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Abstract: We propose a design methodology for explicit Model Predictive Control (MPC)
that guarantees hard constraint satisfaction in the presence of finite precision arithmetic errors.
The implementation of complex digital control techniques, like MPC, is becoming increasingly
adopted in embedded systems, where reduced precision computation techniques are embraced to
achieve fast execution and low power consumption. However, in a low precision implementation,
constraint satisfaction is not guaranteed if infinite precision is assumed during the algorithm
design. To enforce constraint satisfaction under numerical errors, we use forward error analysis
to compute an error bound on the output of the embedded controller. We treat this error as a
state disturbance and use this to inform the design of a constraint-tightening robust controller.
Benchmarks with a classical control problem, namely an inverted pendulum, show how it is
possible to guarantee, by design, constraint satisfaction for embedded systems featuring low
precision, fixed-point computations.

Keywords: Hardware/software co-design, Identification and control methods, Cyber-physical
systems

1. INTRODUCTION

Since the widespread use of single- and double-precision
floating-point arithmetic in computer architectures, con-
trol system designers routinely take the assumption that
computation is performed with infinite numerical preci-
sion. The consequence is that the two activities of control
system design and its implementation are often decoupled.
This is safe for simple and well-understood algorithms. The
control engineer worries about high-level issues, such as
closed-loop performance, while the software engineer wor-
ries about implementation issues, such as code efficiency
and timing.

In addition to high numerical precision, other factors such
as high clock speed and small packaging have become stan-
dard features of modern embedded systems processors.
Such advances in digital electronics (together with the
development of sophisticated algorithms) have allowed the
implementation of computationally-heavy control schemes
in low-cost applications with fast dynamics. This has
had the effect to reduce costs even further and to allow
for fast computations (Jerez et al., 2013; Constantinides,
2009). This includes, for example, implementations with
low number precision or fixed-point arithmetic. It is well-
known that low precision, especially if implemented in
fixed point, allows for much simpler circuits and greater

computational speeds (Patterson and Hennessy, 1990). All
of the above is at the expense of increased numerical
errors that cannot and should not be ignored. There is
a surprisingly small amount of theory for the design of
such computer-based control systems. These issues could
be considered as part of the emerging science called cyber-
physical systems theory (Wolf, 2009). Cyber-physical Sys-
tems are integrations of computation with physical pro-
cesses and therefore would also embrace the problem of
control algorithm performance under numerical errors.

Model Predictive Control (MPC) is a powerful control
scheme that, due to the necessity of solving an optimiza-
tion problem every sampling instant, has only recently
found application outside the process industry. One of the
often ignored drawbacks of MPC, however, is its sensi-
tivity to numerical errors (Hasan et al., 2013). The use
of different discretization methods has been proven to be
an advantage when working with low precision (Longo
et al., 2014). Methods to avoid variable overflow have
been proposed by constraining their ranges with carefully
selected scaling methods (Jerez et al., 2013b). However,
for these approaches, stability and constraint satisfaction
are not guaranteed and, in practice, the only solution to
this problem is extensive simulation analysis.
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In this paper, we propose a method to guarantee hard
constraint satisfaction of an explicit MPC scheme (Bem-
porad et al., 2002; Kvasnica and Fikar, 2010) when the
algorithm is implemented on a platform using low precision
arithmetic. The idea is to quantify the maximum error
made by the processor when evaluating the control policy.
This is done by applying forward error analysis (Higham,
2002) to the explicit MPC controller. Considering the
error as an additive disturbance to the plant dynamics, a
controller that is robust to such a disturbance is designed.
The resulting controller will therefore be robust against
its own finite-precision implementation in a true cyber-
physical sense.

2. PROBLEM SETUP

Consider the discrete-time feedback control law

uk := κ(xk), (1)

where κ : Rn → Rm is designed to stabilize and guarantee
some performance for the discretized plant

xk+1 = Axk +Buk, (2)

where n is the number of states, m the number of inputs
inputs, and A ∈ Rn×n and B ∈ Rn×m are the discretized
plant matrices. At sample instant k the state vector
xk ∈ Rn is either measured or estimated.

