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Abstract: This paper addresses the problem of H∞ filter design for discrete-time Markov jump linear
systems (MJLS) with transition probability matrix affected by uncertainties. The proposed methodology
allows to take into account the different types of uncertainties usually adopted in MJLS in a systematic
way. New conditions are given for H∞ filter design with partial, complete or null Markov mode
availability. Due to the presence of slack variables in the synthesis conditions and to the use of
homogeneous polynomial solutions of arbitrary degrees, less conservative linear matrix inequality
relaxations can be obtained. Numerical experiments illustrate the better performance and efficiency of
the proposed approach when compared to other strategies available in the literature.
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1. INTRODUCTION

The H∞ filtering problem is among the most studied topics in
control and signal processing literature. The H∞ performance
is mainly used when there is no information about the statis-
tics of the noise actuating in the system. In the last years,
results have been reported for H∞ filter design of uncertain
linear systems [Duan et al., 2006], linear parameter varying
systems [de Souza et al., 2006], time-delay systems [Lacerda
et al., 2013], nonlinear systems [Li et al., 2012] and Markov
jump linear systems – MJLS [de Souza and Fragoso, 2003].
Concerning the latter case, the filtering problem has been in-
vestigated in the discrete-time [de Souza and Fragoso, 2003]
and continuous-time [de Souza et al., 2006] cases, consider-
ing mode-dependent [Zhang and Boukas, 2009b] and mode-
independent [Li and Shi, 2012] filter design.

MJLS are a category of hybrid systems in which multiple opera-
tion modes can occur. Each individual mode is linear, described
by difference equations, in the discrete-time case, or differ-
ential equations, in the continuous-time case, depending upon
a random variable. The switching between different modes
is governed by a stochastic process depicted by a Markov
chain associated to a transition probability matrix. This dynam-
ical system class can appropriately represent plants subject to
abrupt changes in operation modes or structure (see Costa et al.
[1999, 2005] and references therein). Regarding the transition
probabilities, to obtain accurate information about them can be
a very arduous or expensive work. Therefore, to overcome such
challenge, some researches treat incomplete knowledge of tran-
sition probabilities, for instance considering that the uncertain
probability matrix is: i) polytopic [Gonçalves et al., 2011]; ii)

partly unknown with elements lying in known intervals [Luan
et al., 2010]; iii) partly unknown without any particular struc-
ture in the unknown entries [Zhang and Boukas, 2009a,b];
while other results deal only with a completely known transi-
tion probability matrix [Gonçalves et al., 2009].

This paper handles the problem of designing full order filters
for discrete-time MJLS with uncertain transition probability
matrix, guaranteeing an upper bound to the H∞ norm. The three
types of uncertainties, usually studied in the literature, are mod-
eled by the multi-simplex methodology [Oliveira et al., 2008].
In order to do that, each row of the uncertain transition prob-
ability matrix containing any kind of uncertainty is described
in terms of parameters belonging to a unit simplex. Then, all
the uncertain parameters are combined into one single domain
generated by the Cartesian product of simplexes. Exploiting
this representation, sufficient conditions for H∞ filtering are
proposed in terms of linear matrix inequalities (LMIs) with
scalar parameters. Such conditions can cope with H∞ filter
design of MJLS under the assumptions of complete, partial or
no mode observation. As illustrated by numerical examples, the
proposed conditions can be less conservative than the others
available in the literature. At the price of increasing the compu-
tational effort using higher degrees in the Lyapunov matrices
and in the slack variables, or even performing line searches
of the scalar parameters, less conservative outcomes can be
obtained in terms of H∞ guaranteed performances.

The remainder of the paper is structured as follows. Section 2
outlines the notations and preliminary results related to the LMI
conditions, the multi-simplex modeling of uncertain transition
probabilities and some machinery to handle matrix polynomi-
als. Section 3 introduces the main results for H∞ filtering de-
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sign. Section 4 provides numerical examples and comparisons
with other conditions from the literature. Section 5 summarizes
the paper.

