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Abstract: In literature metabolic stoichiometric matrix reduction is based on convex analysis by choosing 

the greatest triangle. This paper proposes a new methodology for the reduction of metabolic networks 

based on the concept of convex hull by optimization methods. Different polygons are tested to conjointly 

minimize the squared error (convex hull - experimental data) and maximize the convex hull area in order 

to reduce the set of metabolic reactions involved in the model. The advantage of this method relies on its 

ability to select different geometries in a simple manner with the knowledge of the elementary modes. A 

cybernetic model implementing the proposed optimization method is tested with data for bioethanol 

production by Saccharomyces cerevisiae growing on four substrates. Parameter estimation and model 

validation allow comparing the performance of the chosen polygons for reduction of metabolic pathways. 

Keywords: Optimization methods, Elementary Modes, Yield Analysis, co-substrate ethanol production. 



1. INTRODUCTION 

Mathematical modelling of biological processes has 

confronted an ample variety of difficulties that have 

motivated the study of biological kinetics and its analysis in 

different manners.   

Macroscopic modelling provides dynamical models which 

have proven enormous interest in bioengineering for the 

design of the on-line algorithms for bioreactor monitoring, 

control, and optimisation (Bastin and Dochain, 1990). These 

models have been extended for their use for metabolic 

modelling.  

The kinetic approach relates metabolites concentrations with 

their corresponding rates. Nonetheless, they require a detailed 

understanding of reaction mechanisms and regulatory 

interaction leading to an increasing set of adjustable 

parameters as models grow more sophisticated (Palsson, 

2000). To overcome these difficulties, stoichiometric models 

assume that all intracellular concentrations were at steady 

state, which led to algebraic equations. The inclusion of 

pseudo stoichiometric matrix has permitted to lump together 

the set of intracellular metabolic reactions of the involved 

microbial species (Bernard and Bastin, 2005). The necessary 

condition to reach steady state is that the rates of the initial 

and final reactions (or, equivalently, the concentrations of the 

initial and final metabolites) must be constant simplifying the 

mass balance of metabolites (Stephanopoulos et al, 1998).  

 

Another approach is cybernetic modelling (Kompala et al., 

1984, Ramkrishna, 1982) which have the aim to include 

regulatory effects at the level of enzymes in a way to enrich 

kinetic and stoichiometric models (Young et al., 2008).  The 

complexity of this approach relies on decomposing metabolic 

networks into elementary pathways for which the standard 

cybernetic control laws can be applied.  

Under the steady state condition, the metabolic network can 

be decomposed into a set of sub-networks called Elementary 

Modes (EMs) which are a set of non-decomposable pathways 

consisting of a minimal set of reactions that function in 

steady state (Shuster et al., 2002). Even the computation of 

EMs due to external metabolites reduces the metabolic 

network; the complete set can still be large to be employed in 

metabolic modelling, so that other considerations must be 

applied (Song and Ramkrishna, 2009).  

Useful tools based on convex mathematics have drawn to the 

introduction of convex hull, which main characteristic is its 

ability to reconstruct any data point inside the convex hull 

data points (Thurau et al., 2009). The points (modes) located 

in the convex hull are commonly named as generating modes.  

Several efforts for reduction of elementary flux modes have 

been presented by Wagner and Urbanczik (2005) by using 

Flux Balance Analysis (FBA), which represents an important 

step towards making full quantitative use of stoichiometry for 
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maximizing biomass yield with information about the 

metabolic state of the organism (Geng et al., 2012).  

In addition to FBA, Song and Ramkrishna (2009) reported a 

reduction method of generating modes (GMs) based on yield 

analysis (YA) allowing the simplification of the convex hull 

and its 2-D visualization. YA implies the reduction of convex 

hull by (i) selecting the active modes (AMs) that form the 

greatest triangle and (ii) increasing the area of the convex 

hull by adding one vertex (AMs) at a time to achieve the 99% 

of the total area of the convex hull. Other works based on YA 

have been tested to find the 99% of the area (e.g. Ant Colony 

Algorithms) (Aceves-Lara et al., 2011).   

