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Abstract: Cutting and packing problems are of great importance in a myriad of industries
such as: wood, textile, glass and shipbuilding. The irregular strip packing problem considers a
container with infinite length where irregular items must be inserted into. A group of solutions in
the literature solves the problem by allowing overlap between items and then applying a method
which minimizes the total overlap value of the layout. The best results in the literature were
obtained using overlap minimization techniques and it is the strategy adopted in this work. Fast
overlap evaluation is obtained by the employment of the Voronoi mountain concept. It is used to
pre-evaluate the overlap value for two items by adopting a raster representation, which is stored
prior to the execution of the algorithm. Tests performed using a benchmark case showed that,
even with reduced precision, competitive layouts can be obtained using the proposed approach.
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1. INTRODUCTION

Cutting and packing (C&P) problems are found in a
wide array of industries. A classic example of a cutting
problem is encountered in textile manufacturing, where
specific shapes are cut from rolls of fabric. The cutting
patterns dictate the utility rate of the material. A more
efficient layout can reduce waste, with both economical
and environmental impact. Packing problems consider a
container in which items must be inserted into without
overlap. A better arrangement results in less unused space.

All C&P problems can be described as: assign a set of
small items to a set of big items such that the layout
is feasible, i.e., small items do not collide and are all
completely contained by a big item. In this work, the
terminology for packing problems is used, so small items
are referred simply as items and the big items as con-
tainers. According to the topology proposed by Wäscher
et al. (2007), which consider factors such as dimensionality,
kind of assignment, number of containers and shape of
items, the problem approached in this paper is the bi-
dimensional irregular item open dimension problem, also
referred as irregular strip packing problem. In this class
of problems, a set of items, whose shape is not restrict to
regular polygons, are inserted in a rectangular container
with fixed width and variable length. The objective is to
find a layout which minimizes the changeable dimension.
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For strip packing algorithms, the geometric aspect can be
viewed as a separated sub-problem. The analysis of the
geometry of items and container is necessary to guarantee
that the restrictions are satisfied. This is achieved by
employing geometric tools which assure that items do not
overlap nor protrude from the container. When dealing
with irregular items, a layer of complexity is added on top
of the optimization problem.

In this work, we propose a irregular strip packing solution
based on raster Voronoi mountain overlap minimization
with guided local search. Fast overlap determination is
achieved using matrices created in a preprocessing step.
Results comparisons with the best approaches in literature
showed that the proposed method can obtain competitive
solutions with the same time restrictions. Furthermore, the
performance can be vastly improved, as it is possible to
employ a massive parallel processing to generate a faster
implementation.

This paper is structured as follows. Section 2 gives a brief
review of the literature of irregular strip packing solutions.
In section 3, previous attempts by the authors to solve
the discussed problem are discussed. Next, in section 4,
the adopted overlap evaluation is described. The proposed
overlap minimization algorithm is detailed in section 5 and
the results are shown in section 6. Finally, conclusions are
drawn in section 7.

2. LITERATURE REVIEW

Strip packing problems are, as several other C&P vari-
ations, NP-Hard (Fowler et al., 1981). When complex
geometry is also considered, the problem is not trivially
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solvable and, as a consequence, there are many different
solutions in the literature.

However, it is possible to distinguish two main strategies
to represent the solution space: 1) as an ordered list of
items; or 2) by a set of translation vectors to be applied to
the items. In the former, the adopted placement heuristic
guarantees that no overlap between items occurs when
placing one item of the list at a time. For the latter, a
strategy must be defined to both eliminate the collision
and protrusion, and to compact the layout. The first
strategy is defined as the search over sequence and the
second as search over the layout (Elkeran, 2013).

Search over sequence approaches usually consists of two
basic components: a constructive placement heuristic and
a search algorithm. In Oliveira et al. (2000), the placement
heuristic TOPOS was proposed. It was later used by
Gomes and Oliveira (2002) with a 2-exchange heuristic.
Sato et al. (2012) proposed a strategy in which a simulated
annealing (SA) was used both to search over the sequence
and to construct the layout by selecting the orientation of
the item and its position, which was limited by the collision
free region (CFR).