When n and m are small but high sampling rates, good
closed-loop performance and polyhedral constraint satis-
faction are required, we can compute an MPC feedback
controller κ explicitly by solving a multi-parametric opti-
mization problem. This could be done, for example, by
using the MATLAB Multi Parametric Toolbox (MPT)
(Herceg et al., 2013). The resulting κ is a continuous
piecewise affine (PWA) function defined over a polyhedral
partition of the state space. Therefore, computing (1)
requires: i) the solution of a point location problem to
determine in which polytope – defined by a soft linear
inequality (Hxk ≤ k) – the current state xk belongs; ii)
the evaluation of a control law of the form

uk = Fxk + g (3)

associated with the selected region in i). A variety of
algorithms have been proposed to solve the point loca-
tion problem, since this is the most time-consuming task
(Tøndel et al., 2002; Jones et al., 2006; Storace and Poggi,
2011; Monnigmann and Kastsian, 2011). Such algorithms
range from simple ones (a sequential search through the
regions of the partition) to more complex ones where the
region is found via a binary search tree.

If infinite-precision arithmetic is available, the control ac-
tion uk can be computed exactly without introducing any
numerical errors. However, computing uk in a processor
that works with finite precision (i.e. any standard proces-
sor) results in the introduction of an error. Such an error
is the combination of two factors: first, the selection of the
wrong region due to the the point location algorithm and
second, numerical errors due to the computation of the
control law in (3).

It should be noticed that this is not a particular feature
of fixed-point arithmetic, since errors are also introduced
when computations are performed in other (but finite)
arithmetics, such as IEEE floating-point double-precision.
However, in high precision, this error can often be safely
ignored. Hence, in the sequel, when we refer to ‘infinite

precision’ we are in practice performing computations in
a desktop PC using floating-point double-precision (high
enough not to cause noticeable failures in the practical
problems we have studied).

The computational error cannot be computed exactly,
because the error depends on the actual value of the
current state xk. However, as will be shown in Section
4, the error can be bounded. Finally, if we consider this
error as a bounded additive disturbance wk to the plant
dynamic, such as

xk+1 = Axk +Buk + wk, (4)

a robust controller can be designed for which constraint
satisfaction is guaranteed (Bemporad et al., 2003; Baotic
et al., 2008; Kerrigan and Maciejowski, 2003; Kerrigan
and Mayne, 2002). The interesting point here is that the
newly designed robust controller will result in a new con-
trol scheme with possibly different error bounds. Hence,
the proposed error analysis must be re-applied and the
controller design process is repeated iteratively until con-
vergence (Section 3). In practice, only a few design itera-
tions are required. Constraint satisfaction for the resulting
explicit MPC scheme is guaranteed for arbitrary low nu-
merical precision, if a controller realization exists. We will
carry out the analysis for a fixed-point implementation
because this is more suitable for inexpensive applications
with fast dynamics (Jerez et al., 2013). We will assume
that enough bits are used for the integer part to avoid
overflow. However, a similar procedure could be applied
to other number representations, including floating point.

3. ITERATIVE CONTROLLER DESIGN

Let the chosen finite-precision implementation of the feed-
back control law (1), at time k, produce an error qk. We
can define the finite precision control action ûk as

ûk := uk + qk, (5)

where uk is the control action obtained if computations
were performed in infinite precision. By applying (5) to
the discrete plant dynamic we get

xk+1 = Axk +Bûk = Axk +Buk +Bqk
= Axk +Buk + wk, (6)

where wk ∈ Rn and wk := Bqk is an additive state distur-
bance to the plant states. Equation 6 is in the same form
as (4) and therefore, if upper and lower bound vectors on
wk are known (w and w, respectively) a robust MPC law
can be designed using a minimax approach (Bemporad
et al., 2003). However, such a controller may produce
numerical errors with different bounds. To design an MPC
law that is robust to the numerical errors introduced by
the algorithm itself, we have devised an iterative design
procedure that: i) designs a nominal controller for a plant
without disturbances; ii) evaluates the error introduced by
the finite-precision implementation of the controller; iii) re-
designs a controller that is robust against the calculated
error; iv) re-evaluates the error introduced by the finite-
precision implementation of this new controller; v) repeats
the process iteratively until the controller-design process
has converged. This procedure is detailed in Algorithm 1,
where tol is the algorithm exit condition. Although a
mathematical proof of the algorithm’s convergence is not
provided (and difficult to formulate, since every iteration
involves the solution of a multi-parametric optimization
problem), experience shows that convergence is achieved
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Algorithm 1

Set state disturbance bounds: w := 0 and w := 0
while (1) do

Design a robust controller with
disturbance bounds w and w
Compute error bound wnew and wnew
(Section 4)
if (‖wnew − w‖2 ≤ tol) and

(‖wnew − w‖2 ≤ tol) then break
else

w := wnew and w := wnew
end if

end while

in only a few iterations (typically less than 5). This can
be explained by the fact that two robust explicit MPC
formulations do not differ much from each other if their
disturbances are similar.

