(
1
2 − 1

ε
Ĵ∗(x0; δ)). In fact, it can be

shown easily that x0 ∈ Xβ(δ) if δ ≤ δ̄, see Theorem 8.
This illustrates again that the parameter δ that is sufficient
for guaranteeing strict constraint satisfaction based on the
arguments in Section 3.3 may be very small.

3.5 Continuous-time linear MPC algorithms based on
relaxed logarithmic barrier functions

In this section, we combine the above results on stabilizing
relaxed barrier function based MPC with the continuous-
time asymptotic tracking algorithm proposed in Feller and
Ebenbauer [2013]. As a result, we present a continuous-
time MPC algorithm that obtains a stabilizing control
input as the output of a dynamical system and does,
in contrast to previous work, not rely on any form of
intermediate feasibility assumption.
By eliminating the equality constraints related to the
system dynamics, problem (11) can again be rewritten in
the following, more compact, form

Ĵ∗(x; δ) = min
U

Ĵ(U, x) + xTY x with (17)

Ĵ(U, x) =
1

2
UTHU + xTFU + εB̂qp

c (U, x) + εB̂qp
f (U, x),

where B̂qp
c (· , ·) and B̂qp

f (· , ·) denote the relaxed versions of

the barrier functions Bqp
c (· , ·) and Bqp

f (· , ·) in problem (6).
By the design of the relaxed barrier functions, the func-
tion Ĵ(U, x) is strongly convex in U with ∇2

U Ĵ(U, x) �
λmin(H)InU

for any given x. Note that, with respect to
the optimal control input, the problems (17) and (11)
are completely equivalent. Therefore, if problem (11) is
formulated in such a way that the conditions discussed
in either Section 3.3 or Section 3.4 are satisfied, the opti-
mizer Û∗(x) related to (17) yields a control law u(x) =

û∗
0(x) = P(Û∗(x)) which is asymptotically stabilizing

in the corresponding region of attraction. By considering
the constantly changing system state x as a parameter,
problem (17) can be seen as minimization of a time-varying
strongly convex C2 function. Suppose x(t0) = x0 ∈ R

n

and x(t) evolves in time according to ẋ = ACx + BCu,
where u = u(t) may be any measurable function of time.
Consider now the continuous-time dynamical system

U̇ = −
(

∂2Ĵ(U, x)

∂U2

)−1(

∂Ĵ(U, x)

∂U

T

+
∂2Ĵ(U, x)

∂x∂U
ẋ

)

, (18)

with an initial condition U(t0) = U0 satisfying the con-

dition Ĵ(U0, x0) < ∞, i.e., the vector U0 is feasible with
respect to the considered barrier function specifications.
Clearly, the right-hand side of Eq. (18) is well-defined for

any (U(t), x(t)) in the domain of Ĵ(U, x). Based on the
above results and the ideas presented in Feller and Eben-
bauer [2013], we now propose the following continuous-
time relaxed barrier MPC algorithm, see also Fig. 1.
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Algorithm 1 (Continuous-time rbMPC algorithm)

Initialization for t = t0:
(i) choose a suitable initialization U(t0) = U0

(ii) set us = P(U0)
Integration for t > t0:
x apply u = us to the plant;
x measure the current state x(t) and obtain U(t) by inte-
grating the dynamical system (18) with ẋ = ACx+BCus;

x Sampling whenever t = tk = kTs, k ∈ N>0:
x set us = P(U(tk)).

We first combine Algorithm 1 with the relaxed barrier
function approach presented in Section 3.3, which allows
us to state the following results.

Theorem 19. Let the cost Ĵ(U, x) and the barrier functions
in (17) satisfy the conditions in Theorem 8 and let the
set Xβ(δ) be defined according to Definition 7. Then, for

the optimal initial condition U0 = Û∗(x0), the feedback
u(k) = us(tk) obtained from Algorithm 1 asymptotically
stabilizes the origin of the discrete-time system (1) for any
x0 ∈ Xβ(δ) while guaranteeing strict satisfaction of all
input and state constraints.