For solutions which perform the search over the layout, one
common characteristic is that collision between items are
allowed at some point. For this short review, two groups
of strategies are analyzed: separation and compaction
methods and overlap minimization algorithms. The former
group consists of methods which attempt to both eliminate
collisions and compact the layout using a combination of
two techniques: separation and compaction, respectively.
Gomes and Oliveira (2006) used a linear programming
based compaction and separation algorithms with SA to
guide the local search.

The first overlap minimization approach for the strip pack-
ing problem was proposed by Egeblad et al. (2007). Over-
lap area between items is minimized by the investigation
of all horizontal and vertical translations for each item. It
uses a fast local search to escape local minima. Umetani
et al. (2009) used a similar approach, combining the over-
lap minimization with guided local search. Leung et al.
(2012) improved the solution by applying taboo search
metaheuristic. Elkeran (2013) used the guided local search
in combination with cuckoo search to search for a minimal
overlap layout. Each of these approaches obtained new
best solutions for benchmark problems when published.

3. PREVIOUS WORKS

The CFR determines all possible placements for an item
in a layout and was defined in Martins and Tsuzuki
(2006). Sato et al. (2010) implemented a robust algorithm
to determine the CFR using non regularized Boolean
operations. Using this implementation, it was possible to
detect exactly fitting and exactly sliding positions which,
as indicated by the results, are important to obtain more
compact layouts. Six best layouts were obtained, however
the execution time of the implementation was higher than
all other approaches in literature.

As SA was used to control the position along the contour
of CFR for each item, fitting placements were rarely
discovered. Moreover, due to the employment of finite

(a) (b)

Fig. 1. Configurations where the overlap area (in black)
in (b) is larger than the overlap area in (a). However,
for both cases, only a small translation is needed to
separate the items.

precision geometric tools, these special positions were not
found if the sequence of Boolean operations was changed.
In Sato et al. (2013), an algorithm which imposes the
creation of exactly fitting or sliding positions for one item
in a pair was proposed. Placements heuristics adapted to
work with the required pairwise placement were tested but
results showed no improvement of the solutions. It was
then observed that not all fitting placements are important
to obtain an efficient layout.

The CFR derives from the nofit polygon (NFP) concept,
which defines a forbidden placement region. The CFR
concept was designed for solutions which perform the
search over the sequence. In this work, however, the NFP is
used to determine the penetration depth and a search over
the layout is executed in order to minimize the overlap.

4. OVERLAP EVALUATION

The proposed approach in this work allows for collision
between items. In order to obtain a feasible solution, it is
necessary to adopt a strategy which eliminates the overlap
and guarantee that all items are inside the container.
Overlap minimization techniques assume a value which
quantifies the total collision in the layout and attempts
to minimize it. The objective is to obtain a solution with
zero overlap.

One of the main difficulties in irregular packing problems
is to assure that no two items intersect with each other. In
this work, the space inside the container is discretized and
the items are represented by matrices. An intuitive method
of overlap evaluation consists of measuring the area of
overlapped regions and is very straightforward when using
a raster representation. However, it would be very time
consuming to detect the overlapped area for each pair of
items at each iteration. Moreover, in some cases a solution
with high overlap area can be easily transformed into a
feasible one by applying a small translation (see Fig. 1).
Overlap minimization is often performed by moving items
in the layout. Thus, it is more convenient to adopt the
penetration depth, which determines the minimum trans-
lation to separate two items, as the overlap function.

So as to assist the description of the methods used in
this work, some notations are employed. A layout of a set
of items P = {P1, P2, ..., Pn} is defined by a translation
vector x = {x1, x2, ..., xn}, where xi ∈ R2, and an
orientation vector o = {o1, o2, ..., on}, 0 ≤ o < 2π. A
placed item in the layout is described as P (o), where o is
its orientation, retrieved from vector o. A translated item
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Fig. 2. NFP induced by movable item Pi to item Pj

mapped to a polygonal region.
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Fig. 3. The penetration depth of items Pi and Pj , indicated
by the size of the arrow.

is denoted by P (o) ⊕ x, where ⊕ is the Minkowski sum.
The orientation can be omitted if it is not necessary.

4.1 Nofit Polygon

The NFP is a concept proposed by Art (1966) and it is
used to determine whether two items intersect, touch or
are separated. Consider two items, the fixed item and the
moveable item, both already positioned in the layout and
with their orientation set. The NFP determines the set
of translation that, when applied to the moveable item,
places it in collision with the fixed item. The NFP induced
by the fixed item Pi to the moveable item Pj is denoted
by Υ(Pi, Pj).