4. ERROR BOUND COMPUTATION

Computing the bounds w and w (in Algorithm 1) means
investigating all the possible sources of the control law
error qk. As mentioned before, this error is given by:
i) the selection of a wrong region due to quantization
of the (measured or estimated) current state xk and/or
quantization of the polyhedral partition; ii) numerical
errors introduced by the computation of the control law
(3) using finite precision.

The analysis of these two sources of error will be considered
in Sections 4.1 and 4.2, respectively. The quantification
of the error bounds, achieved by solving an optimization
problem, will be given in Section 4.3.

4.1 Point Location Algorithm Analysis

Using a finite-precision arithmetic implementation of a
sequential search through the polyhedral partition might
result in an error when selecting a region. This happens
because overlaps and/or uncovered areas might occur.
Figure 1-b shows that the state space for a finite-precision
implementation might not be covered as it would be in the
infinite precision case (Figure 1-a).

On the other hand, when using a search tree point location
algorithm, it is possible to avoid the above limitations.
This is because a search tree has one and only one leaf
that is reachable. Each leaf is defined as a unique convex
hull, made of the hyperplanes encountered while traversing
the tree. The state space is uniquely and fully covered by
all leaves. This is shown graphically in Figures 1-c (infinite
precision) and 1-d (finite precision). In Figure 1-d (finite
precision) overlaps and uncovered areas do not occur. An
explanation for this follows.

Compared to the case of infinite precision, in finite pre-
cision some leaves might not be reachable due to numer-
ical errors. This becomes more likely to happen as the
arithmetic precision is reduced. Nevertheless, this is not
a problem. In finite precision, the reachable convex hulls
are able to cover the areas that were associated with the
unreachable leaves. However, even if the search tree point
location algorithm can guarantee to locate a unique region
(this is not true for the sequential search), a control law
error qk might still occur. This is because a different region
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Fig. 1. Explicit MPC polyhedral partition of the inverted
pendulum system (14) generated with MPT: (a) se-
quential search for point location with infinite preci-
sion (double floating-point); (b) sequential search for
point location with finite precision (fixed point, 4 bits
fraction length); (c) binary search tree for point lo-
cation with infinite precision (double floating-point);
(d) search tree for point location with finite precision
(fixed point, 4 bits fraction length).

would have been selected compared to the infinite precision
case, due to numerical errors introduced when representing
the convex hulls associated with the leaves.

Let us define P := {x|Mx ≤ s} to be the convex hull
associated with a leaf of the search tree implemented in
infinite precision and P̂ := {x̂|M̂x̂ ≤ ŝ} to be the convex
hull associated with a leaf of the search tree in finite
precision. An error in the region identification can occur
if the convex hull, resulting from the intersection P ∩ P̂,
contains at least one finite precision value of the state
vector xk. However, this is only true when P and P̂ do
not represent the same convex hull.

4.2 Function Evaluation Analysis

Once a region is selected, the associated control law is
computed. Here, errors are introduced because of the
finite-precision arithmetic used to perform the algebraic
operations.

Let us define the finite-precision representation α̂ of a real
number α ∈ R as

α̂ := α+ εα̂ (7)

where εα̂ ∈ R is the quantization error. If a fixed-point
representation is used, the quantization error due to trun-
cation is εα̂ ∈

(
−2−l, 0

]
and l ∈ N+ is an integer that

defines the fraction length, in terms of the number of bits.
The assumption here is that we use enough bits for the
integer part so that overflow does not occur.

By applying the finite-precision representation (7) to the
control law (3) we define the finite-precision control ac-

tion ûk associated with the convex hull P̂ as

ûk = F̂ x̂k + ĝ, (8)
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where

x̂k = xk + ex̂k
, (9)

and F̂ and ĝ are the finite-precision representation of F
and g, respectively. The values in F̂ and ĝ can be computed
exactly, since their infinite-precision values are known and
fixed. The state vector xk, however, is unknown and thus
is its quantization error vector ex̂ ∈ Rn.

Considering the infinite-precision control action (3) asso-
ciated with the convex hull P and substituting (8) into (5),
we can compute the control law error qk and express the
additive state disturbance wk to the plant as

wk = Bqk = B (ûk − uk)

= B
[(
F̂ − F

)
x̂k + Fex̂k

+ (ĝ − g)
]
.