Following the approach of YA, the objective of this paper is 

the proposition of an optimization method to reduce the set of 

GMs by minimizing error with data and maximizing the area. 

The reduced set of GMs, now called AMs, will be used into 

the cybernetic model. The methodology is evaluated in yield 

space to compare different 2-D geometrical configurations 

(polygons) constructed by the selection of GMs, which only 

requires the knowledge of EMs, and the calculation of 

surfaces instead of regarding the distances between them.  

2. MODEL REDUCTION METHOD 

2.1 Cybernetic Model 

Cybernetic approach is concerned with modelling regulatory 

processes. It views metabolic regulation as an attempt by 

cells to make optimal adjustments continually in response to 

changes in the environment by controlling both the synthesis 

and the activities of enzymes (Young et al., 2008).  

Dynamic mass balances of extracellular metabolites in a 

batch process can be given as:  

rcS
dt

dx
x

                                                                            (1) 

where x is the vector of the nx concentrations of extracellular 

components including biomass c. Sx is the nx x nr  
stoichiometric matrix, and r is the vector of nr intracellular 

and exchange fluxes expressed per gram of biomass. Under 

the quasi-steady state approximation, the flux vector r can be 

represented by a convex combination of EMs (Schuster et al., 

2000). 

 

M
Zrr                                                                                  (2) 

where Z is the nr x nZ  EMs matrix, and rM is the vector of the 

nZ elementary flux modes, such that (1) can be rewritten as:  

 

cZrS
dt

dx
Mx

                                                                        (3) 

The expression of rM fluxes are based on the product of (i) a 

cybernetic variable vM,j controlling the enzyme activity, (ii) a 

term of relative level eM,j
rel

 of enzyme in relation with its 

maximum value, (iii) and the kinetic term rM,j
kin

 considered 

for the j
th

 elementary mode. In most of the cases, the latter 

term is given by the Michaelis-Menten kinetics,   

 
Zx

i iij

i

j

kin

jM
njni

xK

x
kr ,...,1;,...,1

,

max

,



          (4)   

where kj
max

 corresponds to the reaction constant of substrates, 

and xi is the concentration of external metabolites. The 

consumption constant of Michaelis-Menten is represented by 

Kj,i for external metabolites. The kinetic term for enzymes 

rME,j
kin

 can be computed from equation (4) by replacing the 

reaction and consumption constants for kE,j
max

 and KE,j,i 

respectively. 

 

The enzyme level is determined considering the following 

dynamic equation,  

 
jMjM

kin

jMEjMjM

jM
eru

dt

de

,,,,,

,
                 (5) 

 

The parameters αM,j and βM,j represent the constitutive 

synthesis and degradation rate respectively, meanwhile 

uM,jrME,j
kin

 is the inducible synthesis rate term regulated by the 

cybernetic variable uM,j , and µ is the dilution rate due to the 

growth of enzymes.  

 

Following the description of hybrid cybernetic modeling 

(Song and Ramkrishna, 2010), this work focus on seeking 

different options to reduce the matrix SxZ = Zy expressed in 

function of external metabolites. 

 

2.2 Reduction method 

The optimization aims finding the convex hull of the 

normalized EMs to one compound of the metabolic pathways 

(e.g. biomass/substrate yield). Following the methodology 

described by Song and Ramkrishna (2009) the yield vector 

can be represented by:  

,hZy
y

  ,0h 1
1
h                                                      (6) 

where Zy is the normalized SxZ expressed as yields, and h 

indicates the weight vector implying the contribution of each 

GM to the total area of the convex hull.  

 

Assuming that data (experimental yield) is available, two 

cases are taken into account in our method. 

