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liangup@gmail.com)
State Key Laboratory of Synthetical Automation for Process Industries,

Northeastern University, Shenyang, China.

Abstract: In this paper, an alternating direction method of multipliers (ADMM) based real-
time model predictive control (MPC) algorithm is presented. With the use of indicator function
and by introducing extra consensus constraints, the constrained MPC problem can be formulated
as a separable MPC problem, which can be computed very efficiently by projected gradient
descent ADMM update steps and Riccati recursions. The sequence of the objective value of
this constrained real-time ADMM-type MPC algorithm satisfies a linear convergence rate. The
procedure is also extended to distributed systems with constraints, in which the variables of
each subsystems communicate with their neighbors and update in the Gauss-Seidel way. An
illustrative example shows the effectiveness of this approach.

1. INTRODUCTION

Model predictive control (MPC) is a flourishing research
field, partly because of its way to handle constraints. At
each sampling time, an optimization problem is solved,
which results in a sequence of control inputs, of which
only the first one is implemented. For constrained linear
or piecewise affine systems with a quadratic cost, explicit
piecewise affine control laws, so called explicit model
predictive control (EMPC), can be obtained by solving a
multi-parametric (mixed-integer) quadratic programming
(QP) problem offline, and the online implementation boils
down to a point location problem. However, explicit MPC
laws are often only tractable for small scale systems.

Developing efficient real-time MPC optimization algo-
rithms for higher dimensional systems has been for many
years a central topic for MPC research. By exploiting or
rearranging the structure in the QPs in the MPC formu-
lation, Wang and Boyd [2010], Rao et al. [1998] proposed
structured interior point methods, in which Riccati recur-
sion based block elimination can be utilized to compute
each Newton step. Especially in Wang and Boyd [2010] a
primal barrier interior point method was employed, and as
the aim is to find a control with a warm-starting technique,
some simplified solutions by fixing a barrier parameter in
the primal barrier interior point method or by fixing the
iteration times for each Newton step are also presented
to obtain suboptimal MPC controllers. In Richter et al.
[2012], the authors gave the execution time certification
for Nesterov’s fast gradient method, i.e., suboptimal per-
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formance bound is derived for early terminating the algo-
rithm iterations at each sampling instant to accelerate the
online computation, and Giselsson [2012, 2013a] extended
the result to dual formulation with accelerated gradient
methods (Beck and Teboulle [2009], Tseng [2008]). In
Annergren et al. [2012], the authors propose an alternating
direction method of multipliers (ADMM) for `1 regularized
MPC problem.

For large scale systems, by decomposition, we can break
the problem into a bunch of small subproblems, which can
be easily managed. So solving the problem in parallel, i.e.
solving the subproblems iteratively, and communicating
cooperatively is preferable (see, for instance, Camponog-
ara et al. [2002], Christofides et al. [2013], Stewart et al.
[2010], Scattolini [2009] and the references therein). Dual
decomposition (Bertsekas [1999]) and alternating direction
method of multipliers (ADMM) (Boyd et al. [2010]) are the
two popular distributed optimization schemes. In Gisels-
son and Rantzer [2010], the distributed model predictive
control (DMPC) law is designed based on dual decom-
position with sub-gradient method for each subgroup of
variables update. As the convergence rate is slow (O( 1√

k
)),

the corresponding early stop criterion is presented in order
to reduce the dual decomposition iterations. The paper
Farokhi et al. [2013] extended the results of Giselsson and
Rantzer [2010] to the systems with nonlinear intercon-
nected dynamics and cost functions. In Giselsson et al.
[2013], the authors considered the distributed MPC setup
with a separable quadratic cost matrix, and the coupling
in the cost function is the same as the coupling in the
dynamics, thus the dual problem can be solved in a parallel
fashion with accelerated gradient method, which has a
convergence rate of O( 1

k2 ). The result of a bound on the
number of dual variable iterations to guarantee certain
accuracy of this problem was proposed in Giselsson [2013b]
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by incorporating Hessian information to specify the step
matrix in each iteration, which significantly reduced the
needed iterations, and the early termination condition was
derived in Giselsson and Rantzer [2013] to obtain some
suboptimal performance. However, for the algorithm of
dual decomposition to converge, there are a lot of as-
sumptions, like the cost function needs strong convexity
requirement and Slater’s constraint qualification. It is also
possible to achieve distributed solution using second order
Newton type method, but the Hessian matrix requires to
expose a block diagonal structure for each part of the
decomposed subsystems. Some application of distributed
Newton method can be found for network utility optimiza-
tion problem Wei et al. [2013] and for cross-layer network
optimization Liu et al. [2013], but this has not been studied
for MPC.