(10)

The state disturbance wk cannot be computed exactly,
because the value of x̂k and ex̂k

, as well as the error in the
point location algorithm, are unknown. Hence, we propose
to compute the disturbance bounds w and w based on the
the worst case scenario. This can be done by computing
the maximum w(ni) and minimum w(ni) for each element
ni ∈ {1, 2, . . . n} of the disturbance vector wk (Section 4.3)
among all possible errors.

Let us define index i ∈ {1, 2, . . . Nleaf} to denote Pi, the
convex hull associated to leaf i of the search tree imple-
mented in infinite precision, and index j ∈ {1, 2, . . . N̂leaf}
denote P̂j , the convex hull associated with leaf j of the
search tree in finite precision. Here, Nleaf and N̂leaf are
the number of leaves of the search tree in infinite and finite
precision, respectively. Therefore, every possible permu-
tation of i and j has to be exhaustively investigated to
determine when the point location algorithm makes an
error when selecting the region. The procedure is outlined
in Algorithm 2.

Algorithm 2

for ni = 1, 2, ..., n do
for i = 1, 2, ..., Nleaf do

for j = i, i+ 1, ..., N̂leaf do

if ∃ x̂k ⊂ Pi ∩ P̂j then
Compute bounds wij(ni) and wij(ni)

associated to Pi ∩ P̂j
(Section 4.3)

end if
end for

end for
w(ni) := max

i,j
wij(ni) and w(ni) := min

i,j
wij(ni)

end for

4.3 Maximum and Minimum Bound Computation

Based on the above considerations, the task of computing
the upper wij(ni) and lower wij(ni) bounds associated

with the polytope intersection Pi ∩ P̂j is translated into
solving two optimization problems: a maximization and a
minimization, respectively.

As an example, let us consider the maximization problem
(a similar approach can be used for the minimization).
Because the state x̂k has fixed-point values, it can be scaled
by a factor of 2l and expressed as an integer zk ∈ Zn, i.e.

zk = x̂k · 2l. (11)

This will lead to the mixed-integer linear programming
(MILP) problem

max
zk,ex̂k

bni

[(
F̂ j − F i

)
2−lzk + F iex̂k

+
(
ĝj − gi

)]
s.t. zk ∈ Zn (12a)

zk2−l ∈ Pij (12b)

− 2−l < ex̂k
≤ 0, (12c)

where zk is the integer decision variable and the vector
bni is the row ni of matrix B. The scaling factor 2l is also
applied to the maximization function and to the left-hand-
side of the inequality constraint (12b).

The solution of a MILP problem is computationally de-
manding (Vivek and Pistikopoulos, 2000), especially when
the number of bits l used for the fraction length is large.
This is because the search space area (given by the in-
equality constraints (12b)) increases proportionally with
2l. Our proposed solution is to assume that the variable
x̂k is continuous. This will allow us to solve, instead of the
NP-hard MILP in (12), the P-hard linear programming
(LP) problem

max
x̂k,ex̂k

bni

[(
F̂ j − F i

)
x̂k + F iex̂k

+
(
ĝj − gi

)]
s.t. : x̂k ∈ Pij (13a)

− 2−l < ex̂k
≤ 0. (13b)

The solution, as shown for an example in Figure 2,
will be a worst case approximation of the real solution
provided by (12). This is admissible, although slightly
more conservative, because we are computing a bound.

5. EXPERIMENTAL RESULTS

For benchmarking purposes, a classical unstable control
problem has been considered: an inverted pendulum sys-
tem. The design procedure presented in Sections 3 and 4
has been implemented using MATLAB. The MPT func-
tion mpt control has been employed to generate the ro-
bust explicit MPC controller (Bemporad et al., 2003). The
fixed-point toolbox has been used for the error analysis
and closed-loop simulations. In order to verify the cor-
rectness of the proposed design methodology, extensive
closed-loop simulations using ‘infinite’ (double precision
floating-point) and finite (fixed-point) precision arithmetic
from various initial conditions to the steady state have
been performed. Also, various controller designs based on
different precisions have been verified.

