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Abstract: This study aims at designing a modelling architecture to deal with the imbalanced data relating 
to the production of rails. The modelling techniques are based on Support Vector Machines (SVMs) 
which are sensitive to class imbalance. An internal (Biased Fuzzy SVM) and external (data under-
sampling) class imbalance learning methods were applied to the data. The performance of the techniques 
when implemented on the latter was better, while in both cases the inclusion of a fuzzy membership 
improved the performance of the SVM. Fuzzy C-Means (FCM) Clustering was analysed for reducing the 
number of support vectors of the Fuzzy SVM model, concluding it is effective in reducing model 
complexity without any significant performance deterioration. 
Keywords: Classification; railway steel manufacture; class imbalance; support vector machines; fuzzy 
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1 INTRODUCTION 

Cost management has become a very important factor in 
every industry. Investments in plant, technology, research 
and development allow companies to reduce manufacturing 
costs while quality control procedures improve process 
output. Modelling techniques are increasingly being 
employed to understand the interaction and influence of input 
variables on the process. Tata Steel Europe is at the forefront 
of rail production and strives to produce the high 
performance products required by the rail industry. 

Advances in computer processing power, together with the 
vast amounts of available data, have encouraged the 
application of machine learning techniques to different real 
world problems in an attempt to extract useful knowledge 
from the available information. Pattern classification is a 
supervised machine learning method in which a labelled set 
of data points is used to train a model which is then used to 
classify new test examples. Classifier performance is 
commonly evaluated by its accuracy. However, this metric 
does not correctly value the minority class in an imbalanced 
data set and as a result the trained model tends to be biased 
towards the majority class (Weiss, 2004). Many data sets 
from real world problems are inherently imbalanced and 
therefore appropriate measures need to be taken to ensure that 
important information due to the minority class is correctly 
represented by the classifier. 

This study deals with the design of a modelling architecture 
for data related to the quality of rails produced by Tata Steel 
Europe. The modelling problem is not trivial as the data set is 
highly imbalanced with the number of good rails being much 
higher than the rejected rails. 

The paper is organised as follows. Section 2 provides an 
overview of the modelling data, obtained from the rail 
manufacturing process, and input variable selection. Section 
3 outlines the theory related to Support Vector Machines 
(SVMs), Fuzzy Support Vector Machines (FSVMs) and 
Fuzzy C-Means (FCM) Clustering, and how these techniques 
were implemented on the data. SVMs are not affected by 
local minima as they are mathematically based on the 
solution of a convex optimisation problem. Also, in most 
cases, SVM generalisation performance has been shown to be 
better than that of other classification methods (Burges, 
1998). However, quadratic optimisation scales poorly with 
the number of data samples and therefore FCM was proposed 
for reducing training time and model complexity. The 
modelling results and their analysis are presented in Section 
4. Concluding remarks and suggestions for future work are 
given in Section 5. 

2 MODELLING DATA 

2.1 Rail Manufacturing Data 

At Tata Steel Europe, a precisely controlled rail production 
line, whose sub-processes are indicated in Fig. 1, produces 
high quality rails. 

During steelmaking, the desired steel chemical composition 
is achieved, while maintaining the steel integrity and 
avoiding imperfections. Consistent steel blooms are produced 
though continuous casting. The blooms are rolled into rail 
sections and Non-Destructive Testing (NDT) systems ensure 
strict dimensional accuracy and detect any surface and 
metallurgical defects so that the delivered rail sections meet 
the high standards required for rail applications. 
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Fig. 1. Railway Production Route 

Every stage of the rail manufacturing process is closely 
monitored and controlled to ensure the highest rail quality. 
Instrumentation systems and regular sampling provide data 
both for precise online process control and also for offline 
production management, planning and decision making. 

The data set from the Tata Steel Europe rail production route 
covered a two year production period. In a previous study 
(Yang et al., 2011), a process expert from Tata Steel provided 
expert knowledge to pre-process the data which had around 
200 variables. This was reduced to 70 useful process 
variables which could be used for modelling. 