 

[case 1] Data inside the convex hull. The method takes all 

possible combinations of GMs for the predetermined 

geometry which include experimental points inside 

the polygons. In this work we consider polygons of 

3, 4, or 5 vertexes 

[case 2] Data outside the convex hull. The method looks for 

the projection of the experimental data into the two 

closest GMs. Those modes are taken as reference 

fixed points to construct the set of combinations for 

the predetermined geometry reducing the number of 

possible combinations with respect to case 1.  
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Once all the possibilities of geometric configurations are 

known, the next optimization problem is established in order 

to find the best values of Zyh that,  

 

areats

yhZWyhZ
y

T

y
hZ y

max..

min                                               (7) 

 
From (7), Zyh and y  are the Ny polygon generated and 

experimental yield vector respectively, and W is an Ny x Ny 

weighting matrix. area is the area of the current polygon. For 

the sake of evaluating the different polygons, the maximum 

possible area was considered to be sufficient to represent all 

the set of elementary modes. A case of study is presented in 

the following section to evaluate whether it is possible or not 

to use this assumption. 

 

If experimental data are not available, the minimization of the 

sum of square residuals is computed by replacing y  in 

equation (7) for ytheorical that represents the theorical yield 

generated for all the GMs ensuring surface maximization.  

 

3. CASE OF STUDY 

3.1 Bio-ethanol production from co-substrates.  

In the last decades, bioethanol production from 

lignocellulosic biomass arouses increasing the interest to 

avoid the use of food crops. After the hydrolysis of 

lignocellulosic biomass, the remaining materials are glucose, 

xylose, mannose, galactose, and arabinose (Taherzadeh et al., 

1997).  For this work, the metabolic network considered 

correspond to the proposed by Geng et al (2009) to produce 

ethanol from four substrates: glucose, xylose, mannose and 

galactose. Notice that oxygen concentration has been omitted 

for model simplification. Table 1 shows the 40 reactions 

involved in the fermentation. The network is mainly 

composed by glycolytic and pentose phosphate pathways, 

citric acid cycle, pyruvate metabolism, xylose metabolism, 

mannose metabolism and galactose metabolism.  

 Four substrates: glucose (GLC), xylose (XYL), 

manosse (MAN), and galactose (GAL).  

 Five products: ethanol (ETH), glycerol (GOLx), 

xylitol (XOLx), carbon dioxide (CO2), and acetate 

(ACTx). 

 Biomass (Biom) and consumption of excess ATP for 

maintenance (MAINT). All of them considered as 

external metabolites. 

 Thirty one compounds are considered as internal 

metabolites. 

Saccharomyces cerevisiae is the most traditional 

microorganism used for bioethanol production. Even its 

popularity this yeast is not able to ferment xylose (Kotter and 

Ciriacy, 1993). So in this work, xylose will not be considered 

for calculations. 

The first step was to determine the Elementary modes, which 

were calculated with METATOOL 2005 (Kamp and Shuster, 

2006). A total set of 602 EMs were obtained. Three groups 

were identified for the consumption of each substrate 

individually consisting of 33 EMs for glucose, 33 EMs for 

mannose, and 33 EMs for galactose, as it was mentioned by 

Geng et al (2009). 

 3.2 Method implementation  

Each group of elementary modes is normalized for yield 

analysis according to their respective substrate. Experimental 

yield data for ethanol and biomass are taken from individual 

experiments for each substrate reported by Rouhollah et al. 

(2007) for the implementation of the method. Seven out of 

thirty tree elementary modes were identified as GMs for each 

substrate (Figure 1).  

Minimization of square errors and maximization of area is 

implemented for each substrate. Figures 2 – 4 show the 

resulting optimized polygons and provide the value of the 

sum of square errors and the normalized area as a percentage 

of the total area of the convex hull. In order to appreciate the 

simplification of this method in 2-D yield space, the phase 

plane (adding GOLx/GLC yield) is presented in Figures 2 - 4 

(d) for each geometry. Results for other substrates reported 

similar structures (Results not shown).   
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Figure 1. Elementary Modes representing the metabolic 

network for (a) Glucose, (b) Mannose, and (c) Galactose.  

The calculation of the selected geometry is made base on 

[case 1] for glucose and galactose where the yield 

experimental point is observed inside the convex hull, 

meanwhile [case 2] is applied for mannose.   