2. PRELIMINARIES

Consider the fundamental probability space (Ω,F ,Γ) and the
discrete-time MJLS G defined by the following stochastic
equations

G =







x(k+1) = A(θk)x(k)+E(θk)w(k)

z(k) =Cz(θk)x(k)+Ez(θk)w(k)

y(k) =Cy(θk)x(k)+Ey(θk)w(k)

(1)

where x(k) ∈ Rnx is the system state, z(k) ∈ Rnz is the signal
to be estimated, y(k) ∈Rny is the measured output, and w(k) ∈
Rnw is the external perturbation, which is supposedly energy
bounded, that is w(k) ∈ ℓ2. Furthermore, {θ(k); k ≥ 0} is a
discrete-time homogeneous Markov chain with finite state-

space K , {1, . . . ,σ}, which comprises the operation modes
of system G , and a associated stationary transition probability
matrix Γ = [pi j], ∀i, j ∈K, where

pi j = Pr(θ (k+1) = j | θ(k) = i) , ∀k ≥ 0.

Whenever possible, θ(k) is replaced by i, ∀i ∈K, such that the
system matrices are given and, for ease of notation, written as
Ai ∈ Rnx×nx , Ei ∈ Rnx×nw , Czi ∈ Rnz×nx , Ezi ∈ Rnz×nw , Cyi

∈
Rny×nx , Eyi

∈Rny×nw , ∀i ∈K.

One definition that generalizes the concept of stability applied
to MJLS is the mean square stability (MSS), that is

E [‖x(k)‖]→ 0 as k → ∞

for any initial condition x(0) ∈ Rnx , θ0 ∈ K. Necessary and
sufficient conditions for MSS are proved in Costa and Fragoso
[1993], Costa et al. [2005].

To handle the H∞ filtering problem for system G , some defi-
nitions are required. The H∞ norm to the model (1), denoted
as ‖G ‖∞, is formally characterized by the following defini-
tion [Costa and do Val, 1996].

Definition 1. Assume that G is stable. The H∞ norm of sys-
tem (1) from the input w(k) to the output z(k) is given by

‖G ‖2
∞ = sup

w(k)∈ℓ2,θ0∈K

‖z(k)‖2
2

‖w(k)‖2
2

. (2)

The problem to be studied in this paper is: find a robust causal
full order mode-dependent linear filter F given by

F =

{

x f (k+1) = A f (θk)x f (k)+B f (θk)y(k)

z f (k) =C f (θk)x f (k)+D f (θk)y(k)
(3)

where x f (k) ∈ Rn f , n f = nx, is the estimated state, z f (k) ∈
Rnz is the estimated output and the matrices A f i

∈ Rnx×nx ,

B f i
∈ Rnx×ny , C f i

∈ Rnz×nx , and D f i
∈ Rnz×ny are sought.

Additionally, the dynamics of the error, e(k) = z(k)− z f (k), is
MSS and the energy gain from the external perturbation input
w(k) to the error e(k), that is a bound to the H∞ norm, is
minimized.

Connecting the filter (3) to the MJLS (1) the dynamics of the
estimation error satisfies the following augmented state-space
system model:

Gaug =

{

x̃(k+1) = Ã(θk)x(k)+ B̃(θk)w(k)

e(k) = C̃(θk)x(k)+ D̃(θk)w(k)
(4)

with x̃(k) =
[

x(k)T x f (k)
T
]T

and

Ãi =

[

Ai 0
B f i

Cyi
A f i

]

, B̃i =

[

Ei

B f i
Eyi

]

,

C̃i =
[

Czi −D f i
Cyi

−C f i

]

, D̃i = Ezi −D f i
Eyi

.

(5)

This paper considers a scenario where the transition probability
matrix Γ = [pi j] can be affected by different types of uncer-
tainty. Similarly to Gonçalves et al. [2012], each element pi j

can vary between two known bounds, i.e., 0≤ p
i j
≤ pi j ≤ pi j ≤

1, or, as in Zhang and Boukas [2009a,b], where the entries are
completely unknown, i.e., pi j =?. Note that the latter can be
seen as a particular case of the known bounded assumption,
since the minimum and maximum bounds of each element can
be inferred.