2.2 Input Selection 

Although developments in processing power motivated data-
driven modelling, data dimensionality still remains an 
important issue. Reducing the dimensionality improves the 
performance of the predictor by eliminating the curse of 
dimensionality and reduces the training time, resulting in 
faster predictors (Guyon & Elisseeff, 2003). Dimensionality 
reduction aims at finding a lower dimensional space which 
retains the input-output relationship. It can be divided into 
feature extraction and feature selection. On the one hand 
feature extraction transforms the original space, either 
linearly or nonlinearly, and the most representative features 
are used for modelling. On the other hand, for feature (or 
variable) selection, a number of variables are selected 
according to a ranking which determines their relevance with 
respect to the output. 

Since the developed model needs to be inverted to obtain the 
best input values depending on specific design objectives, the 
appropriate dimensionality reduction technique in this case is 
variable selection. This ensures that the model inputs relate 
directly to the original variables. 

A data dimension of 70 was still too high for classification as 
this implies that the number of training samples must be high 
as well leading to prohibitively long training times. 
Therefore, variable selection was carried out in the work by 
Yang et al. (2011) where the most relevant input variables 
were selected to reduce the dimensionality of the modelling 
data. Linear correlation between input variables and the 
output is low, implying a highly nonlinear input-output 
relationship. On the other hand, some high correlation 
coefficients between input variables imply that variables may 
contain redundant information. Therefore input variable 
ranking was required to make sure that the most relevant 
inputs are selected. An iterative forward input selection 
procedure was devised, using a three-layer multilayer 
perceptron neural network model as a performance evaluator. 

For the work being presented, the first 39 input variables 
were used, as obtained from the original 70 variables using 
this input selection procedure. 

3 THEORY 

3.1 Support Vector Machines (SVMs) 

SVM is a supervised machine learning technique initially 
proposed by Vapnik (1979) in his pioneering work and 
further developed by Boser, Guyon, and Vapnik (1992). 
Since then, SVM application to pattern classification has 
increased mainly due to its attractive properties and better 
performance than other classifiers (Burges, 1998). This 
subsection reviews the theory for SVMs (Burges, 1998; 
Cristianini & Shawe-Taylor, 2000; Haykin, 2009; Fletcher, 
2009). 

Given a training data set with points in two linearly separable 
classes, the SVM finds the optimal hyperplane which 
maximises the margin of separation between the two classes.  

Let the linearly separable training data be {𝒙𝑖 ,𝑦𝑖}, 𝑦𝑖 ∈
{−1, 1}, where 𝑦𝑖  is the output class of input pattern 𝒙𝑖. The 
decision surface hyperplane that separates the classes can be 
written as: 

𝒘𝑇𝒙 + 𝑏 = 0 (1) 
where 𝒘 is an adjustable weight vector representing the 
normal to the hyperplane, 𝒙 represents the input dimensional 
space, 𝑏 is a bias. 

Suppose that the data points satisfy the following constraints: 

𝒘𝑇𝒙𝑖 + 𝑏 ≥ +1 for   𝑦𝑖 = +1 
𝒘𝑇𝒙𝑖 + 𝑏 ≤ −1 for   𝑦𝑖 = −1 

(2) 
(3) 

Support vectors are the closest points to the separating 
hyperplane and located on the hyperplanes defined by (2) and 
(3) with the equality sign. The margin, the distance between 
the support vectors of the two classes, can be defined as the 
difference between the perpendicular distances of the two 
hyperplanes to the origin: 

margin =
|(1 − 𝑏) − (−1 − 𝑏)|

‖𝒘‖
=

2
‖𝒘‖

 (4) 

It is clear that maximising the margin is equivalent to 
minimising the Euclidean norm of the weight vector 𝒘. The 
problem can be formulated as follows to benefit from the 
advantages of convex optimisation: 

min 1
2
‖𝒘‖2 s.t.     𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏) − 1 ≥ 0     ∀𝑖 (5) 

To deal with nonseparable data, it is necessary to include 
slack variables, 𝜉𝑖 ≥ 0, in the constraints of (2) and (3) 
(Cortes & Vapnik, 1995). As ξi is proportional to the 
misclassification distance from the margin boundary, a 
positive penalty term, 𝐶, is included in the objective function 
to discourage misclassifications. The objective function can 
now be defined as: 

𝑚𝑖𝑛 �
1
2
‖𝒘‖2 + 𝐶�𝜉𝑖

𝑖

� 

s.t. 𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏) − 1 + 𝜉𝑖 ≥ 0     ∀𝑖 

(6) 

Continuous
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To solve the problem using Lagrange multipliers, the primal 
form of the Lagrangian function is constructed. The primal 
Lagrangian is transformed into the corresponding dual 
objective function which is maximised with respect to the 
Lagrange multipliers. 