Proof. Following Feller and Ebenbauer [2013], consider
the positive semi-definite Lyapunov function candidate

W (U, x) = 1
2
∂Ĵ(U,x)

∂U

T
∂Ĵ(U,x)

∂U
, which satisfies W (U, x) ≥

0, W (U, x) = 0 ⇔ ∇U Ĵ(U, x) = 0. If all elements

of Ĵ(U, x) in (17) are chosen according to Section 3.3,
the function W (U, x) : R

nU × R
n → R is continuously

differentiable and well-defined due to the relaxation of
all involved logarithmic barrier functions. Using (18),
the directional time derivative of W along U and x is
given by Ẇ = −2W (U, x) ≤ 0. In the case U0 =

Û∗(x0), it holds that W (U0, x0) = 0 and Ẇ (U0, x0) = 0
and, hence, W (U(t), x(t)) ≡ 0, which is equivalent to

∇U Ĵ(U(t), x(t)) ≡ 0 ∀t ≥ t0. Since Ĵ(U, x) in (17)
is strongly convex in U , this obviously implies U(t) ≡
Û∗(x(t)) ∀t ≥ t0. This shows that in the case U0 = Û∗(x0),
the solution U(t) of (18) tracks the optimal solution of
problem (17), and therefore of problem (11), exactly.
Thus, Algorithm 1 is equivalent to the conventional MPC
implementation relying on the relaxed barrier function
based formulation (11), and both strict satisfaction of
constraints and asymptotic stability of the closed-loop
system follow directly from Theorem 8. �

Remark 20. In the case U0 6= Û∗(x0), conditions for the
guaranteed existence of U(t) and x(t) for all t ≥ t0 as well
as for the convergence of the system state to the origin are
still an open problem. In the practical implementation,
however, Algorithm 1 seems to achieve very good results
also for suboptimal or even infeasible initializations U0.

Remark 21. Note that Theorem 19 can be seen as a direct
extension of the results presented in Feller and Ebenbauer
[2013], that allows to eliminate the there needed interme-
diate feasibility assumption.

In the following, we combine Algorithm 1 with the globally
stabilizing relaxed barrier function based MPC scheme
discussed in Section 3.4.

Definition 22. Let UN,f(x) := {U ∈ R
nU : xN (U, x) ∈

Xf} denote the feasible set for U when considering only
the non-relaxed terminal set constraint.

Theorem 23. Let the cost function Ĵ(U, x) and the barrier
functions in (17) satisfy the condition in Theorem 14.

Then, for the optimal initial condition U0 = Û∗(x0),
Algorithm 1 asymptotically stabilizes the origin of the
discrete-time closed-loop system (1) for any x0 ∈ R

n.
Furthermore, the maximal violation of state and input
constraints is upper bounded by the value ẑ(x0; δ) specified

in Theorem 14. In the case U0 6= Û∗(x0), U0 ∈ U◦
N,f(x0),

Algorithm 1 still achieves asymptotic convergence of the
system state to the origin for any x0 ∈ R

n.

Proof. Consider again the Lyapunov function candidate
W (U, x) from above. The proof consists of three parts.
First, we deal with the case of an optimal initialization.
Then, we show that for a feasible initialization both x(t)
and the solution U(t) of (18) exist for all times and that

U(t) asymptotically tracks the optimal solution Û∗(x(t)).
Based on this, we then prove asymptotic convergence of
the system state to the origin for U0 ∈ U◦

N,f(x0).

i) In case of an optimal initialization U0 = Û∗(x0), we have

W (U(x(t)), x(t)) ≡ 0, which shows that U(t) ≡ Û∗(x(t))
for t ≥ t0, see the proof of Theorem 19 above. Hence, the
claimed stability properties follow from Theorem 14 and
the fact that the optimal solution is tracked exactly.
ii) Consider now the case U0 6= Û∗(x0), U0 ∈ U◦

N,f(x0). For

any given x ∈ R
n, the function W (U, x) : U◦

N,f(x) → R is

well-defined and W (U, x) → ∞ whenever U → ∂UN,f(x)

due to the non-relaxed barrier function B̂f (·). Moreover,
because of the above controllability assumption, the set
U◦
N,f(x) is nonempty for any x ∈ R

n. However, the fact

that W (U, x) is only positive semidefinite requires to show
that both U(t) and x(t) exist for all times, i.e., that U(t)
stays bounded for all t ≥ t0. To see this, we use that
any strongly convex C2 function f : D ⊆ R

p → R with
∇2f(y) � mIp satisfies ‖∇f(y)‖ ≥ m‖y − y∗‖ ∀y ∈ D,
where y∗ is the unique minimizer of f [Polyak, 1987,

p. 11]. Hence,W (U, x) = ‖∇U Ĵ(U, x)‖2 ≥ (λmin(H))2‖U−
Û∗(x)‖2 ∀U ∈ U◦

N,f(x), x ∈ R
n, which shows that W (U, x)

is radially unbounded in the deviation R(t) := U(t) −
Û∗(x(t)), where Û∗(x(t)) is always bounded and unique.
Since W (U0, x0) := W0 < ∞ for U0 ∈ U◦