These translations are mapped onto the 2D space using a
reference point for the moveable item, as shown in Fig. 2.
The NFP can be obtained by sliding the moveable item
along the contour of the fixed item.

4.2 Penetration depth

For a pair of items Pi and Pj , the penetration depth of
Pj measures the norm of the minimum translation that,
when applied to Pj , separates it from Pi. The penetration
depth δ(Pi, Pj) can be described as

δ(Pi, Pj) = min {‖v‖ | i(Pj ⊕ v) ∩ i(Pi) = ∅} (1)

where ‖·‖ denotes the Euclidean norm.

Fig. 3(a) shows an example of two colliding items and
their penetration depth. Using the NFP, it is possible
to determine the penetration depth more efficiently (see
Fig. 3(b)). For a NFP Υ(Pi, Pj), the penetration depth of
Pj is the minimum distance from its reference point r to
a point in the contour of the NFP. Thus,

δ(Pi, Pj) = min {‖v‖ | r + v 6∈ i(Υ(Pi, Pj))} . (2)

So as to determine the penetration depth, it is necessary
to determine the closest edge or vertex of the NFP from

Fig. 4. Medial axis of a convex polygon.

x

y
z

(a)

(b) (c)

Fig. 5. Voronoi mountain of a convex polygon. (a) 3D
view. (b) Highlighted iso-contours representation. (c)
2D discrete grayscale transformation.

the reference point. This can be achieved using the medial
axis concept, which consists of the set of all points with
multiple closest points to the contour of the polygon. Fig. 4
shows an example of a medial axis of a convex polygon.
It is possible to observe that the medial axis divides the
polygon into regions, each corresponding to an element of
the contour, edge or vertex. For a given region, the distance
from any internal point to its corresponding element is the
minimum to any point along the contour of the polygon.
Thus, the penetration depth can be easily determined once
the region containing the reference point is identified.

4.3 Voronoi Mountain

Voronoi diagram for closed polygons can be used to obtain
the medial axis. The Voronoi mountain is a concept applied
to determine the optimal cutting path in 2.5D pocket ma-
chining (Veeramani and Gau, 1997). The Voronoi moun-
tain is obtained by extruding all regions from the Voronoi
diagram. After the extrusion, for each region, a Boolean
subtraction operation is performed such that the solid
height equals to the distance from the corresponding edge
or vertex of the region. Fig. 5 shows an example of a
Voronoi mountain for the convex polygon of Fig. 4. For
any point inside the polygon, the height of the Voronoi
mountain has the same value as the penetration depth.

For convex polygons, the Voronoi regions are always as-
sociated to an edge of the polygon. In these cases, the
top surface of the Voronoi mountain is formed by a set of
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planes which forms a 45o angle with the original polygon
plane and are delimited by the edges of the Voronoi dia-
gram regions. It is then possible to represent the Voronoi
mountain by a set of plane equations. Assume that the
original polygon is contained in the xy plane and the z
coordinate represents the height of the Voronoi mountain.
Also, consider that the points P1 = (P1x, P1y) and P2 =
(P2x, P2y) are the endpoints of the edge corresponding to
a Voronoi region. Each plane equation is given by

z =
1

∆2

[
∆y · x+ ∆x · y −∆2

]
(3)

where ∆2 =
√

∆2
y + ∆2

x, ∆x = P2x−P1x and ∆y = P2y −
P1y. Equation (3) is equivalent to the point-line distance.

In the case of non-convex polygons, Voronoi regions may
be associated with a concave vertex. The distance function
for such regions is obtained by constructing an upside-
down cone with its apex coinciding with the concave vertex
and whose generatrix lines makes an 45o angle with its
axis. Consider Pc = (Pcx, Pcy) the concave vertex which
generates the Voronoi region. Thus, the function is given
by

z =
√

(x− Pcx)2 + (y − Pcy)2 (4)

which is equivalent to the distance between points. Eqs. (3)
and (4) show that the height of the Voronoi mountain for
any given point always matches its penetration depth.

4.4 Discretization and preprocessing

One of the main advantages of the NFP is that it only
needs to be computed once for each pair of items. Hence,
for the Voronoi mountain approach, it is also only neces-
sary to determine the parameters of the plane and cone
surfaces a single time. All this calculations can be per-
formed in a preprocessing step. Using these results, the
computation of the penetration depth consists basically of
the determination of the relative position of the reference
point to the translated NFP and the application of equa-
tions (3) or (4).