The function between inputs and output in a classification 
problem may not be linear. The input space is mapped to a 
high dimensional feature space in search of a linear 
relationship with the output, permitting the creation of the 
optimal hyperplane in the high dimensional feature space. 
Applying the kernel trick, a nonlinear function performs the 
inner product 𝑘(𝒙,𝒙𝑖) = 𝝋𝑇(𝒙𝑖)𝝋(𝒙), eliminating the need 
to explicitly make computations in the high dimensional 
space. A commonly used nonlinear kernel, and the one which 
will be used in this study, is the Gaussian Radial Basis 
Function (GRBF) kernel: 

𝑘(𝒙,𝒙𝑖) = 𝑒𝑥𝑝 �−
1

2𝜎2
‖𝒙 − 𝒙𝑖‖2� (7) 

where 𝜎 represents the spread of the function and needs to be 
optimised. 

The dual form of the Lagrangian to be maximised can be 
written as: 

𝐿𝑑(𝛼) = �𝛼𝑖
𝑖

−
1
2
��𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑘�𝒙𝑖 ,𝒙𝑗�

𝑗𝑖

 

s.t. ∑ 𝛼𝑖𝑦𝑖 = 0𝑖  and 0 ≤ 𝛼𝑖 ≤ 𝐶   ∀𝑖 
(8) 

where 𝛼𝑖 are the Lagrange multipliers. 

Determining the optimum bias, 𝑏∗, through the Karush-
Kuhn-Tucker complementary conditions, allows test points to 
be classified using the decision surface as follows: 

𝑓(𝒙) = sign��𝛼𝑖∗𝑦𝑖𝑘(𝒙,𝒙𝑖)
𝑖

+ 𝑏∗� (9) 

where 𝛼𝑖∗ are the optimal Lagrange multipliers. 

3.2 Fuzzy Support Vector Machines (FSVMs) 

Although SVMs are very attractive and widely applied to 
classification problems, the theory still suffers from some 
limitations. In many real world scenarios data contains noisy 
outlying samples. For this reason data points vary in their 
importance and this should be taken into consideration when 
training the SVM. 

This can be addressed by introducing a fuzzy membership, 
0 < 𝑠𝑖 ≤ 1, corresponding to every training point 𝒙𝑖. The 
fuzzy membership is regarded as a measure of belonging of a 
particular point towards its class. 

The fuzzy membership can be included in the SVM objective 
function of (6) as follows: 

𝑚𝑖𝑛 �
1
2
‖𝒘‖2 + 𝐶�𝑠𝑖𝜉𝑖

𝑖

� 

s.t. 𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏) − 1 + 𝜉𝑖 ≥ 0     ∀𝑖 

(10) 

The fuzzy membership, 𝑠𝑖, weighs the penalty due to the 
misclassification error, 𝜉𝑖, of a particular training point. A 
high membership value assigns more weighting to the error 

while a low membership means that a data point is not 
important, thus lowering the misclassification penalty. 

The derived dual form of the Lagrangian, 𝐿𝑑(𝛼), to be 
maximised is the same as in (8) subject to the following 
constraints: 

∑ 𝛼𝑖𝑦𝑖 = 0𝑖  and 0 ≤ 𝛼𝑖 ≤ 𝑠𝑖𝐶   ∀𝑖 (11) 
As proposed by Lin and Wang (2002), the fuzzy membership 
can be a function of the distance between a point and its class 
centre. Considering that to be applied in (10), a point near the 
centre should have a high fuzzy membership while an outlier 
should have a low membership value: 

𝑠𝑖 = 1 − |𝒙+ − 𝒙𝑖| (𝒓+ + 𝛿)⁄    if   𝑦𝑖 = +1 
𝑠𝑖 = 1 − |𝒙− − 𝒙𝑖| (𝒓− + 𝛿)⁄    if   𝑦𝑖 = −1 

(12) 

where 𝒙+ is the mean and 𝒓+ is the radius of class 𝑦 = +1, 
𝒙− is the mean and 𝒓− is the radius of class 𝑦 = −1, 𝛿 > 0 to 
avoid 𝑠𝑖 = 0. 