Regarding the number of possible polygons that can be 

computed for polygons, it is possible to find 35, 35, and 21 

different combinations considering three, four, and five 

vertexes. In contrast, our optimization method calculates only 

(8, 5, and 5) polygons with three, (16, 10, and 10) with four, 

and (14, 10, and 10) with five AMs or vertexes for glucose, 

mannose, and galactose respectively (Results not shown).  
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As it is stated in Figure 2, Mannose is not optimized 

reflecting an area of 10.3% out of the total; however this 

result can be explained because the experimental yield point 

is placed outside the convex hull. Similar results are 

presented by Geng et al. (2012) where they only chose two 

elementary extreme modes to describe mannose. 
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Figure 2. Optimized three AMs polygon (a) Glucose, (b) 

Mannose, and (c) Galactose. (d) Phase plane of yields. 
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Figure 3. Optimized four AMs polygon for (a) Glucose, (b) 

Mannose, and (c) Galactose. (d) Phase plane of yields 

Even though, glucose and galactose are represented by the 

63.8% of the area which reflects the well applicability of the 

method here proposed.  

Regarding Figures 3 and 4, areas are maximized up to more 

than 79% and 87% for polygons formed out of four and five 

points respectively. Glucose reflects the best optimization for 

both criteria. 

3.3 Parameter estimation and validation 

The reduced model consists of 9, 12, and 15 reactions instead 

of 602 (full model) for polygons of three, four, and five 

vertexes respectively. These reactions are employed to 

compute the Zy = SxZ matrix of equation (3).  

Table 1.  Metabolic network reactions for ethanol 

production 
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Figure 4. Optimized five AMs polygon for (a) Glucose, (b) 

Mannose, and (c) Galactose. (d) Phase plane of yields. 

v1: GLC + ATP => G6P  

v2: G6P = F6P  

v3: F6P + ATP = DHAP + GAP  

v4: DHAP = GAP  

v5: DHAP + NADH => GOL  

v6: GOL => GOLx  

v7: GAP => PG3 + NADH + ATP  

v8: PG3 = PEP  

v9: PEP  = PYR + ATP  

v10: PYR => ACD + CO2  

v11: ACD + NADH => ETH  

v12: ACD + NADHm => ETH  

v13: ACD => ACT + NADPH  

v14: ACT => ACTx  

v15: ACT + 2 ATP => AcCoA  

v16: PYR + ATP + CO2 => OAA  

v17: G6P => Ru5P + CO2 + 2 NADPH  

v18: Ru5P = X5P  

v19: Ru5P = R5P  

v20: R5P + X5P = S7P + GAP  

v21: X5P + E4P = F6P + GAP  

v22: S7P + GAP = F6P + E4P  

v23: PYR => AcCoAm + CO2 + NADHm  

v24: OAA + NADH = OAAm + NADHm  

v25: OAAm + AcCoAm => ICT  

v26: ICT => AKG + CO2 + NADHm  

v27: ICT => AKG + CO2 + NADPHm  

v28: AKG => SUC + ATP + CO2 + NADHm  

v29: SUC = MAL + 0.5 NADHm  

v30: MAL = OAAm + NADHm  

v31: XYL + 0.5 NADH + 0.5 NADPH => XOL  

v32: XOL => XOLx  

v33: XOL => XUL + NADH  

v34: XUL + ATP = X5P  

v35: 1.04 AKG + 0.57 E4P + 0.11 GOL + 2.39 G6P + 1.07 OAA + 0.99 PEP + 

0.57 PG3 + 1.15 PYR + 0.74 R5P + 2.36 AcCoA + 0.31 AcCoAm + 11.55 

NADPH + 1.51 NADPHm + 30.48 ATP + 0.43 CO2 => BIOM + 2.68 NADH + 

0.53 NADHm  

v36: ATP => MAINT  

v37: NADH =>  

v38: MAN + ATP => M6P  

v39: M6P => F6P  

v40: GAL + ATP => G6P  
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The experiments reported by Rouhollah et al. (2007) for co-

substrates using Saccaromyces cerevisiae are taken as data 

for model validation. Rouhollah et al. (2007) proposed a 

batch experiment initiated with four substrates glucose, 

xylose, mannose, and galactose with initial concentrations of 

30, 30, 12, 8 g/L respectively. As it was mentioned before, 

xylose is neither considered in the polygons nor for parameter 

estimation.  