To further improve the algorithm efficiency through pre-
computation, the Voronoi mountain is discretized. Using
a matrix representation, it is possible to determine the
penetration depth for every element of the matrix. A
result of this discretization is exemplified in Fig. 5(c),
where lighter shades correspond to higher regions of the
Voronoi mountain. This transformation is applied to all
NFPs and, as a consequence, the task of obtaining the
penetration depth of any two given items in the layout is
converted into a simple procedure of retrieving a value of
a stored matrix. The big drawback is the high memory
requirement to store all NFPs, which increases with finer
precision. Nevertheless, amount of necessary memory can
be estimated in advance and the precision can be set
accordingly.

5. OVERLAP MINIMIZATION

In the previous section, the overlap function for two items
was introduced. In order to solve a packing problem, the
overlap minimization must also take into account multiple

Pj

IFR

Fig. 6. IFR for a container and a moveable item Pj .

items and the container. The total overlap function F for
an item Pi(oi) in the layout is given by

F (Pi(oi),x, o) =

n∑
j=1,j 6=i

δ(Pi(oi), Pj(oj)). (5)

For the proposed overlap minimization algorithm, only so-
lutions where all items are completely inside the container
are considered. The inner fit rectangle, which is derived
from the NFP concept, is the geometric tool employed to
satisfy this restriction. It represents all translations that,
when applied to the item, inserts it into the container
without protrusion. Fig. 6 shows an example of the inner
fit rectangle (IFR). During the search over the layout, only
positions inside the IFR are accepted.

5.1 Total overlap map

For an item in the layout, its total overlap map represents,
for each point in the grid inside the IFR, the value of the
total overlap. One example is shown in Fig. 7. For an item
Pi, the total overlap map can be determined by primarily
creating a raster representation of its inner fit triangle with
all values set to zero. Next, for each item, its Voronoi
mountain processed NFP is translated and cumulatively
added to this matrix. After processing all items in the
layout excluding Pi, the total overlap map is complete.

The cells with value zero in the map represent feasible
placements for item Pi. If a zero threshold is applied to
the map, a raster variation of the CFR is obtained.

5.2 Local search

Using the proposed total overlap map, the search for the
minimum overlap placement for one item in the layout is
obtained by searching for the position of the minimum
value in the map. The local search used in this work is
adapted from (Elkeran, 2013). Initially, a sequence of items
is randomly defined. Then each item is translated to its
minimum overlap placement in the layout. When multiple
orientations are admissible for the item, all orientations
are tested and the one which holds the lowest total overlap
value is chosen.

5.3 Guided local search

Local search approaches have a tendency to lock on local
minima solutions. It is then imperative to adopt a meta-
heuristic in order to progress the search for the optimal
solution. The guided local search proposed in (Umetani
et al., 2009) was chosen for this work. Weights, initially
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Pi

(a)

(b)

Fig. 7. Overlap map example. (a) Layout for example.
Reference point for item Pi is marked with a filled
circle. (b) Overlap map for item Pi (scaled). Darker
shades of gray indicates smaller overlap values.

assigned the value one, are attributed to each pair of
items. The objective function is modified by multiplying
each overlap function by its corresponding weight, denoted
by wij , which is associated with items Pi and Pj . The
modified function can be expressed as

F ′(Pi(oi),x, o) =

n∑
j=1,j 6=i

wij · δ(Pi(oi), Pj(oj)). (6)

After each iteration, the value of weights are updated.
The rule for updating guarantees that the search is not
trapped in a local minimum. The adopted implementation,
proposed in Umetani et al. (2009), uses the following rule

wij = wij +
δ(Pi, Pj)

max(δ(Pk, Pl))
(7)

where 1 ≤ k < l ≤ n.

First, the maximum penetration depth of all combinations
is determined. Then, the weight of each pair of item is
incremented by the value of the overlap relative to the
maximum value. When a non feasible solution does not
change after one local search iteration, the weights of the
overlapping items increase and elevate the value of the
overlap of colliding items. After some iterations, the total
overlap of such items reaches a non minimum value and
they are translated to lower overlap positions.

Table 1. Computational times for the Tangram
case. Time per iteration values are approxi-

mated. All time values are in seconds.