3.3 The Confusion Matrix 

In the field of binary classification, a classifier’s predictive 
performance is usually measured by the accuracy metric 
showing the number of correct classification predictions from 
both classes. However, when dealing with imbalanced data, 
accuracy may not be trustworthy as a performance measure. 
This can be appreciated using a confusion matrix shown in 
Table 1. The rail quality data being analysed is highly 
imbalanced with the number of samples representing rejected 
rails being the minority. It can be said that the rejected rails 
are the most important to be predicted correctly as it is crucial 
to know if a combination of input parameters will produce a 
rail with internal defects. In this scenario, the terms in Table 
1 can be explained as follows: 

• TP: Rejected rails correctly predicted as rejected rails 
• TN: Good rails correctly predicted as good rails 
• FP: Good rails incorrectly predicted as rejected rails 
• FN: Rejected rails incorrectly predicted as good rails 

 
Actual Rail Quality 

Rejected Good 

Predicted 
Rail 

Quality 

Rejected True Positive (TP) False Positive (FP) 

Good False Negative (FN) True Negative (TN) 

Table 1. Confusion Matrix 

Using these terms, accuracy can be presented as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (13) 

It may be the case that although the number of correctly 
classified rejected rails (TP) is low, the accuracy of the 
classifier is still high because the number of correctly 
classified good rails (TN), which represents the majority 
class, is high. This is easily true with imbalanced data as the 
model tends to overfit the majority class in the training data, 
incorrectly classifying the minority class samples of the 
testing data. 
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Two useful performance measures when presented with 
imbalanced data for binary classification are: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑇𝑃
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

 (14) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

𝑇𝑁
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

 (15) 

Classifier performance is generally a compromise between 
these two factors in the sense that increasing sensitivity 
usually decreases specificity and the other way round. In this 
study sensitivity was given more importance since as already 
explained it is generally the harder to achieve. 

3.4 Support Vector Machines (SVMs) for Class Imbalance 

Preliminary results, which will not be presented here due to 
space restrictions, showed that SVMs are sensitive to class 
imbalance. Batuwita and Palade (2012) review methods in 
the literature used to alleviate this problem. These are divided 
into two sections, namely external imbalance learning 
methods such as data resampling and internal imbalance 
learning methods which make algorithmic modifications to 
the SVM learning algorithm so that it is less sensitive to data 
imbalance. 

An internal imbalance learning method was applied by 
implementing a bias towards the minority class to form a 
Biased FSVM which is referred to as Different Error Cost 
(DEC) by Batuwita and Palade (2012) and was originally 
proposed by Veropoulos et al. (1999). This is obtained by 
assigning a different cost for the two classes in the 
misclassification penalty factor. Thus a cost 𝐶+ is applied to 
the positive (minority) class while a cost 𝐶− is applied to the 
negative (majority) class.  

When combined with the fuzzy membership defined earlier, 
the following objective function is obtained: 

𝑚𝑖𝑛�
1
2
‖𝒘‖2 + 𝐶+𝐶 � 𝑠𝑖𝜉𝑖

{𝑖|𝑦𝑖=+1�}

+ 𝐶−𝐶 � 𝑠𝑖𝜉𝑖
{𝑖|𝑦𝑖=−1�}

� 

s.t.   𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏) − 1 + 𝜉𝑖 ≥ 0     ∀𝑖 

(16) 

The dual Lagrangian form, 𝐿𝑑(𝛼), of this function is the 
same as in (8) and is maximised subject to the constraints: 

∑ 𝛼𝑖𝑦𝑖 = 0𝑖 , 0 ≤ 𝛼𝑖+ ≤ 𝑠𝑖𝐶+𝐶, 0 ≤ 𝛼𝑖− ≤ 𝑠𝑖𝐶−𝐶   ∀𝑖 (17) 
where 𝛼𝑖+ and 𝛼𝑖− represent the Lagrange multipliers of 
positive and negative samples respectively. 