Consider an inverted pendulum system described by the
continuous-time dynamics

[
ϑ̇
ω̇

]
=

[
0 1
g

L
− b

mL2

] [
ϑ
ω

]
+

[
0
1

mL2

]
u, (14a)

y = [1 0]

[
ϑ
ω

]
, (14b)

where the states ϑ and ω are, respectively, the angular dis-
placement measured from the equilibrium position and the
angular velocity; u is the input torque, g = 9.81m/s2 the
gravitational force, m = 344kg the mass, b = 0.48Ns/m
the rotation friction and L = 1.703m the length of
the pendulum. Given the continuous-time weight matrix
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Fig. 2. Maximization optimization problem solutions: (a)
MILP problem; (b) LP problem. Here, stars represent
the feasible value of x̂k inside the polytopes intersec-
tion Pi ∩ P̂j . The circle represents the solution of the
MILP problem in (a) and the square the solution of
the LP in (b).

on the states Qc = I and on the inputs Rc = 0.1, the
continuous-time plant matrices and weight matrices have
been discretized with a sampler with period Ts = 0.1s and
a zero-order-hold. An explicit MPC controller has been
formulated with a prediction horizon of T = 0.40s. State
constraints have been set to[

−π
−π/8

]
≤
[
ϑ
ω

]
≤
[
π
π/8

]
. (15)

Upper and lower bounds on the state disturbance have
been computed with the proposed iterative control design
approach – Algorithm 1 – for different finite precision
(fixed-point) representations, varying the number of bits
l of the fraction length. As an example, Figure 3 shows
the norm of the lower disturbance bound ‖w‖2 against
the algorithm’s iterations. Experimentally, it has been ob-
served that the proposed iterative algorithm converges af-
ter few iterations and that the magnitudes of the computed
bounds have the same order of the fixed-point quantization
error (2−l) and decrease as the computation precision
increases, as expected. For this particular test case, we
have experienced that, with a precision lower than 8 bits,
it is not possible to generate a feasible robust controller.
This is because the maximum arithmetic error introduced
by such a low precision is too large, and hence also the
resulting state disturbance bounds.
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Fig. 3. Values of lower bound state disturbance norm ‖w‖2
solving the (LP) problem for every algorithm’s iter-
ations using different fixed-point precisions (fraction
length 8, 16, 24, 32 bits): inverted pendulum case
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Fig. 4. Evolution of the state ω of the inverted pendulum
system during a closed-loop simulation using floating-
point double precision (continuous line) and fixed
point with 8-bit fraction length (squares) when the
controller have been designed robust to the error in-
troduced by infinite precision arithmetic. The dashed
line represents the state constraint. (a) full simulation;
(b) detail when the state constraint is activated, shows
that using fixed-point arithmetic constraints violation
occurs.

Let us consider the design of an explicit MPC controller
that is robust to the (very small) error introduced by
infinite-precision arithmetic (in practice, floating-point
double precision), which will be almost equivalent to the
design of a ‘non-robust’ explicit MPC. If this controller
is implemented on-line using finite-precision arithmetic
(fixed-point), constraint violations might occur due to the
numerical errors arising form the implementation. The
lower the precision, the larger the errors, as shown for an
example in Figure 4b.

On the other hand, if it is known that finite-precision
arithmetic will be used, then the controller can be de-
signed using Algorithm 1. Constraint satisfaction can be
guaranteed by design only if the precision used in the on-
line computation is the same of the one used in the design
phase. Figure 5 shows this for a closed-loop simulation of
two different robust controllers, designed with an 8- and
a 12-bit fixed-point arithmetic, respectively. For a lower
precision, the computed bound on the state disturbance
(or the amount of the constraint tightening) is larger.
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Fig. 5. Evolution of the state ω of the inverted pendulum
system during a closed-loop simulation using the same
precision that has been used to design the robust
controller. The dashed line represents the state con-
straint. (a) using 8-bit fixed-point fraction length; (b)
using 12-bit fixed-point fraction length. The dashed
line represents the state constraint.

6. CONCLUSIONS

We have proposed, and verified via an inverted pendulum
control problem, an explicit MPC design which robustly
guarantees hard constraint satisfaction in the presence of
finite-precision arithmetic errors introduced by the con-
troller’s own implementation. For a given controller for-
mulation, we have shown how to calculate the maximum
computational error introduced by the finite-precision im-
plementation, via the solution of an optimization problem.
Such an error has then been used to bound a state distur-
bance on the plant, by calculating its effect when propa-
gated through the plant model. The constraint-tightening
robust controller was designed iteratively in order to ac-
count for the new error introduced by the previous design.
Design convergence was shown experimentally.
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