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Abstract: Sliding mode controllers are frequently employed to track reference signals in the
presence of model errors provided a worst-case bound on such errors is known. The uncertainty
bound is often chosen through intuition or heuristic observations which can degrade control
authority if the bound is too conservative. We describe a method for applying quantified
parameter uncertainties obtained via Bayesian techniques to the design of sliding mode
controllers. We illustrate the performance of this approach through numerical simulation in
the context of ferroelectric actuator systems.

1. INTRODUCTION

Smith [2005] and Smith and Hu [2012] describe a wide
range of applications for which ferroelectric materials
have been considered, including nanopositioning stages,
ultrasonic transducers, fuel injection valves, and engine
components for nano-air vehicles. The reasons for us-
ing ferroelectric materials include properties such as low
cost, broadband transduction capabilities, and dual sen-
sor/actuator capabilities. Unfortunately, the nonlinear and
hysteretic behavior inherent to these materials makes com-
putationally efficient modeling difficult. One way around
this difficulty is to employ a robust control method such as
sliding mode control, which guarantees good performance
assuming bounds on the modeling errors are known.

Examples of sliding mode controllers employed in smart
material systems are found in Xu and Li [2009], Chen
and Hisayama [2008], Liaw et al. [2007] and Sofla et al.
[2010]. Although the bound on the system modeling error
is a crucial component of the sliding mode control design,
the literature often fails to describe precisely how this
bound is chosen. A common approach to this problem
is to use an adaptive method to select an appropriate
error bound Monsees and Scherpen [2000], Yu et al.
[2003], Plestan et al. [2010], which reduces the need for
prior knowledge of the system uncertainty and can have
advantages in reducing control activity. However, these
methods typically require the system to satisfy additional
assumptions to ensure convergence of the adaptive error,
which may be difficult to verify.

The approach we employ in this paper was introduced
in Crews et al. [2012] to control a shape memory alloy
bending actuator. This method uses Bayesian inference
to characterize the modeling uncertainty as a stochastic
parameter in the model using measured data. The uncer-
tainty bound is chosen according to a confidence interval
associated with the probability distribution of the esti-
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mated random inputs to the model, so that the selected
confidence quantifies the accuracy of the bound. Rather
than requiring the designer to derive an accurate bound
on the model error, this approach only requires an initial
estimate of the measurement noise, which is typically easy
to provide. Results in Crews et al. [2013] have verified the
performance of this approach experimentally for the shape
memory alloy actuator. Here, we apply this approach to
a ferroelectric actuator model and compute simulation
results to test for the desired behavior.

The remainder of the paper is organized as follows. First
we summarize the ferroelectric actuator model, originally
derived in Smith and Hu [2012]. We also summarize the
inversion algorithm from McMahan et al. [2013] used to
linearize the actuator model. Next we discuss the Bayesian
framework for characterizing the uncertainty in the system
and demonstrate this approach applied to the linearized
ferroelectric actuator model using numerical simulation. In
the following section, we define the sliding mode controller
used for reference tracking, with the control parameters
derived from the estimated distributions for the uncer-
tain parameters. The expected closed-loop behavior for
a sinusoidal reference signal is verified through numerical
simulation.

2. MODEL DEVELOPMENT

2.1 Actuator Model

We consider the model

ε̇(t) = −A+ sELk

sELc
ε(t) +

A

sELc
εmat[E, σ0](t)

= aε(t) + bεmat[E](t), (1)

developed in Smith and Hu [2012] for a prestressed PZT
actuator. Here A is the area of a cross-section of the actua-
tor, L is the length of the actuator, sE is a physical param-
eter of the actuator material, k is the actuator stiffness, c
is the actuator damping coefficient, and εmat[E, σ0](t) the
strain in the actuator material at time t in response to
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electric field input function E and the constant prestress
σ0. We have used operator notation to indicate that εmat is
an operator mapping the time-dependent input functions
E, σ0 to the time-dependent output strain εmat[E, σ0] with
εmat[E, σ0](t) denoting the output at time t. The prestress
is constant, so we can consider it a parameter and treat
the material strain as an operator on E only, simplifying
the notation to εmat[E](t).

Although a particular actuator model is described for con-
creteness, the general form of a linear model nonlinearly
coupled to an input can be successfully applied to a variety
of actuator models.