The ratio 𝐶− 𝐶+⁄  was set equal to the minority to majority 
class ratio (Akbani et al., 2004) such that the penalty for 
misclassifying minority examples is higher. A grid search 
was performed to optimise the parameter, 𝐶, and GRBF 
spread, 𝜎. Considering a model with the best sensitivity 
(without degrading specificity), an accuracy of 68.1%, 
sensitivity of 53.0% and specificity of 69.2% were obtained. 
The ratio of the number of support vectors to the number of 
training points was 0.984.  

Noting these results, it was subsequently decided to apply an 
external imbalance learning method by balancing the training 
data. The data set obtained by Zughrat et al. (2013) was used, 
where under-sampling of the majority class was performed to 

make the number of good rails equal to the rejected rail 
training examples. 

3.5 Fuzzy C-Means (FCM) Clustering 

As will be discussed in Section 4, the number of support 
vectors when applying SVMs and FSVMs on the balanced 
data set was still very high leading to long training times and 
making parameter optimisation impractical and inefficient. 
Therefore FCM Clustering was proposed as a way of 
reducing the number of support vectors, reducing training 
times and model complexity, and improving generalisation 
(Xiong et al., 2005; Cervantes et al., 2006). 

The FCM Clustering algorithm is an optimisation problem 
whereby the coordinates of the cluster centres need to be 
identified. The cost function to be minimised (Bezdek, 1981) 
is: 

𝐽(𝑋,𝑈,𝑉) = ��𝜇𝑖𝑘𝑚‖𝒙𝑘 − 𝒗𝑖‖2
𝑁

𝑘=1

𝑐

𝑖=1

 (18) 

where 𝑉 = [𝒗1,𝒗2, … ,𝒗𝑐] is the vector of cluster centres, 
𝑋 = [𝒙1,𝒙2, … ,𝒙𝑁] represents the data samples, 𝑈 = [𝜇𝑖𝑘] is 
the fuzzy partition matrix of 𝑋, 𝑚 is the weighting exponent, 
𝐷𝑖𝑘2 = ‖𝒙𝑘 − 𝒗𝑖‖2 is the squared distance norm. 

The minimisation of (18) is possible if and only if: 

𝜇𝑖𝑘 =
1

∑ �𝐷𝑖𝑘𝐷𝑗𝑘
�

2
𝑚−1𝑐

𝑗=1

       1 ≤ 𝑖 ≤ 𝑐     1 ≤ 𝑘 ≤ 𝑁 
(19) 

𝒗𝑖 =
∑ (𝜇𝑖𝑘)𝑚𝒙𝑘𝑁
𝑘=1

∑ (𝜇𝑖𝑘)𝑚𝑁
𝑘=1

          1 ≤ 𝑖 ≤ 𝑐 (20) 

The membership degree, 𝜇𝑖𝑘, is inversely proportional to the 
squared distance from the data points to the current cluster 
centres. Equation (20) gives 𝒗𝑖 as the weighted mean of the 
data points, where the weights are the membership degrees. 
The FCM algorithm iterates through (19) and (20) to 
optimise the fuzzy partition matrix and cluster centres. 

4 RESULTS AND DISCUSSION 

4.1 Support Vector Machine (SVM) Modelling 

Fig. 2 shows the grid search results for the parameters C and 
𝜎 for the SVM when applied on the balanced data set using a 
GRBF kernel. A model was chosen from the region with best 
sensitivity with 𝐶 equal to 11776 and 𝜎 equal to 46.45. The 
performance on the training data was 69.22% sensitivity, 
79.32% specificity and 74.42% accuracy, which indicates 
that the model was not overfitted. The performance on the 
testing data is listed in Table 2. The ratio of support vectors 
to the number of training points, 𝑅𝑠𝑣/𝑡𝑟, was 0.948. 

