
Smart Management of Electric Vehicles
Charging Operations:

the Vehicle-to-Charging Station
Assignment Problem ?

M. Clemente ∗ M. P. Fanti ∗∗ W. Ukovich ∗∗∗

∗ Department of Engineering and Architecture, University of Trieste,
34127 Trieste, Italy (e-mail: monica.clemente@phd.units.it)

∗∗ Department of Electrical and Information Engineering, Polytechnic
of Bari, 70126 Bari, Italy (e-mail: fanti@deemail.poliba.it)

∗∗∗ Department of Engineering and Architecture, University of Trieste,
34127 Trieste, Italy (e-mail: ukovich@units.it)

Abstract: The widespread diffusion of Electric Vehicles (EVs) gives a concrete answer to
the growing environmental problems linked to the mobility in urban areas. This paper deals
with a particular management problem related to the EVs charging operations: the integration
of the EVs with the power distribution system. Possible electrical grid disruptions due to
uncoordinated charging operations and the need of guaranteeing to drivers a certain level
of confidence while travelling with an EV explain the efforts in the identification of a smart
approach for the EVs charging management problem. In this work, a hierarchical mathematical
programming approach is considered and a system made up of two interdependent optimization
models is introduced in order to identify the optimum spatial and temporal scheduling of
EVs charging operations in an urban area served by several charging stations. Moreover, a
Mixed Integer Linear Programming (MILP) formulation for the Vehicle-to-Charging Station
Assignment Problem is proposed and a preliminary example of application is presented.

1. INTRODUCTION

In recent years, the pressing needs of reducing pollutant
emissions in urban areas and of alleviating the reliance of
mobility on fossil fuels have increased the interest on new
transport solutions and, in particular, Electric Vehicles
(EVs) are reaching great popularity. However, many draw-
backs hinder a complete diffusion of such a new technology
and, in particular, limited driving range and the correlated
range anxiety represent serious concerns that limit the
ability of the EVs to compete with conventional Internal
Combustion Engine (ICE) vehicles. In this context, the de-
ployment of a widespread public charging infrastructure is
essential and the charging infrastructure planning problem
is largely analyzed in the literature (Hess et al. [2012],
Xu et al. [2013], Chen et al. [2013]). At the same time,
the integration of the charging operations with the electric
power grid represents a central topic, since uncoordinated
charging (the so-called dumb charging) would lead to se-
vere grid disruptions, with extra power losses and voltage
deviations. Different approaches to the smart control of the
charging operations have been investigated so far, and all
of them are based on the concept of Smart Grid (SG). This
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new paradigm implies, among other things, bidirectional
communications between power providers and consumers
and therefore an optimized real-time control of the grid
operations is possible (Andreotti et al. [2012]).
Literature contributions to the EVs charging management
problem can be categorized on the basis of the considered
optimization strategy, the timing of the control and the
paradigm of the control.
Different optimization strategies are considered to deter-
mine the optimal charging profile for the EVs: grid require-
ments, drivers’ utility or both. When grid requirements are
taken into account, the most common objective function
is represented by the minimization of power losses and
voltage deviations and the flattening of the overall load
profile during the day is sought (Andreotti et al. [2012],
Clement-Nyns et al. [2010], Li et al. [2012]). At the same
time, the ability of the EVs to provide a number of ancil-
lary services and, so, contribute to the integration of the
Distributed Generation (DG) into the grid is widely ana-
lyzed (Clement-Nyns et al. [2011], Vandael et al. [2011]).
On the other hand, the maximization of the users’ utility
turns into a spatial assignment and a temporal scheduling
of the charging operations able to minimize a given cost
function, e.g., the total waiting time or the total charging
cost (Gharbaoui et al. [2012], Qin and Zhang [2011], Xu
and Pan [2012]).
The timing of the control could be based on forecasts of
energy and travel demand and in this case a day-ahead
planning is possible,(Gan et al. [2012]); on the other side,
when real-time control is considered, a continuous moni-
toring of the system conditions is required.(Han Peng et al.
[2012], Li et al. [2012]).
Finally, the paradigm of the control can be centralized or
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distributed. In particular, in the centralized approach a
central controller determines the optimal charging profile
for a population of EVs on the basis of the grid conditions.
However, this solution is computationally efficient only
for a limited number of EVs, since a large amount of
information and a remarkable communication effort are
required (Clement-Nyns et al. [2010], Xu and Pan [2012]).
Alternatively, in a distributed control scheme EVs them-
selves calculate their charging schedules, for example re-
sponding to a price signal broadcast by the grid operators
in order to influence users’ behavior (Gan et al. [2013],
Karfopoulos and Hatziargyriou [2013], Jin et al. [2013]),
or each charging station determines which EVs recharge
and when operate the charging activities by negotiating
with a set of neighbor stations (Qin and Zhang [2011]).
This paper is part of this framework and its aim is to pro-
pose a smart management strategy for the coordination
of the EVs charging operations. In particular, charging
operations involving the public charging infrastructure are
considered.
The approach traditionally followed in literature in order
to take into account simultaneously drivers’ and grid re-
quirements is to determine the minimum cost charging
profile for each EV on the basis of a control signal broad-
cast by the grid operators. However, the assignment of the
vehicles to the best available charging station is a problem
handled separately from grid concerns.
Our attempt is to solve such a resources allocation pro-
blem considering not only the traditional assignment and
capacity constraints, but also grid requirements. In our
idea, this turns into a time-varying configuration of the
considered public charging infrastructure. In particular,
maximum charging power and energy price at the different
available stations throughout the day are settled in order
to influence drivers’ behavior and so minimize power losses
and voltage deviations on the grid. Then, on the basis of
such time varying parameters, EVs are assigned to the
charging stations while maximizing drivers’utility. For this
purpose, a hierarchical bilevel decision structure is intro-
duced: the upper-level optimization problem deals with the
optimal charging infrastructure configuration, while the
lower-level problem handles the allocation of the charging
stations to the EVs.
Hence, the contribution of the paper is twofold: first we
introduce the general architecture of a leader-follower
management approach for the EVs charging management
problem; second, we propose a Mixed Integer Linear Pro-
gramming (MILP) formulation for the lower-level problem,
i.e., the Vehicle-to-Charging Station Assignment Problem
(VCSA).
The remainder of the paper is structured as follows. In
Section 2 the structure and the assumptions of the EVs
Charging Smart Management System (ECSMS) are pre-
sented. Moreover, in Section 3 the VCSA is formalized.
In Section 4 a preliminary example of application of
the realized model is introduced and, finally, Section 5
summarizes conclusions and future works.