The procedure to construct a generic representation that can
cope with all types of uncertainties is performed in two steps.
At first, similarly to Gonçalves et al. [2012], each uncertain row
of Γ is modeled by uncertain parameters belonging to a unit
simplex (ΛNr ), given by

ΛNr ,

{

ζ ∈RNr :
Nr

∑
i=1

ζi = 1, ζi ≥ 0, i = 1, . . . ,Nr

}

.

Next, using the methodology presented in Morais et al. [2013]
to treat uncertain transition probability matrices, the parameters
of the m uncertain rows are combined into one single domain,
created by the Cartesian product of m unit simplexes Λ=ΛN1

×
·· · ×ΛNm , called a multi-simplex [Oliveira et al., 2008]. The
dimension of Λ is defined as the index N = (N1, . . . ,Nm).
It is noteworthy that the proposed approach can also deal
with polytopic uncertain probability matrix [de Souza, 2003,
Gonçalves et al., 2011].

The computation of an H∞ guaranteed cost for an MJLS with
uncertain transition probability matrix Γ(α) is presented in
the next lemma. The result can be viewed as an extension of
the bounded real lemma for discrete-time MJLS [Seiler and
Sengupta, 2003, Costa and do Val, 1996, Gonçalves et al.,
2012] to cope with uncertain parameters belonging to the multi-
simplex domain.

Lemma 1. System (4) is MSS and ‖G ‖∞ < γ if there exist sym-
metric positive definite parameter-dependent matrices Pi(α) ∈
R2nx×2nx , i = 1, . . . ,σ , such that the parameter-dependent in-
equalities

[

Ãi B̃i

C̃i D̃i

]T [

Ppi(α) 0
0 I

][

Ãi B̃i

C̃i D̃i

]

−

[

Pi(α) 0

0 γ2I

]

< 0 (6)

hold for each i = 1, . . . ,σ and for all α ∈ Λ, being Ppi(α) =
∑σ

j=1 pi j(α)Pj(α). By minimizing γ under the robust LMIs

constraints (6), one gets the worst case H∞ norm of system (4).

Considering only the block (1,1) in (6), i = 1, . . . ,σ , the in-
equalities in Lemma 1 can also be used to deal with robust MSS
of MJLS.

Given filtering matrices A f i
, B f i

, C f i
and D f i

, Lemma 1
presents an infinite dimensional problem to compute a bound
to the H∞ norm of the augmented system (4) with uncertainties
in the transition probability matrix (the parameter-dependent
inequalities must be verified for all α ∈ Λ). Whenever one
solution exists, the computation of the minimum value of γ in
terms of a finite set of LMIs can be obtained by applying re-
laxation techniques based on homogeneous polynomials of ar-
bitrary degrees g [Bliman, 2004]. When the parameters belong
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to the multi-simplex Λ, the solution can be approximated by a
homogeneous polynomial solution of sufficiently large partial
degrees gr, r = 1, . . . ,m, without loss of generality [Oliveira
et al., 2008].

The notation and definitions related to homogeneous polyno-
mials and a systematic procedure to compute the vertices of
the transition probability matrix 1 in the multi-simplex domain
used in this paper follow the same lines presented in Morais
et al. [2013]. Additionally, the LMI conditions proposed in
Section 3 require a homogeneous polynomial representation
of Γ(α) matrix with degree one in ΛNr , r = 1, . . . ,m. For this
purpose, the s-th row of each vertex v of the Γ(α) is grouped as

ϒ
(v)
s =

[

p
(v)
s1 I p

(v)
s2 I · · · p

(v)
sσ I

]

where v ∈ KN(1) = KN1
(1)× . . .×KNm(1) and 1 is defined

as 1 = (1, . . . ,1), with m elements, and the coefficient π(k) is
defined as

π(k) = (k11!) · · ·(k1N1
!) · · ·(km1!) · · ·(kmNm !).

When Pi(α) of degree gr, for each i = 1, . . . ,σ and r = 1, . . . ,m,
are considered, the following coefficient matrices are used

Xk = [P1k
P2k

· · · Pσk
]
T
.