2.2 Homogenized Energy Model

The strain in the material εmat[E](t) is specified by the
homogenized energy model for hysteretic ferroelectric ma-
terials developed in Smith and Hu [2012] which we sum-
marize here. We represent the material strain as

εmat[E](t) = sEσ0 + d[E](t)E(t) + εirr[E](t), (2)

with the E-dependent piezoelectric strain coefficient d[E](t)
and the irreversible strain εirr[E](t) written as

d[E](t) =∫ ∞
0

∫ ∞
−∞

d[E](t, EI , Fc)νI(EI)νc(Fc) dEI dFc

εirr[E](t) =∫ ∞
0

∫ ∞
−∞

εirr[E](t, EI , Fc)νI(EI)νc(Fc) dEI dFc.

(3)

These integrals describe the macroscopic outputs d[E](t)
and εirr[E](t) as weighted averages of local outputs
d[E](t, EI , Fc) and εirr[E](t, EI , Fc). These integrals are
computed with respect to the variables EI , Fc over their
respective domains (−∞,∞) and (0,∞). The interac-
tion electric field EI quantifies local electrical effects
that augment the input field E and the critical thermo-
dynamic driving force Fc specifies the energy required
for transitions between dipole orientations to occur (and
thus determines the local hysteresis width). The densities
νI(EI), νc(Fc) weight the local outputs corresponding to
each value of EI , Fc. These densities are identified with
the particular material being used and effectively specify
the finite subset of the domain of EI , Fc for which lo-
cal effects are significant, ensuring the improper integrals
converge. For computational purposes, the densities are
approximated by a weighted sum of normal and lognormal
densities.

The local outputs d[E](t, EI , Fc), εirr[E](t, EI , Fc) are ex-
pressed as

d[E] (t, EI , Fc) =
∑

α=+,−,90

dαxα[E] (t, EI , Fc)

εirr[E] (t, EI , Fc) =
∑

α=+,−,90

εαRxα[E] (t, EI , Fc)
(4)

where xα[E](t, EI , Fc) is the fraction of dipoles in orien-
tation α (where α is positive, negative, or 90◦) at time t
corresponding to the parameters EI , Fc and input function
E, dα is the piezoelectric constant for each dipole orienta-
tion, and εαR is the remanence polarization for each dipole
orientation. The local outputs are thus given by a sum of

the output values for each dipole orientation weighted by
the fraction of dipoles in those orientations.

The dipole fractions are described by the evolution equa-
tion

ẋ+ = −p+90

(
Ee(t), Fc

)
x+ + p90+

(
Ee(t)

)
x90

ẋ90 = p+90

(
Ee(t), Fc

)
x+p−90

(
Ee(t), Fc

)
x−

−
[
p90+

(
Ee(t), Fc

)
+ p90−

(
Ee(t), Fc

)]
x90

ẋ− = p90−
(
Ee(t), Fc

)
x90 − p−90

(
Ee(t), Fc

)
x−

(5)

where Ee(t) = E(t) + EI is the effective input electric
field, pαβ is the transition rate from dipole orientation α
to dipole orientation β and the dot denotes differentiation
with respect to time. We have suppressed the notation of
dependencies of xα to simplify the notation. The equa-
tion given assumes only 90◦ switching occurs between
dipole orientations (i.e., there is no switching directly from
positive to negative orientations or vice-versa). Note the
equation can be reduced using the fact that x+ + x90 +
x− = 1. For more detailed information on the dipole
fraction equations, the reader is referred to Smith and Hu
[2012].

Although the details are omitted here, the homogenized
energy model is physically derived via the principle of
energy minimization. Not only does this provide a physical
interpretation for the model and its parameters, but it
highlights the mathematical analogies between models for
materials which behave similarly but rely on different
physical mechanisms (e.g., shape memory alloys) by min-
imizing different types of energy functionals.

2.3 Homogenized Energy Model Inversion Algorithm

The model (1) is a linear system coupled nonlinearly to the
input field, E. Suppose we are given an approximate right
inverse ε−1

mat for εmat so that letting E = ε−1
matu we obtain

εmatε
−1
matu = u + e ≈ u. This inverse operator allows the

actuator system to be approximately linearized to obtain
the equation

ε̇(t) = aε(t) + bεmat[ε
−1
mat[u]](t)

= aε(t) + bu(t) + be[u](t)

≈ aε(t) + bu(t), (6)

where e[u](t) = bεmat[ε
−1
mat[u]](t) − bu(t) is the inversion

error. As long as the inversion error be can be compen-
sated, u is approximately equal to the strain due to the
material (i.e., u ≈ εmat[E]). The ability to directly specify
the material strain as an input allows for simpler control
design.