2. THE EVS CHARGING SMART MANAGEMENT
SYSTEM

The problem of the management of the electric vehicles
recharges involves two classes of actors, EVs drivers and
electric grid operators, that have different requirements
and, often, conflicting objectives. Indeed, from the electric
grid point of view it is essential to minimize the impacts

Fig. 1. The EVs Charging Smart Management System

of EVs charging on the power system. To this aim, it
would be suitable to defer such operations to off-peak
hours and to shift them to areas characterized by low
electricity demand in order to avoid transformer overloads
and minimize power losses and voltage deviations.
On the other side, in order to overcome the general diffi-
dence of customers towards the electric mobility and, so,
overtake the undeniable competitive advantage of conven-
tional ICE vehicles, a certain level of flexibility has to be
guaranteed. More precisely, drivers should have the pos-
sibility to choose when and where recharge their vehicles
according to their needs, as actually happens for the refu-
elling of traditional vehicles. Therefore, in order to obtain
a strategic and effective coordination of the EVs charging
operations, a management system able to guarantee the
fulfilment of both grid operators’ and drivers’ requirements
is necessary.
In this context we consider an urban area served by se-
veral charging stations: the aim is to assign a population
of EVs that need to be recharged to the best available
station, taking into account not only drivers’ needs but
also electric grid requirements. In our approach, the con-
sidered problem is outlined as the interplay of two different
decision makers who act sequentially and whose choices
are mutually dependent.
Accordingly, a bilevel optimization structure is introduced
(Fig. 1):

(1) the upper-level optimization determines optimal char-
ging power and energy price at the different charging
stations in order to temporally and spatially reshape
electricity demand for EVs recharges. Hereafter, we
refer to such a level as Charging Infrastructure Opti-
mal Configuration (CIOC);

(2) the lower-level optimization assigns optimally EVs to
the charging stations maximizing a given users’ uti-
lity function (the aforementioned Vehicle-to-Charging
Station Assignment Problem (VCSA)).