The result of DMPC via ADMM algorithm was presented
in Summers and Lygeros [2012] and Farokhi et al. [2013],
and the difference between these two papers is that Sum-
mers and Lygeros [2012] integrates the variable constraints
directly in these variable’s update steps, resulting in some
small inequality constrained QP problems in each itera-
tion and using CVX to solve, which is in general expen-
sive, while Farokhi et al. [2013] demonstrates the use of
indicator function in augmented Lagrangian and utilize
projected gradient descent method to solve the problem.
The advantage of the method of multipliers over dual
decomposition is that the cost function does not have to
be strongly convex. Recent paper Hong and Luo [2013],
derived the linear convergence result of ADMM for the sum
of arbitrary number of generalized cost functions, which
allows us to handle the constraints more efficiently and
makes it possible to derive ADMM-type MPC algorithm
for large-scale systems. This paper describes the ADMM-
type update procedures of constrained real-time MPC
problem for both centralized and distributed systems.

2. PROBLEM SETUP

Consider the linear system

xk+1 =Axk +Buk, x0 = x̄, (1)

yk =Cxk +Duk + gk, (2)

zk =Exk + Fuk + hk, (3)

where xk ∈ Rn, uk ∈ Rm, yk ∈ Rp and zk ∈ Rq are
the state, input, output and auxiliary vectors at the time
instant k, respectively. Note that the matrices A, B, C, D,
E and F can be time-varying matrices.

Define the vectorized variables x = [(x0)T, · · · , (xN−1)T]T,
u = [(u0)T, · · · , (uN−1)T]T, y = [(y0)T, · · · , (yN−1)T]T,
z = [(z0)T, · · · , (zN−1)T]T.

Let

f(xN ,y) = ‖xN‖22,Q +

N−1∑
k=0

‖yk‖22. (4)

Consider the model predictive control (MPC) setup,

min
xN ,x,y,z,u

f(xN ,y), (5)

s.t. (1), (2), (3) and z ≥ 0.

3. ADMM FOR SEPARABLE CONVEX
OPTIMIZATION

Consider the optimization problem with separable objec-
tive function and linear constraints

min
ν1,··· ,νK

θ1(ν1) + θ2(ν2) + · · ·+ θK(νK), (6)

s.t. L1ν1 + L2ν2 + · · ·+ LKνK = l.

where θi : Rniν → R (i = 1, 2, · · · ,K) are convex functions

but not necessary smooth, and Li ∈ Rl×niν , l ∈ Rl.

One possible algorithm for solving the above separable op-
timization problem is ADMM algorithm. First, we define
the augmented Lagrangian of the constrained optimization
problem (6) as

Lρ(ν1, ν2, · · · , νK ; νd) =

K∑
i=1

θi(νi) + νT
d

(
K∑
i=1

Liνi − l

)

+
ρ

2

∥∥∥∥∥
K∑
i=1

Liνi − l

∥∥∥∥∥
2

2

, (7)

where νd ∈ Rl is the dual variable and ρ > 0 is the penalty
parameter.

The scaled augmented Lagrangian is

Lρ(ν1, ν2, · · · , νK ; νs) =

K∑
i=1

θi(νi) +
ρ

2

∥∥∥∥∥
K∑
i=1

Liνi − l + νs

∥∥∥∥∥
2

2

+constant, (8)

where νs = νd/ρ are the scaled dual variables.

In each iteration of ADMM algorithm, it consists “alter-
nating direction” minimization and updating of the scaled
dual variables. The primal variables are updated inexactly
by one Gauss-Seidel sweep. The update steps are

νr+1
i := argminνiLρ(ν

r+1
1 , · · · , νr+1

k−1, νk, ν
r
k+1, · · · , νrK ; νrs ),

νr+1
s := νrs +

(
K∑
i=1

Liν
r+1
i − l

)
, i = 1, 2, · · · ,K.

Note that under some assumptions of the objective func-
tions θi’s and the matrices Li’s in the coupling equal-
ity constraints, the updates of νi’s in each step can be
computed very efficiently, like if θi’s are quadratic, the
updates of νi’s are boil down to solve linear equations.
More examples can be found in Boyd et al. [2010] and the
references therein.

In the next section, we will reformulate the MPC problem
(5) in the form of (6).