We use a simple, efficient algorithm from McMahan et al.
[2013] for inverting εmat which is based on a bisection
method calculated sequentially in time. The following
steps summarize the algorithm:

(1) Set the current time tk and the time at which the
model is to be computed tk+1. Choose a bounded
input range for the input field so that the function
E(tk)→ εmat[E](tk+1) is monotone (e.g., the restrict
the input to some bounded non-negative interval).
Choose an error bound for e.

(2) Choose a number of points, N , and divide the input
range into N equally spaced points.
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(3) Input a desired value εdmat for the material strain and
initialize E(tk) to the midpoint of the input range.

(4) Compute the output εmat[E](tk+1) and output error
εerrmat = εmat[E](tk+1)− εdmat

(5) If |εerrmat| is smaller than the error tolerance chosen in
the first step, then save the current value of E(tk) as
the result and save the state of the dipole fractions
computed when calculating εmat[E](tk+1).

(6) If |εerrmat| is larger than the error tolerance, then
remove the lower half of the input range if εerrmat < 0 or
the upper half if εerrmat > 0. Set E(tk) to the midpoint
of the resulting range and repeat the process from
step 4 until the input points are exhausted or the
tolerance is met.

For a given set of time nodes t0, . . . , tn, initial values for
the dipole fractions at t0, and desired outputs εkmat, k =
1, . . . , n, applying this algorithm at each time interval
results in input values Ek = E(tk), k = 0, . . . , n − 1 so
that an input signal interpolated over these values approx-
imately satisfies εkmat = εmat[E](tk+1), k = 0, . . . , n − 1.
The result is an approximate right inverse to εmat. The
computational cost of this algorithm is less than or equal
to O(log2(N − 1)) times the computational cost of com-
puting E(tk)→ εmat[E](tk+1). Note that reasonable error
tolerances can be achieved in practice for moderate values
of N (e.g., N = 129 or N = 257 is used in many of the
simulations in McMahan et al. [2013]).

3. PARAMETERIC UNCERTAINTY
QUANTIFICATION

It is generally impossible in practice to completely elimi-
nate modeling errors. As such, techniques which quantify
the model error are useful as this additional information
can be used to improve designs based on the model. In
many cases, stochastic methods are a good fit for this
problem, due to the approximately random nature of er-
rors for well-modeled systems. The Bayesian framework
for parameter estimation is one such method. Whereas
deterministic model calibration computes a single set of
values for the model parameters which result in a best
fit of the model to the noisy measurements in some sense
(e.g., least squares of data residuals), the Bayesian frame-
work treats the model parameters as random variables and
computes the associated probability densities to give best
fit to the noisy measurements while taking into account
prior beliefs about the values of the densities. Once these
densities are computed, they can be used to compute the
interval of model outputs at each time corresponding to
some confidence probability. These intervals indicate the
output range in which the data is expected to lie up to the
chosen probability. For example, for a confidence interval
of 95%, one would expect 95% of all measurements to lie
within the confidence interval computed at the time the
measurement was taken. We briefly outline the approach
here and refer the reader to Smith [2014] and Stuart [2010]
for more information on Bayesian inverse problems for
uncertainty quantification.

For the model (6) we have

dε

dt
(t, ω) = a(ω)ε(t, ω) + b(ω)u(t), (7)

where a and b are random variables and ω is the vari-
able parameterizing the outcome space. Each parameter
a(ω), b(ω) has a probability density pa(ω), pb(ω) which
weights the range of parameter values.

The crucial relation in computing the optimal densities
(i.e., the “best fit” in the Bayesian framework) is Bayes’
rule

π(q|y) =
p(y|q)πpr(q)∫

Rd p(y|q)πpr dq
(8)

which updates the current beliefs or assumptions about the
parameter densities (i.e., the prior density πpr(q)) using
the current observations y to obtain the posterior density

π(q|y). Here q = [q1 · · · qd]T is the vector of random

parameters, y = [y1 · · · yN ]
T

is the observed experimental
data collected at times t1, . . . , tN , and

p(y|q) =
1

(σ
√

2π)N
exp

(
−‖y − y(q)‖22

2σ2

)
(9)

is the likelihood of observing y given q. In the expression
for the likelihood, y(q) = [y(t1; q) · · · y(tN ; q)] is the
vector of the model output taken at times t1, . . . , tN with
parameters q, ‖‖2 is the vector 2-norm in RN , and σ2 is
the measurement error variance. The measurement errors
are assumed independent and identically distributed (iid)
with mean 0. Also note that the form of the prior used in
(9) implies that we are assuming the measurement error is
normally distributed.