Next section presents a systematic procedure, based on a
sequence of LMI problems, which searches for homoge-
neous polynomial solutions of arbitrary degree in the multi-
simplex [Oliveira and Peres, 2007, Oliveira et al., 2008].

3. MAIN RESULTS

The following theorem presents sufficient LMI conditions with
scalar parameters for the existence of a mode-dependent filter
assuring robust MSS and an upper bound to the H∞ norm for
system (4) with uncertain transition probability matrix. The
LMI conditions are given in terms of the partial degrees of
the homogeneous solutions and the level d of Pólya’s relax-
ations [Scherer, 2003, 2005, Oliveira and Peres, 2007, Oliveira
et al., 2008]. Moreover, structural constraints are imposed to the
slack variables to derive tractable conditions [Duan et al., 2006,
Lacerda et al., 2011].

Theorem 1. If there exist symmetric matrices Pik ∈ R2nx×2nx ,

k ∈ KN(g), i = 1, . . . ,σ , matrices K11ik
∈ Rnx×nx , K21ik

∈

Rnx×nx , Q1ik
∈Rnw×nx , F1ik

∈Rnz×nx , G1ik
∈Rnx×nx and G2ik

∈

Rnx×nx , k ∈ KN(h), i = 1, . . . ,σ , Hi ∈ Rnx×nx , Zi ∈ Rnx×ny ,

K̂i ∈ Rnx×nx , C fi ∈ Rnz×nx , D fi ∈ Rnz×ny , i = 1, . . . ,σ , partial
degrees g = (g1, . . . ,gm), h = (h1, . . . ,hm) with gr and hr ∈N,
a degree d ∈ N and given scalars λ1 and λ2 such that for
i = 1, . . . ,σ , the following LMIs hold 2

Ξk = ∑
k′∈KN(1d)

k≥k′

(d!)m

π (k′)
(Pik−k′

)> 0, ∀k ∈ KN(g+1d) (7)

Θk +Ψk +Φk > 0, ∀k ∈ KN(w) (8)

with

1 The routine that automatically generates the vertices of Γ(α) is avail-

able for download at http://www.dt.fee.unicamp.br/~ricfow/

programs/Gamma_Multi_Simplex.m.
2 The symbol ⋆ represents a symmetric block in the LMI.

Θk = ∑
k′∈KN(w−g−1)

k≥k′

∑
k̂∈KN(1)

k≥k′+k̂

m

∏
j=1

(w j −g j −1)!

π (k′)









Pik−k′−k̃
⋆ ⋆ ⋆

0 −ϒ
(k̂)
i Xk−k′−k̂ ⋆ ⋆

0 0 0 ⋆
0 0 0 0









, (9)

Ψk and Φk given by (10) and (11), respectively, where w =
max{g+1(d +1) ,h+1d}, then

A f i
= K̂−1

i Hi, B f i
= K̂−1

i Zi, C f i
and D f i

(12)

are the filter matrices assuring robust MSS and an H∞ guaran-
teed cost, given by γ , for the augmented system (4).

Proof. First, note that the term ϒ
(k̃)
i Xk−k′−k̃ of (9) can be

rewritten as

ϒ
(k̃)
i Xk−k′−k̃ =

[

p
(k̃)
i1 I · · · p

(k̃)
iσ I

]

×
[

PT
1k−k′−k̃

· · · PT
σk−k′−k̃

]T

= p
(k̃)
i1 P1k−k′−k̃

+ p
(k̃)
i2 P2k−k′−k̃

+ . . .+ p
(k̃)
iσ Pσk−k′−k̃

=
σ

∑
i=1

p
(k̃)
i j Pik−k′−k̃

and ∏m
r=1

(

∑
Nr
t=1 αrt

)d

= 1 for any d ∈ N, then matrix (7) can

be equivalently rewritten as

m

∏
r=1

( Nr

∑
t=1

αrt

)d

Pi(α) = ∑
k∈KN(g+1d)

αkΞk, i = 1, . . . ,σ . (13)

Now with Pi(α) = PT
i (α), Ppi(α) = ∑σ

j=1 pi j(α)Pj(α), Hi, Zi,

K̂i, C fi , D fi ,

Ki(α) =

[

K11i(α) λ1K̂i

K21i(α) λ2K̂i

]