More in detail, VCSA is a parametric optimization pro-
blem whose parameters are determined by CIOC. Once
VCSA has been solved, the resulting system state is
communicated to CIOC, which updates accordingly its
strategy. Therefore, from the interaction between the two
levels a dynamic configuration of the charging infrastruc-
ture and a spatial and temporal scheduling of the charging
operations results. Furthermore, Algorithm 1 describes the
procedure characterizing ECSMS.

As it can be seen, both the optimization problems are
alternately iterated. Moreover, the length δ of the time
interval between two consecutive iterations has to be
strategically set, solving the trade-off between the ability
of the ECSMS to fulfil accurately both drivers’ and grid
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Algorithm 1 EVs Charging Smart Management Procedure

1: Consider total current non-EV energy demand
2: Solve CIOC and determine the charging infrastructure current

configuration
3: Communicate current charging power and energy price at the

different charging stations to VCSA
4: Solve VCSA and determine current total EV energy demand
5: Let the system evolve for δ time units (t.u.)
6: if the entire planning horizon has been considered then
7: End the procedure
8: else
9: Communicate current total EV energy demand to CIOC

10: Go to 1
11: end if

needs along the entire planning horizon and the required
computation and communications efforts.
Finally, note that every time VCSA is solved, not only EVs
that have just made a charging request are considered, but
also EVs assigned in the previous interation of the problem
but whose charging operations have not already started or
who have not accepted the decision are re-assigned.

3. THE VEHICLE-TO-CHARGING STATION
ASSIGNMENT PROBLEM

In this section, the considered scenario and the mathema-
tical formulation of the lower-level optimization problem
(VCSA) are described and discussed.

3.1 The Model

We consider an urban area served by several charging
stations and a population of EVs: the objective is to
coordinate the charging operations during the day by
optimally assigning each vehicle to a charging station and
identifying the optimal charging period for each driver.
In particular, the following assumptions are introduced:

• electric grid : a smart grid is considered and bidirec-
tional communication capabilities between the single
EV and a system operator are supposed;
• no home-charging : only charging requests involving

public charging stations are taken into account, while
home-recharges are not considered in this context;
• charging stations: each charging station is equipped

with one or more charging outlets and its charging
power and energy cost are time-varying;
• EVs: when it needs to be recharged, each vehicle com-

municates its position, its battery residual state of
charge, when it desires to start the recharge (i.e., EV
release time) and the time within which it wants to
leave the charging infrastructure (i.e., EV deadline);
• charging operations: incomplete recharges are admit-

ted, but charging operations of a vehicle cannot be
interrupted and restarted later (i.e., no preemption is
allowed). Moreover, the charging cannot start before
the stated release time and it must be interrupted
within the specified deadline. Finally, we consider
that the total charging monetary cost paid by each
driver depends on the unit energy price characterizing
the assigned charging station at the time interval
during which the charging starts;
• users’ level of acceptance: when an EV is assigned

to a charging station, an outlet is reserved for it. If
the driver does not accept the system indication, his
request will be re-assigned in the following iteration
of the VCSA.

The objective pursued in solving the assignment problem
is the maximization of the EVs drivers’ utility: to this aim,
an users’ cost function made up of 4 different entries is
considered:

(1) the waiting time for the charging;
(2) the charging monetary cost, meant as the unit energy

price that each driver has to pay for the charge;
(3) the distance that the driver has to go through to reach

the assigned charging station;
(4) the penalty for incomplete charging, i.e., a quantifi-

cation of the users’ annoyance resulting from leaving
the charging station with a not fully charged vehicle.

Moreover, in our model a linear combination of such func-
tions is considered: therefore, a single-objective optimiza-
tion problem is proposed.