Scale Factor Preprocessing Time per iteration

1 31.68 < 0.01
10 197.72 0.01

100 2885.04 0.20

When a number Nmr of solutions which does not improve
the fitness function are found, the execution of the algo-
rithm is halted. Also, if a feasible solution is found, the
algorithm is finished and the layout is returned.

6. RESULTS

Tests for the overlap minimization algorithm were per-
formed with two sets of data. One is the classic puzzle
case Tangram, with a container with fixed dimensions, and
the other is the case Fu, which is a benchmark data set
for strip packing problems. Initial solution was obtained by
randomly generating positions for each item inside the con-
tainer, keeping the default orientations. Parameter Nmr

was set to 200 iterations. The algorithm was implemented
using MATLAB and the tests were performed on a Xeon
E5645, 2.40GHz with 48GB.

The Tangram puzzle is shown in Fig. 7(a). The original
container was set to a 8 × 8 grid. As the speed of raster
methods varies with the adopted precision, three scaled
versions of the original Tangram puzzle were tested and
the execution times were measured. Table 1 shows the
preprocessing times and the times per iteration of the
overlap minimization algorithm. It is important to note
that the preprocessing step only needs to be performed
once. Results show that the preprocessing times is hugely
influenced by the scale factor and, thus, it should be chosen
carefully. In all tests the algorithm converged to the correct
solution.

Fu problem consists of 12 items with 4 admissible orien-
tations. The Fu data set was scaled by a factor of ten for
a finer discretization. Table 2 shows the results obtained
for the Fu case. To allow a better comparison with other
solutions, a execution of the algorithm was defined as a
continuous run of 10 min. The algorithm was restarted
each time it returned. For each run, a container with a
fixed length is defined and the algorithm was executed 36
times for each length. Fig. 8 shows the best layouts for
each Fu test.

Most compact layout for the Fu case was obtained in (Elk-
eran, 2013), with a density of 92.41%. The execution
was also limited to 600 seconds. Other best solutions
achieved the following utility rates: 92.03% (Egeblad et al.,
2007) and 91.94% (Leung et al., 2012). The best com-
paction obtained by the proposed approach was 91.95%
(see Fig. 8(f)) which is not very different from top solutions
which ran for 10 minutes. Best layout in previous works
was obtained in Sato et al. (2012), with a density of
91.96%, but the execution time was more than 100 times
higher. Even with limited precision, the proposed algo-
rithm obtained a competitive solution. The same scenario
can be observed for the Tangram problem, a puzzle case,
which was successfully solved.
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Table 2. Results for the Fu case. Avg MO: av-
erage minimum overlap of non-valid solutions.
Pconv: percentage of convergence of execu-
tions. Average iteration time was 0.13 seconds.

Length Density (%) Avg MO Pconv

32.0 89.07 1.10 70.59
31.9 89.35 1.72 17.86
31.8 89.63 3.83 12.90
31.7 89.92 3.05 15.63
31.6 90.20 3.57 9.68
31.5 90.49 4.74 6.06
31.4 90.77 4.77 3.03
31.3 91.06 5.39 3.03
31.2 91.36 7.29 3.03
31.1 91.65 5.45 0.00
31.0 91.95 6.45 3.03
30.9 92.24 6.69 0.00

(a) 32.0 (b) 31.8

(c) 31.6 (d) 31.4

(e) 31.2 (f) 31.0

Fig. 8. Some layouts for the Fu problem obtained by the
proposed approach.

7. CONCLUSION

In this work an overlap minimization algorithm using
raster NFPs was proposed. The search over layout strategy
was adapted from Elkeran (2013), changed to accommo-
date the discrete approach. The intention was to trans-
fer the computational load during the execution of the
algorithm to a preprocessing step. Computational times
confirmed that the performance of the algorithm is highly
dependent upon the adopted precision. However, even with
relatively low precision, the algorithm was able to achieve
good compaction for the benchmark problem Fu when
compared to other solutions in the literature.

The work is at an early stage and the tests were performed
in order to verify the potential of the algorithm to achieve
good layouts in reasonable time. In order to allow a

better comparison with literature solutions, the algorithm
must be fully converted to a strip packing solution by
including an automatic reduction and expansion of the
container. Another huge improvement for the algorithm is
the parallelization of the discrete Voronoi mountains and
overlap maps determination.
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