, Gi(α) =

[

G1i(α) K̂i

G2i(α) K̂i

]

,

Qi(α) = [Q1i(α) 0] , Fi(α) = [F1i(α) 0] ,

(14)

one has








Pi(α)+Ki(α)Ãi + ÃT
i KT

i (α) ⋆

Gi(α)Ãi −KT
i (α) −Ppi(α)−Gi(α)−GT

i (α)
B̃′

iK
T
i (α)+Qi(α)Ãi B̃T

i GT
i (α)−Qi(α)

Fi(α)Ãi +C̃i −Fi(α)

⋆ ⋆
⋆ ⋆

B̃T
i QT

i (α)+Qi(α)B̃i + γ2I ⋆

Fi(α)B̃i + D̃i I






> 0,

(15)
which is (8), multiplied by αk, summed up for k ∈ KN(w).
Then, multiplying it by T on the left and by T T on the right,
with

T =





I ÃT
i 0 0

0 B̃T
i I 0

0 0 0 I



 , (16)

yields




Pi(α)− ÃT
i Ppi(α)Ãi ⋆ ⋆

−B̃T
i Ppi(α)Ãi −B̃T

i Ppi(α)B̃i + γ2I ⋆

C̃i D̃i I



> 0 (17)

or, by Schur complement,
[

Ãi B̃i

C̃i D̃i

]T [

Ppi(α) 0
0 I

][

Ãi B̃i

C̃i D̃i

]

−

[

Pi(α) 0

0 γ2I

]

< 0 (18)
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Ψk = ∑
k̆∈KN(w−h)

k≥k̆

m

∏
j=1

(w j −h j)!

π
(

k̆
)























K11i
k−k̆

Ai +AT
i KT

11i
k−k̆

⋆ ⋆ ⋆ ⋆ ⋆

K21i
k−k̆

Ai 0 ⋆ ⋆ ⋆ ⋆

G11i
k−k̆

Ai −KT
11i

k−k̆

−KT
21i

k−k̆

−G11i
k−k̆

−GT
11i

k−k̆

⋆ ⋆ ⋆

G21i
k−k̆

Ai 0 −G21i
k−k̆

0 ⋆ ⋆

ET
i KT

11i
k−k̆

+Q1i
k−k̆

Ai ET
i KT

21i
k−k̆

ET
i GT

11i
k−k̆

−Q1i
k−k̆

ET
i GT

21i
k−k̆

ET
i QT

1i
k−k̆

+Q1i
k−k̆

Ei ⋆

F1i
k−k̆

Ai 0 −F1i
k−k̆

0 F1i
k−k̆

Ei 0























(10)

Φk =

m

∏
j=1

w j!

π (k)















λ1

(

Cy
T
i

ZT
i +ZiCyi

)

⋆ ⋆ ⋆ ⋆ ⋆

λ2ZiCyi
+λ1Hi λ2

(

Hi +HT
i

)

⋆ ⋆ ⋆ ⋆
ZiCyi

Hi 0 ⋆ ⋆ ⋆

−λ1K̂i +ZiCyi
−λ2K̂T

i +Hi −K̂T
i −K̂i − K̂T

i ⋆ ⋆

λ1Ey
T
i

ZT
i λ2Ey

T
i

ZT
i Ey

T
i

ZT
i Ey

T
i

ZT
i γ2I ⋆

Czi −D f i
Cyi

−C f i
0 0 Ezi −D f i

Eyi
I















(11)

which is the bounded real lemma for discrete-time MJLS (6). �

As a by-product, the condition of Theorem 1 can be straightfor-
wardly adapted to deal with the case of partial observation of
the Markov state (observations by clusters [do Val et al., 2002]),
providing partly mode-dependent filters. In order to do that,
consider the set Q = {1,2, . . . ,σc}, σc ≤ σ , that contains the
indexes q of system clusters, and set Uq, that gathers the modes
belonging to the cluster q, such that the clusters are mutually
exclusive groups whose union generates the set of states K. In
other words, K ≡ ∪q∈QUq such that ∩q∈QUq ≡ ∅. The result
is presented in the corollary below.