Equation (4) is taken from Geng et al. (2012) describing 

metabolites and enzymes as, 

iiIETHiij

i

j

kin

M
xKxxK

x
kr




,,

max

/1

1                        (8)   
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                      (9)                                                         

The Michaelis-Menten constants Kj,I and KE,j,i for equations 

(8) and (9) have the corresponding values employed by Geng 

et al. (2012). Notice that as all the parameters are available, 

thus model is fully identifiable. The optimal values of kj
max

 

and kE,j
max

 (Mean values in Table 2) are estimated by the 

Rosenbrock method implemented in MATLAB
®
 to fit the 

model to the experimental data set described above (Table 1).  

Table 2. Parameters for the different polygons  

AMs kj
max

[1/h] kE,j
max

[1/h] 

3  19.344  15.82 1.131  0.230 

4  26.08  40.32 1.231  0.424 

5  23.19  37.86 1.429  0.574 

Similar results were found for the estimated values of kE,j
max

 

for each vertex of the convex hull (AM) reflecting the 

conservation of these values within a low threshold of 

variation. The values of kj
max

 present large standard 

deviations due to the coupling of different substrates, 

nonetheless the order of variation is analogous and 

intrinsically related to the chosen AMs.   
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Figure 5. Performance of the polygon with three vertexes 

reduced metabolic model fitted to experimental data. 

Validation of the model with experimental data is displayed 

in Figures 5 – 7, which are obtain after the estimation of 18, 

24, and 30 parameters for polygons with three, four and five 

vertexes respectively. The coefficient of determination (R
2
) is 

determined for each substrate and product of the metabolic 

pathway.  
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Figure 6. Performance of the polygon with four vertexes 

reduced metabolic model fitted to experimental data. 
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Figure 7. Performance of the polygon with five vertexes 

reduced metabolic model fitted to experimental data. 

Concerning validity, the Root Mean Square Residuals 

(RMSE) is evaluated taking into account the number of the p 

estimated parameters as reported by Dochain and 

Vanrolleghem (2001), 

   

 pN

xxWxx
RMSE

T




                                               (12) 

N represents the number of data, W the weighting matrix, x 

and x  are the data and estimated data respectively. Besides, a 

coefficient of determination (R
2
T) is calculated by involving 

all the set of experimental data. Table 3 reports the 

performance evaluation of each polygon reduced metabolic 

model where the polygon with 5 vertexes (larger area) 

demonstrate the better R
2

T, but its well-fitting capacity is 

questioned by the great number of parameters estimated as it 

is reflected in the RMSE.  However, the different polygon 
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configurations exhibit a similar behaviour in Figures 5 – 7 

and analogous results in enforcement evaluation.  

Notice that Mannose is the substrate with the inferior 

coefficient of determination due to the position of its 

experimental yield placed outside of the convex hull. Even 

though, the maximization of surface improved the fitting 

capacity of its parameters in the cybernetic model. 

Table 3. Enforcement evaluation of the different polygon 

based models  

Reduced Models by 

Polygons 
RMSE R

2
T 

3 vertexes 0.1970 0.9406 

4 vertexes 0.2235 0.9489 

5 vertexes 0.3098 0.9508 

Even the enforcement evaluation makes difficult to establish 

the best polygon configuration for model reduction, it is 

observed that all of them can represent properly the 

experimental data if parameter estimation is well executed.  

4. CONCLUSIONS 

Regarding the optimization of bioprocesses, robust models 

are needed to guaranty their proper use for several 

applications (e.g. process control). Great number of 

modelling approaches used metabolic networks information 

which involves many Elementary Modes that should be 

reduced. Several methods are proposed in literature, 

considering complicated calculations and the knowledge of 

experimental data and the metabolic network. The 

optimization method presented in this work is a useful tool to 

simply identify the elementary modes through polygons 

representing a part of the convex hull of Elementary Modes. 

This method can be implemented assuming that data is 

available or not by switching a simple parameter. Even 

though, it always requires the knowledge of the metabolic 

network.  