N,f(x0) and

Ẇ (U, x) = −2W (U, x) ≤ 0, the function W (U(t), x(t)) is
monotonically decreasing. Thus, we have W (U(t), x(t)) ≤
W0 < ∞ as well as ‖R(t)‖ ≤ 1/λmin(H)

√
W0 for t ≥ t0.

This shows that U(t) stays both feasible and bounded,
i.e., U(t) ∈ U◦

N,f(x(t)) and ‖U(t)‖ < ∞ for t ≥ t0. Then,
being the solution of a linear system with a bounded input,
x(t) is also defined for all t ≥ t0. Hence, the right-hand
side of (18) is defined for all times and its solution U(t)

satisfies U(t) = Û∗(x(t))+R(t) with R(t) bounded as well

as U(t) → Û∗(x(t)) for t → ∞ for any U0 ∈ U◦
N,f(x0).

iii) Based on the above arguments, we know that Algo-
rithm 1 generates an input sequence of the form ū0(k) =
û∗
0(x(k)) + r(k) with r(k) bounded and r(k) → 0 for

k → ∞. Using the fact that u(k) = û∗
0(x(k)) is glob-

ally asymptotically stabilizing and following the proof of
Theorem 3 in Feller and Ebenbauer [2013], this allows
to show that ∀ c̄ > 0 ∃ k̄ : ‖x(k)‖ ≤ c̄ ∀ k ≥ k̄.
Hence, we have that limk→∞ ‖x(k)‖ = 0, which proves
asymptotic convergence of the system state to the origin
for U0 6= Û∗(x0), U0 ∈ U◦

N,f(x0) for any x0 ∈ R
n. �
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4. NUMERICAL EXAMPLES

In the following, we briefly illustrate the closed-loop be-
havior of the proposed MPC algorithm by means of an
academic numerical example. We consider a double inte-
grator system with the discrete-time system model

x(k + 1) =

[

1 Ts

0 1

]

x(k) +

[

T 2
s

Ts

]

u(k) , (19)

where the discretization time is chosen to be Ts = 0.1 s.
The linear MPC open-loop optimal control problem is
formulated over a prediction horizon of N = 10, using
a quadratic cost function with the weight matrices Q =
diag(1, 0.1), R = 1 and the input and state constraints
|u| ≤ 1, |x1| ≤ 2.8, and |x2| ≤ 0.8. The parameters of
the barrier function based MPC formulation are chosen
according to the design procedure presented in Feller
and Ebenbauer [2013] with ε = 10−2 and γ̄ = 30. We
implemented Algorithm 1 in Matlab and tested the
closed-loop behavior for different initial conditions and
varying values of the relaxation parameter δ for both of the
two approaches presented in Section 3.3 and Section 3.4,
respectively. Exemplary results are illustrated in Fig. 3
and Fig. 4 together with some comments. In general, we
can say that the novel implementation based on relaxed
logarithmic barrier functions produces very reliable and
numerically robust results.

5. CONCLUSION

In this paper, we presented two approaches for the design
of stabilizing MPC algorithms that are based on relaxed
logarithmic barrier functions. While the first approach
ensures asymptotic stability and strict constraint satis-
faction for a bounded set of feasible initial conditions,
the second approach allows for global stability guaran-
tees in combination with upper bounds for the maximal
constraint violation. Based on a Newton-based asymptotic
tracking algorithm, we then proposed a continuous-time
MPC algorithm which allows to implement linear MPC
without the need of an iterative on-line optimization and
does not, as in previous results, rely on any assumption on
the intermediate feasibility of continuous-time trajectories.
It is our hope that the presented results do not only
represent a natural and useful extension of the continuous-
time MPC algorithm proposed in previous work but that
they may help to understand and justify the use of relaxed
barrier functions in the context of MPC in general.
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