The value of σ can be estimated from observations of the
error between measurement data and the model output
from a deterministic model fit. For example, one might
take the maximum absolute error between the determinis-
tic model fit and measurement data, equate this to 2σ,
and solve for σ to obtain a reasonable approximation,
as 2σ corresponds to an approximately 95% confidence
interval for Gaussian noise. If one is more certain the data
will never exceed this maximum observed absolute error,
then it may be more appropriate to use 3σ instead as this
corresponds to approximately 99% confidence (or other
multiples for various degrees of confidence in the data).
This approach of specifying a fixed, reasonably accurate
estimate for σ corresponds most closely to the scenario we
are simulating. Note that it is also possible to formulate
the Bayesian inverse problem to include σ as an uncertain
model parameter (i.e., a random variable) and compute
estimates of of its density (see Smith [2014] for details)
without altering the way the computed model parameter
densities are used in designing the control.

Let us emphasize a distinction between the roles of the
random variables in this framework. The measurement
error is represented as a random variable to model the in-
herent error and variability of the physical measurements.
Although the model parameters are also random variables,
this choice does not directly model any physical variability
in the parameters. Rather, the model parameter densities
assign values that represent the belief in the likelihood
that any particular set of model parameters in the range
of possible values fits the data in a way that is consistent
with Baye’s rule (8).

Figure 1 illustrates this with a hypothetical fit of lines to
noisy data. There are multiple data points which may be
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Fig. 1. Illustration of model parameter likelihoods. The
probability density for the slope parameter would
have a larger likelihood at the outcome associated
with slope 1 than the outcome associated with slope
2 due to its closer agreement with the data.
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Fig. 2. Simulated noisy measurements used to calculate
the density for the actuator model parameter a.

thought of as having random fluctuations that are charac-
terized by the properties of the random variable chosen to
model them (i.e., the variance). The model parameter for
the line fit is the slope. Let k(ω) be the random variable
for the slope, pk(ω) the associated probability density, and
let ω1, ω2 be the outcomes where k(ω1) = 1, k(ω2) = 3
(i.e., outcomes associated with the illustrated slopes). One
would expect pk(ω1) to be relatively large due to the agree-
ment between the data and the line with slope 1 and pk(ω2)
to be small due to the poor fit of the line with slope 3. Note
that the outcome parameters are simply a mathematical
tool for mapping the slope value to the density value in
a general way and do not in this case represent separate
trials of an experiment or similar notions associated with
the word ”outcome”.

We apply the Bayesian framework to the actuator model
(7). For simplicity, assume b is known and take a to be a

random parameter so that q(ω) = [a(ω)]
T

with d = 1. We
compute the exact output of the model in response to a
sinusoidal input and add synthetically generated Gaussian
noise with zero mean and standard deviation σ = 10−6 to
the result to simulate measurement noise. The parameter
values used are a = −1.1372 × 105 and b = 1.1237 × 105.
Figure 2 shows the results.
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Fig. 3. Posterior distribution for the actuator model pa-
rameter a.

The sample problem has d = 1 random parameters which
is small enough for the integral

∫
Rd p(y|q)πpr dq in the de-

nominator of (8) to be evaluated practically with quadra-
ture techniques. The resulting posterior distribution is
shown in Figure 3. For models with large numbers of
parameters (i.e., d large), approximation via numerical
quadrature is impractical as the computational costs rise
exponentially with the number of parameters. A popular
approach to address this difficulty is to use a Markov Chain
Monte Carlo (MCMC) method. These methods construct
a Markov chain which has the posterior distribution as its
equilibrium distribution, bypassing the need for directly
evaluating the integral in the denominator. This approach
is used in Crews et al. [2012] to estimate the parameters
for a shape-memory alloy system and in Hu et al. [2013] to
estimate the parameters for an actuator constructed from
macro-fiber composites.

4. CONTROL DESIGN

4.1 Sliding Mode Control Design

Classical sliding mode control algorithms perform robustly
provided bounds on the modeling errors are known (see
Utkin [1992], Slotine and Li [1991]). The control law
for these controllers contains a discontinuous component
which increases with the size of the model error bounds.
Large discontinuities in the input due to large model
error bounds can excite unmodeled high frequency modes
in the system, so it is important that these bounds be
no larger than necessary for accuracy. The approach of
using the parameter density obtained from the Bayesian
estimation techniques described above was introduced in
Crews et al. [2012] for the control of a shape-memory alloy
bending actuator. Here we apply a similar strategy for the
ferroelectric system described above.