The development of the method used in this work has been 

implemented on data published in the literature. In this 

application, the simplest polygon is the best choice. Indeed, it 

reproduces available data and provides the reduced model 

with a minimum number of parameters. Further studies will 

contemplate searching for a trade-off between complexity of 

the reduced model (analysis of the reactions of the metabolic 

network chosen by the polygons) and quality of the fitness 

considering or not the availability of experimental yield data.   

 

REFERENCES 

Aceves-Lara, C. A., Bideaux, C., Molina-Jouve, C., and 

Roux, G. (2011). Determination of stoichiometric 

matrix for ethanol production from xylose by reduction 

of elementary modes with ant colony systems. IFAC 

2011. Milano, Italy. 

Bastin, G., and Dochain D. (1990). On-line estimation and 

adaptive control of bioreactors. Elsevier. Amsterdam.  

Bernard, O.; Bastin, G. (2005). Identification of reaction 

networks for bioprocesses: determination of a partially 

unknown pseudo-stoichiometric matrix. Bioporcess 

Biosyst Eng. 27. 293-301. 

Dochain, D., and Vanrolleghem, P. (2001) Dynamical 

modelling and estimation in wastewater treatment 

processes. IWA Publishing. Padstow, Cornwall, UK 

Geng, J., Song, HS., Yuan, J., and Ramkrishna, D. (2012). 

On enhancing productivity of bioethanol with multiple 

species. Biotechnol Bioeng. 109. 1508-1517.  

Kompala, DS., Ramkrishna, D., Jansen, NB., and Tsao, GT. 

(1986). Investigation of bacterial growth on mixed 

substrates: Experimental evaluation of cybernetic 

models. Biotechnol Bioeng. 28. 1044-1055.  

Kotter, P., and Ciriacy, M. (1993). Fermentation by 

Saccharomyces cerevisiae. Applied Microbiology and 

Biotechnology. 38. 776-783. 

Palsson, B. (2000). The challenges of in silico biology. Nat 

Biotechnol.18. 1147-1150. 

Provost, A., and Bastin, G. (2004). Dynamic metabolic 

modelling under the balanced growth condition. Process 

Control. 14(7). 717-728. 

Ramkrishna, D. (1982). A cybernetic perspective of 

microbial growth. In. Foundations of biochemical 

engineering: Kinetics and thermodynamics in biological 

systems. (Papoutsakis E, Stephanopoulus GN, Balnch 

HW, (Ed)). 161-178. American Chemical Society. 

Washington, U.S.A. 

Shuster, S., Hilgetag, C., Woods, J.H., and Fell, D.A. (2002). 

Reaction routes in biochemical reaction systems: 

Algebraic properties, validated calculation procedure 

and example from nucleotide metabolism. J Math Biol. 

45. 153 – 181. 

Song, HS., and Ramkrishna, D. (2009). Reduction of a set of 

elementary modes using yield analysis. Biotechnol 

Bioeng. 102. 554-568. 

Song, HS., and Ramkrishna, D. (2010). Prediction of a 

metabolic function from limited data: Lumped hybrid 

cybernetic modelling (L-HCM). Biotechnol Bioeng. 

106. 271-284. 

Stephanopoulos, G., Nielsen, J., and Aristidou, A. (1998).  

Metabolic Engineering: Principles and Methodologies. 

Academic Press, San Diego.  

Taherzadeh, M.J., Eklund, R., and Gustafsson, L. (1997). 

Characterization and fermentation of dilute-acid 

hydrolyzates from wook. Ind. Eng. Chem. 36. 4659-

4665. 

Thurau, C., Kersting, K., and Bauckhage, C. (2009). Convex 

non-negative matrix factorization in the wild. IEEE 

International Conference on data mining ICDM. 523-

532.  

Wagner, C., and Urbanczik, R. (2005). The geometry of the 

flux cone of a metabolic network. Biophys. 89(6). 3837-

3845.  

Young, J.D., Henne, K.L., Morgan, J.A., Konopka, A.E., and 

Ramkrishna, D. (2008). Integrating cybernetic 

modelling with pathway analysis provides a dynamic, 

systems-level description of metabolic control. 

Biotechnol Bioeng. 100. 542 – 559.  

 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6203