3.2 Mathematical Formulation

As described in the previous section, VCSA is solved
several time throughout the considered planning horizon
on the basis of the evolution of the parameters determined
by CIOC. At each iteration k of the optimization problem,
the objective is to determine the minimum cost vehicle-
to-charging station assignment while respecting several
operating constraints.
A Time Indexed Formulation (TIF) is considered: the
planning horizon is discretized into T time intervals, each
lasting ∆ time units. Each time interval t starts at time
t− 1 and ends at time t, i.e., we consider the time periods
1, 2, . . . , T .
In order to describe the Mixed Integer Linear Program-
ming (MILP) formulation, the following notation is intro-
duced.
Numerical Sets

• R+: set of all positive real numbers
• R+

0 : set of all real numbers including 0
• N+: set of all positive natural numbers

Sets

• V = {1, 2, . . . , N}: set of charging stations
• Uk = {1, 2, . . . ,M}: set of EVs that make a charging

request during the iteration k of the optimization
problem
• T = {1, 2, . . . , T}: set of time periods.

Parameters

(1) Charging Stations Parameters
Each charging station n ∈ V is characterized by:

• costtn ∈ R+: unit charging cost at charging sta-
tion n during time interval t
• ptn ∈ R+

0 : charging power at charging station n
during time interval t
• rn ∈ R+

0 : maximum number of charging outlets
available at charging station n.

(2) EVs Parameters
Each EV m ∈ Uk is characterized by:

• tmin
m ∈ {1, . . . , T}: release time of vehicle m

• tmax
m ∈ {1, . . . , T}: deadline of vehicle m

• capm ∈ R+: battery capacity of vehicle m
• res0m ∈ R+: residual battery state of charge (SoC)

of vehicle m when it makes its charging request
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• fm ∈ R+: energy consumption per unit distance
of vehicle m

• vm ∈ R+: average speed of vehicle m
• ηm ∈ [0, 1]: charging efficiency of vehicle m
• dn,m ∈ R+

0 : distance between charging station
n ∈ V and vehicle m, when the vehicle makes
its charging request.

(3) Model Parameters
• B ∈ N+: a sufficiently large integer.

Decision Variables
For each charging station n ∈ V and EV m ∈ Uk we define
the following decision variables:

yn,m =

{
1, if m is assigned to n

0, otherwise

htn,m =

{
1, if the charging ofm at n starts during time

interval t
0, otherwise

wt
n,m =

{
1, if m is being charged at n during time

interval t
0, otherwise

sn,m ∈ N+ = time interval during which the charging of
m at n starts.

Moreover, we define the following time indexed variables

describing the state of each EV m ∈ Uk at time interval t:

etm ∈ R+
0 = amount of energy received by vehicle m

during time interval t;

restm ∈ R+
0 = residual battery SoC of vehicle m at the

beginning of time interval t;

otm ∈ R+
0 = maximum amount of energy that vehicle

m could receive during time interval t;

qtm ∈ R+
0 = amount of energy requested by vehicle m

at the beginning of time interval t.

Finally, we introduce the following auxiliary decision va-
riable for each m ∈ Uk, t ∈ T :

xtm =

{
1, if qm(t) ≤ om(t);

0, otherwise.

The problem can be formulated as follows:

minimize z =

4∑
i=1

(αi · zi) (1)

where

αi ∈ [0, 1]; (2)

z1 =

M∑
m=1

( N∑
n=1

(
sn,m − tmin

m · yn,m
))

; (3)

z2 =

M∑
m=1

( N∑
n=1

T∑
t=1

(
costtn · htn,m

))
; (4)

z3 =

N∑
n=1

M∑
m=1

(
dn,m · yn,m

)
; (5)

z4 =

M∑
m=1

(
capm −

(
resTm + eTm

))
; (6)

s.t.

N∑
n=1

yn,m = 1 ∀m ∈ Uk (7)

dn,m · fm · yn,m ≤ res0m ∀n ∈ V,m ∈ Uk (8)

sn,m =

T∑
t=1

t · htn,m ∀n ∈ V,m ∈ Uk (9)

N∑
n=1

T∑
t=1

htn,m = 1 ∀m ∈ Uk (10)

sn,m ≥ tmin
m · yn,m ∀n ∈ V,m ∈ Uk (11)

sn,m ≤ T · yn,m ∀n ∈ V,m ∈ Uk (12)

sn,m ≥
⌈
dn,m
vm ·∆

⌉
· yn,m ∀n ∈ V,m ∈ Uk (13)

M∑
m=1

wt
n,m ≤ rn ∀n ∈ V, t ∈ T (14)

t · wt
n,m ≤ tmax

m · yn,m ∀n ∈ V,m ∈ Uk, t ∈ T (15)