Corollary 1. If the conditions of Theorem 1 are satisfied with
Hi, Zi, K̂i, C f i

and D f i
replaced by Hq, Zq, K̂q, C f q

and D f q

for all q ∈Q and i ∈Uq ⊂K, respectively, then A f i
= K̂−1

q Hq,

B f i
= K̂−1

q Zq, C f i
and D f i

are the partly mode-dependent filter
matrices. Moreover, γ is an upper bound to the H∞ norm,
assuring the MSS, of system (4).

It is worthy to mention that if σc = 1 (i.e., no observations of
the Markov state chain) and Q= {1} with Uq=1 = {1,2, . . . ,σ},
the attained filter matrices will be the same for all operation
modes, which is called a mode-independent filter. On the other
hand, if σc = σ , Corollary 1 reproduces exactly the conditions
in Theorem 1.

4. NUMERICAL EXAMPLES

This section presents numerical comparisons between the ap-
proach proposed in this paper and other methods from the lit-
erature. All routines were implemented in Matlab, version 7.10
(R2010a) using Yalmip [Löfberg, 2004] and SeDuMi [Sturm,
1999]. The computer used was an AMD Phenon II X6 1090T
(3.2GHz), 4GB RAM, Windows 7.

Example 1

Consider the system borrowed from Zhang and Boukas [2009b],
where the specific data can be found, which deals with four
types of transition probability matrix: Completely Known
(CK), Partly Known Case 1 (C1), Partly Known Case 2 (C2)
and Completely Unknown (CUK).

The aim here is to design, mode-dependent (MD) and mode-
independent (MI), proper (P) and strictly proper (SP), H∞ fil-
ters to the four types of uncertain transition probability ma-
trix. Table 1 compares the H∞ guaranteed costs obtained with

Theorem 1 (T1) and Corollary 1 (C1) proposed in this paper
with Theorem 1 from Zhang and Boukas [2009b], called in this
example as T1 [ZB:09].

Table 1. H∞ guaranteed costs (γ) of mode-
dependent (MD) and mode-independent (MI),
proper (P) and strictly proper (SP) filters for Ex-
ample 1 using Theorem 1 (T1), Corollary 1 (C1),
both with d = g= h= λ1 = λ2 = 0, and Theorem 1

(T1 [ZB:09]) from Zhang and Boukas [2009b].

Method CK C1 C2 CUK

M
D P

T1 [ZB:09] 1.8556 3.8215 4.7293 4.4624

T1 1.1893 1.6422 1.6436 3.8104

S
P T1 1.2465 1.7554 1.7559 3.8118

M
I P C1 1.2360 1.7361 1.7625 4.0250

S
P C1 1.2923 1.8690 1.9011 4.3416

As can be seen, Theorem 1 and Corollary 1 can provide smaller
H∞ attenuation levels. Therefore, it is important to note that,
even mode-independent strictly proper filters designed with
Corollary 1 outperform the results from Zhang and Boukas
[2009b] for mode-dependent proper filters, emphasizing the
superiority of the proposed approach.

Example 2

Consider the MJLS with two operation modes, taken from
de Souza [2003], whose system matrices are

A1 =

[

0 −0.5
1 1

]

, A2 =

[

0 −0.33
1 1.40

]

, E1 = E2 =

[

0.5 0
0 0

]

,

Cz1 =Cz2 = [0 1] , Ez1 = Ez2 = [0 0] ,

Cy1
=Cy2

= [1 0] , Ey1
= Ey2

= [0 1] ,

with a transition probability matrix belonging to a convex
polytope given by two vertices

Γ1 =

[

0.75 0.25
0.50 0.50

]

and Γ2 =

[

0.85 0.15
0.30 0.70

]

.