4.2 Fuzzy Support Vector Machine (FSVM) Modelling 

The grid search results for the FSVM are shown in Fig. 3. A 
model was chosen which had the same parameters as those 
for the SVM model. Table 2 indicates that the FSVM 
provided a 9.06% improvement in terms of sensitivity. 
However, 𝑅𝑠𝑣/𝑡𝑟 was still very high at 0.952. 
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4.3 Fuzzy C-Means Clustering, Fuzzy Support Vector 
Machine (FCM-FSVM) 

Clustering was performed on the balanced data set which had 
2877 points. Random initial cluster centres and a weighting 
exponent, 𝑚, of 2 were used for the FCM algorithm. Using 
the same values for the parameters 𝐶 and 𝜎, the average 
performance of 10 FSVM models was considered for every 
clustering level from 10% to 90% (with 10% having the least 
number of cluster centres resulting in the minimum number 
of training points) when tested on a separate unbalanced data 
set. Table 3 shows that the number of support vectors was 
reduced since clustering reduces the number of training 
points (𝑅𝑠𝑣/𝑚𝑎𝑥). However, clustering grouped points with 
similar features and this allowed the SVM algorithm to 
further reduce the number of support vectors in relation to the 
number of training points available (𝑅𝑠𝑣/𝑡𝑟). Fig. 4 indicates 
that classifier performance is a compromise between 
sensitivity and specificity. Fig. 5 shows that after clustering 
and fuzzification, the SVM algorithm was able to build the 
model using 50% or less of the available training points 
(𝑅𝑠𝑣/𝑡𝑟). This highly reduced the model training time which 
is especially important for parameter optimisation 
procedures. Analysing performance, one has to keep in mind 
the data dimensionality and the high nonlinearities in the 
input-output relationship. 

 
Fig. 2. Grid Search for SVM with GRBF Kernel 

 
Fig. 3. Grid Search for FSVM with GRBF Kernel 

 
SVM FSVM Percentage 

Difference 

Sensitivity [%] 61.94 67.55 + 9.06 

Specificity [%] 73.80 68.24 - 7.53 

Accuracy [%] 73.06 68.20 - 6.65 

𝑹𝒔𝒗/𝒕𝒓 0.948 0.952 + 0.42 

Table 2. Performance of SVM and FSVM Models 

Clustering 
[% of    

max. # pts.] 

Sens. 
[%] 

Spec. 
[%] 

Acc. 
[%] 

𝑹𝒔𝒗/𝒕𝒓 𝑹𝒔𝒗/𝒎𝒂𝒙 

10 71.31 50.60 51.89 0.426 0.043 

20 69.46 57.08 57.80 0.496 0.099 

30 69.73 57.71 57.44 0.506 0.152 

40 68.30 60.10 60.61 0.481 0.192 

50 68.21 60.78 61.25 0.488 0.244 

60 68.75 60.71 61.21 0.466 0.280 

70 66.09 63.31 63.48 0.460 0.322 

80 66.08 63.37 63.54 0.424 0.339 

90 66.37 63.75 63.91 0.428 0.385 

Table 3. FCM-FSVM with Different Clustering Levels 

 
Fig. 4. Performance for Different Clustering Levels 

 
Fig. 5. Support Vector Ratios for Different Clustering Levels 
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5 CONCLUSIONS 

In this study SVM modelling techniques were applied to 
classify rail data. As the original data set was highly 
imbalanced, internal and external imbalance learning 
methods were applied to improve the classifier performance. 
The best performance, in terms of a compromise between 
model performance and model training time in relation to the 
number of support vectors, was obtained when FCM 
Clustering was applied on the balanced data set before fitting 
a FSVM model. 

Further performance improvements will help to eventually 
exploit the model by inverting the structure via multi-
objective optimisation techniques to design specific 
processing routes for ‘right-first-time’ production of rails.  

This study may be further extended by investigating the 
effect of the class imbalance ratio and other class imbalance 
learning methods on model performance. Different fuzzy 
membership functions and kernel functions can also be 
applied although these may require further parameter 
optimisation. Jiang et al. (2006) and Tang (2011) suggest that 
instead of using a fuzzy relationship in the input space, the 
fuzzy membership is derived as a function of the high 
dimensional feature space, thus taking into consideration the 
data nonlinearities. It would also be interesting to compare 
the performance of other classification methods on the same 
data set. 
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