T∑
t=1

wt
n,m ≥ yn,m ∀n ∈ V,m ∈ Uk (16)

wt
n,m ≤ qtm ·B ∀n ∈ V,m ∈ Uk, t ∈ T (17)

capm ≥ restm ∀m ∈ Uk, t ∈ T (18)

restm =

res
0
m −

N∑
n=1

(
dn,m · fm · yn,m

)
∀m ∈ Uk, t = 1

rest−1
m + et−1

m ∀m ∈ Uk, t 6= 1
(19)

om(t) =

N∑
n=1

(
ptn ·∆ · ηm · wt

n,m

)
∀m ∈ Uk, t ∈ T (20)

qm(t) = capm − restm ∀m ∈ Uk, t ∈ T (21)

T + sn,m ≥ t · wt
n,m + T · wt

n,m ∀n ∈ V,m ∈ Uk, t = 1
(22)

sn,m − T ≤ t · wt
n,m − T · wt

n,m ∀n ∈ V,m ∈ Uk, t = 1
(23)

T + sn,m ≥ t · wt
n,m − T · wt−1

n,m + T · wt
n,m ∀n ∈ V,m ∈

Uk, t 6= 1
(24)

sn,m − T ≤ t · wt
n,m + T · wt−1

n,m − T · wt
n,m ∀n ∈ V,m ∈

Uk, t 6= 1
(25)

etm ≤ qtm ∀m ∈ Uk, t ∈ T (26)

etm ≤ otm ∀m ∈ Uk, t ∈ T (27)

capm + etm ≥ qtm + capm · xtm ∀m ∈ Uk, t ∈ T
(28)

capm + etm ≥ otm + capm · (1− xtm) ∀m ∈ Uk, t ∈ T
(29)

yn,m, h
t
n,m, w

t
n,m, x

t
m ∈ {0, 1} ∀n ∈ V,m ∈ Uk, t ∈ T

(30)

sn,m integer ∀n ∈ V,m ∈ Uk
(31)

etm, res
t
m, o

t
m, q

t
m ≥ 0 ∀m ∈ Uk, t ∈ T .

(32)
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The objective function (1) represents the total assignment
cost and, as mentioned in the previous section, is a linear
combination of 4 different functions: (3) is the total waiting
time, expressed as the difference between the release time
specified by each driver and the effective starting time
of the charging operations; (4) is the monetary cost as-
sociated to the recharges, formulated as the sum of the
unit energy prices that each driver has to pay for the
charging; (5) expresses the distance between the EVs and
the assigned charging station; finally, (6) is the penalty for
incomplete charging. The weights (2) are used to combine
such functions and vary between 0 and 1 according to the
drivers’ awareness to the different cost entries.
Contraints (7) ensure that each EV is assigned to one and
only one charging station, while constraints (8) impose
that a vehicle can be assigned to a certain facility only
if its initial residual battery SoC is sufficient to reach
it. Constraints (9) describe the relationship between the
decision variable expressing the time interval during which
the charging operation starts and the binary variable htn,m,
while constraints (10) ensure that for each vehicle there
is only 1 charging start interval. Constraints (11) ÷ (13)
specify the feasible values for the charging starting time:
in particular, (11) impose that the charging operations
of a specific EV cannot start before the stated release
time, (12) ensure that such a value can be different from
zero only if the considered vehicle has been assigned to
that specific charging station and, finally, (13) take into
account the time required by the EV to reach the assigned
facility. (14) are the charging stations capacity constraints,
while constraints (15) guarantee that charging operations
of each vehicle end within the specified deadline. (16)
ensure that an assigned vehicle is effectively recharged,
while constraints (17) impose that an EV seizes a charging
station only if it still needs to be charged. (18) impose that
the battery capacity of each vehicle is not exceeded during
the charging operations and only the required amount of
energy is supplied; constraints (19) describe the update
rules of the vehicle residual SoC, (20) express the maxi-
mum possible amount of energy that a certain vehicle can
receive during a time interval and (21) describe the amount
of energy requested by each EV at each time interval.
Constraints (22) and (23) and constraints (24) and (25)
express the relationship between decision variables sn,m
and wt

n,m for t = 1 and for t 6= 1, respectively. Constraints
(26) ÷ (29) ensure that the amount of energy received by
each vehicle during a specific time interval is equal to the
minimum value between the amount of energy requested
by such a vehicle and the maximum possible amount of
energy that the charging station it has been assigned to
can supply to it.