Since we are considering a as the only parameter with non-
negligible uncertainty, we rewrite the linearized actuator
model (6) as

ε̇ = aε+ bu+ ∆aε

where a is the nominal value for a and ∆a represents
the deviation from a. A natural way to incorporate the
information obtained from Bayesian parameter estimation
is to set a to the expectation of a (i.e., to

∫
R
aπ(a|y) da)

and to calculate a bound on ∆a based on a chosen
confidence level. For the posterior distribution shown in
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Figure 3, this yields a = −1.1372× 105. To correspond to
a 95% confidence level, the value of ∆amax is taken so that∫ a+∆amax

a−∆amax
π(a|y) da = 0.95, which yields ∆amax ≈ 356.

We design a standard sliding mode controller by defining
the constraint function

s(e1(t), e2(t)) = λe1(t) + e2(t)

where λ > 0 is a design parameter affecting the speed
of convergence to the reference trajectory and e1(t) =∫ t

0
(ε(z) − εr(z)) dz and e2(t) = ε(t) − εr(t) are the

cumulative error and error from the reference trajectory
εr(t). A Lyapunov-like function is defined so that

d

dt

s(e1, e2)2

2
= s(e1, e2)ṡ(e1, e2)

= s(e1, e2)(λε− λεr + aε+ bu+ ∆aε− ε̇r).
Here we have used the fact that ė1 = e2. The design of the
controller ensures that this function has a negative definite
derivative so that s→ 0, which in turn implies asymptotic
convergence of the error trajectories to 0.

The first component of the classical sliding mode controller
is called the equivalent control and labeled ueq. This is
defined to cancel the nominal / known terms in ṡ. That is,
if we set ∆aε = 0, ueq is the u which results in ṡ = 0, so
that

ueq = −λε− λεr + aε− ε̇r
b

.

This ensures the level set of error trajectories satisfying
s(e1, e2) = 0 is invariant as long as the uncertain terms in
the system are compensated.

Since the uncertain terms in the system are by definition
unknown, we determine a bound on these terms. In our
case we have ∆aε ≤ ∆amax|ε| so we define the

usw = −1

b

(
∆amax|ε|+ η

)
sign(s(e1, e2))

where η > 0 is a design parameter affecting the speed of
convergence of s → 0 and sign() is the function which is
1 for positive arguments, -1 for negative arguments, and 0
otherwise. Setting u = ueq + usw, the Lyapunov function
satisfies

d

dt

s2

2
= sṡ

= s(λε− λεr + aε+ bueq + busw + ∆aε− ε̇r)
= s(∆aε−

(
∆amax|ε|+ η

)
sign(s)).

When s is positive, ∆aε is subtracted by a term which
is guaranteed to be larger than it, resulting in a negative
value multiplied by the positive s and d

dts < 0. The result
is similar when s is negative so convergence to s → 0 is
guaranteed, as is convergence of e1 → 0, e2 → 0.

To test the control, the closed loop model was simulated
with the reference trajectory set to a 2kHz sine wave at an
offset of 2 × 10−4 and amplitude 2 × 10−5. A normally
distributed measurement noise with standard deviation
σ = 10−6 was added to the state observations used for
computing the control value to simulate measurement
noise. The control parameters were set to λ = 107, η =
10−3. Figure 4 shows the results, which demonstrate good
tracking performance with relative errors generally below
3%.
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Fig. 4. (Left) Output of closed loop system compared
with the reference trajectory. (Right) Relative output
error. (Bottom) Input signal.

5. CONCLUSIONS

In this paper, we adapted the methodology for designing
a sliding mode controller using parameteric uncertainty
quantification, first presented in Crews et al. [2012], to
a ferroelectric actuator system. Using synthetically gen-
erated random values to simulate measurement noise, we
illustrated estimation of the parameter distribution using
Bayesian inference and demonstrated the proper function-
ing of the sliding mode controller in the simulated closed
loop system. Certain caveats for our approach apply. One
is that the system model must be accurate enough that
it is reasonable to assume the measurement errors are
well-represented as i.i.d. Gaussian noise (adjustments for
non-Gaussian noise are possible). Another is that for a
practical system, a term bounding the measurement noise
should also be added to the system uncertainty bound
since generally uncertainty in the model parameters only
partially determines the prediction intervals in which data
are expected to lie. A final note is that while the con-
troller simulation results demonstrate the feasibility of the
approach, they are somewhat limited due to the large
value of a used in the system (which was determined
from a physical actuator). This results in a small time-
constant for the system so that the effects of chattering in
the controller and the simulated noise are less important.
We reiterate, however, that experimental results for an
analogous shape-memory alloy actuator system published
in Crews et al. [2013] have verified the real-world practi-
cality of this approach which gives reason to believe the
same will hold true for ferroelectric actuator systems, as
well. Experimental testing of such a system remains future
work.
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