The minimum upper bound for H∞ norm obtained with the
mode-independent strictly proper filter designed by Theo-
rem 3.3 from de Souza [2003] is γ = 9.8247. The result ob-
tained by Theorem 3 from Gonçalves et al. [2011] is γ =
7.8252. Using Corollary 1, with d = g = λ1 = λ2 = 0, the
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value of H∞ guaranteed cost is given by γ = 7.8171. This out-
come can be improved increasing the degrees of the Lyapunov
matrices. For instance, employing g = 1, Corollary 1 yields
γ = 7.2940 with the following filter matrices

A f =

[

−1.3636 −0.5626
2.4208 0.9118

]

, B f =

[

−1.0678
1.9274

]

,

C f = [0.0006 −0.9995] .

Although the conditions presented in de Souza [2003] deal only
with strictly proper filters, Theorem 3 from Gonçalves et al.
[2011] and the proposed approach are capable to handle proper
filters, which can reduce the H∞ guaranteed cost. In this case,
Theorem 3 from Gonçalves et al. [2011] provides a proper filter
with γ = 5.9681, while Corollary 1 with λ1 = λ2 = h = d = 0
and g= 1 yields H∞ bound equal to 5.6103, with filter matrices
given by

A f =

[

−1.1042 −0.4580
2.2215 0.9144

]

, B f =

[

−0.9872
1.6916

]

,

C f = [−2.3217 −0.9994] , D f =−2.3227.

Example 3

Consider the system borrowed from de Souza and Fragoso
[2003], also investigated in Gonçalves et al. [2009], with system
matrices given by

A1 =

[

1 5.2529×10−2

1.5146×10−3 1.1022

]

,

A2 =

[

0.9955 4.9660×10−2

−0.2669 0.8075

]

,

E1 = E2 =

[

0.5 0
0 0

]

,

Cz1 =Cz2 = [0 1] , Ez1 = Ez2 = [0 0] ,

Cy1
=Cy2

= [−1 1] , Ey1
= Ey2

= [0 1]

and completely known transition probability matrix

Γ =

[

0.7 0.3
0.2 0.8

]

.

Regarding the design of mode-independent strictly proper fil-
ters, for this particular problem, the LMI conditions presented
in de Souza and Fragoso [2003] are infeasible, while the ap-
proach in Gonçalves et al. [2009] provides an H∞ guaranteed
cost of 25.3786. On the other hand, Corollary 1 gets 22.5464
with λ1 = λ2 = g = h = d = 0. Better results can be achieved
by performing a search of the scalar parameters, for instance,
choosing λ1 =−0.37 and λ2 =−0.50, the H∞ guaranteed cost
provided by Corollary 1 is 21.3977 (g = h = d = 0), with filter
matrices given by

A f =

[

0.2121 0.8058
0.5960 0.2641

]

,

B f =

[

0.9757
−0.8892

]

, C f =

[

0.0414
−0.7809

]T

.

(19)

To evaluate the dynamical behavior of the augmented sys-
tem (4), a Monte Carlo time simulation for a total of 500
possible realizations of the Markov chain has been performed
under the disturbances

w1(k) = w2(k) = e−0.2k sin(1.8k) .

Figure 1 presents a comparison between the average error
signal e(k) of (4), with the filter matrices (19) and the results

obtained with the approach introduced in Gonçalves et al.
[2009]. It is noteworthy that Corollary 1 provides a filter that
produces smaller errors than the one obtained by the condition
in Gonçalves et al. [2009].
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Fig. 1. Comparison between the dynamical behavior of the
average error signal e(k) yielded by filters obtained with
Corollary 1 and the condition from Gonçalves et al. [2009]
for a total of 500 possible realizations of the Markov chain
.

5. CONCLUSION

The problem of H∞ filtering for discrete-time MJLS with un-
certain transition probability matrix was studied in this paper.
By conveniently using the multi-simplex representation, differ-
ent types of uncertainties in the transition probability matrix
can be considered in a systematic way. Differently from other
existing approaches, LMI relaxations based on homogeneous
polynomials of arbitrary degrees have been used in this work.
Numerical experiments illustrated the advantages of the pro-
posed conditions, which can design filters that provide smaller
H∞ attenuation levels than the ones obtained through other ap-
proaches available in the literature and improve even more the
results when the degrees in the decision variables are increased
and searches of the scalar parameters are performed.
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