4. PRELIMINARY RESULTS

In this section, an example of application of the lower-level
optimization problem is presented. To solve it, we assume
as given the parameters that have to be determined by the
upper-level problem (i.e., ptn, costtn).
We consider a planning horizon of 12 hours discretized into
48 time intervals, each lasting 15 minutes. The objective
is to optimally assign a population of 50 EVs to a set of 5
charging stations and to determine the optimal charging
operations scheduling.
The main parameters of the model are based on typical
values from the related literature and settled as listed in
Tab. 1. Furthermore, in order to take into account the

Table 1. Example parameters

Parameter type Name Value Condition
charging station rn 1 n = 1

2 n ≥ 2
costtn [e] [0.10, 0.20] ∀n, t
ptn [kW] [3, 24] ∀n, t

vehicle capm [kWh] [10, 25] ∀m
dn,m [km] [0, 5] ∀n,m

Table 2. Results

Performance Index (average) Case 1 Case 2 Case 3
waiting time [time slots] 2.82 0.00 0.50

unit charging cost [e] 0.16 0.15 0.12
distance [km] 3.02 1.50 1.90

incomplete charging [kWh] 0 0 5

effects of the traffic on the time required to reach the
assigned charging station, vehicles are characterized by
values of speed typical of the urban areas. In future works,
a more detailed traffic simulator will be considered.
Three different cases, characterized by different assign-
ment policies, are taken into account by varying the values
of the objective function weights αi (2). In particular,
in Case 1 only the penalty fot incomplete charging is
considered and, so, we assume α4 = 1 and αi = 0 for
i = 1, 2, 3. In Case 2 we consider α1 = α3 = α4 = 1, while
the charging costs are not optimized. Finally, in Case 3 all
the objective function entries are taken into account and,
therefore, αi = 1 for i = 1, . . . , 4.
The problem is solved using IBM ILOG CPLEX 12.5 on
a PC with a 1.40 GHz processor and 6 GB RAM: in
the worst case, the computation time required to find the
optimal solution is 62 seconds. Moreover, additional tests
have enhanced that such a time is affected more by the
initial spatial and temporal distribution of the charging
requests than by the size of the problem. Furthermore,
considering an istance with a strongly imbalance in the
demand distribution (i.e., most of the requests are con-
centrated in the same area and in the same time periods),
it takes about 400 seconds to assign optimally 50 EVs to
5 charging stations taking into account all the objective
function entries. On the other hand, for an istance with
similar distribution but with 100 EVs and 10 charging
stations, 700 seconds are required.
Table 2 summarizes the solution performance indexes in
the three cases previously described . In addition, for
each case, a diagram representing the optimal solution
is reported (Fig. 2, Fig. 3 and Fig. 4). Time slots are
on the x-axis, while on the y-axis the different charging
stations, with their different outlets, are listed. Finally,
bars of different colors identify the vehicles. As can be seen,
in all the cases all the vehicles are succesfully distributed.

5. CONCLUSIONS AND FUTURE WORKS

The paper presents a management strategy for the EVs
charging management problem. In particular, charging
operations involving the public charging infrastructure are
considered and a hierarchical bilevel structure able to fulfil
simultaneously drivers’ and grid requirements is proposed.
More precisely, the upper-level optimization determines
the optimal charging infrastructure configuration, while
the lower-level optimization assigns optimally EVs that
need to be recharged to the available charging stations.
Moreover, a MILP formulation for the lower-level problem
is introduced and a preliminary example of application
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Fig. 2. Optimal assignment and charging operations
scheduling (Case 1 )

Fig. 3. Optimal assignment and charging operations
scheduling (Case 2 )

Fig. 4. Optimal assignment and charging operations
scheduling (Case 3 )

proves its effectiveness in providing the optimal solution
considering different users’ utility functions.
Future works will concern the formulation of the upper-
level optimization problem and the identification of the
best strategy to deal with the whole EVs Charging Smart
Management Procedure.
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