4. SEPARABLE MPC FORMULATION

We can formulate the constraints in the MPC problem (5)
into the following two constraint sets:

C1 = {(xN ,x,u,y, z)|(1), (2), (3)},
and

C2 = {z|z ≥ 0}.
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Then, the MPC problem (5) is equivalent to

min
xN ,x,u,y,z

f(xN ,y) + IC1(xN ,x,u,y, z) + IC2(z),

where IC(·) is the indicator function for the closed convex
set C (i.e. IC(ν) = 0 for ν ∈ C, and IC(ν) = ∞ for
ν /∈ C). However, this is not a separable cost function,
but by introducing extra variables xc, xc,N , uc, yc and zc
and extra so-called consensus constraints, we can write it
equivalently as

min
xN ,xc,N ,x,u,xc,uc,y,z,yc,zc

f(xN ,y) + IC1(xc,N ,xc,uc,yc, z)

+ IC2(zc), (9)

s.t. x = xc,

xN = xc,N ,

u = uc,

y = yc,

z = zc.

The MPC formulation (9) can be adapted to the multi-
block optimization problem (6) with K = 2 if we denote
ν1 := (xN ,x,u,y, zc), ν2 := (xc,N ,xc,uc,yc, z), θ1(ν1) :=
f(xN ,y)+IC2(zc) and θ2(ν2) := IC1(xc,N ,x,u,xc,uc,yc, z)
with L1 = −L2 = I and l = 0.

5. ADMM-TYPE MPC ALGORITHM

The scaled augmented Lagrangian in (8) for the optimiza-
tion problem (9) is

Lρ = f(xN ,y) + IC1(xc,N ,xc,uc,yc, z) + IC2(zc)

+
ρ

2
(‖x− xc + xs‖22 + ‖xN − xc,N + xs,N‖22

+‖u− uc + us‖22 + ‖y − yc + ys‖22
+‖z− zc + zs‖22) + constant,

where (xs, xs,N ,us,ys, zs) are the scaled dual variables.

The ADMM algorithm for the MPC setup (9) consists of
three steps.

5.1 Step 1

(x
r+1

,x
r+1
N

,u
r+1

,y
r+1

, z
r+1
c )

= argminx,xN ,u,y,zc
Lρ(x, xN ,u,y, z

r
,x
r
c , x

r
c,N ,u

r
c ,y

r
c , zc)

= argminx,xN ,u,y,zc
[f(xN ,y) + IC2

(zc) +
ρ

2
(‖x− x

r
c + x

r
s‖

2
2

+ ‖xN − x
r
c,N + x

r
s,N‖

2
2 + ‖u− u

r
c + u

r
s‖

2
2

+ ‖y − y
r
c + y

r
s‖

2
2 + ‖zr − zc + z

r
s‖

2
2)]

The solutions are

xr+1
k = xrc,k − xrs,k, k = 0, 1, · · · , N − 1,

xr+1
N = (2Q+ ρInx)−1ρ(xrc,N − xrs,N ),

ur+1
k = urc,k − urs,k, k = 0, 1, · · · , N − 1,

yr+1
k = (2 + ρ)−1ρ(yrc,k − yrs,k), k = 0, 1, · · · , N − 1,

zr+1
c,k = ΠC2(zrk + zrs,k)⇔ zr+1

c,k = min{zrk + zrs,k, 0},
k= 0, 1, · · · , N − 1.

5.2 Step 2

(x
r+1
c,N

,y
r+1
c , z

r+1
,x
r+1
c ,u

r+1
c )

= argminxc,N ,yc,z,xc,uc
Lρ(xc,x

r+1
, x
r+1
N

,uc,u
r+1

,y
r+1

, z, xc,N ,yc, z
r+1
c )

= argminxc,N ,yc,z,xc,uc
IC1

(xc,N ,xc,uc,yc, z) +
ρ

2
(‖xr+1 − xc

+ x
r
s‖

2
2 + ‖xr+1

N
− xc,N + x

r
s,N‖

2
2 + ‖ur+1 − uc + u

r
s‖

2
2

+ ‖yr+1 − yc + y
r
s‖

2
2 + ‖z− z

r+1
c + z

r
s‖

2
2) (10)

Denote

(xrp, x
r
p,N ,u

r
p,y

r
p, z

r
p) = (xr+1 + xrs, x

r+1
N + xrs,N ,u

r+1 + urs,

yr+1 + yrs, z
r+1
c − zrs),

the optimization problem (10) becomes an Euclidean pro-
jection onto the set C1, i.e.

(xr+1
c , xr+1

c,N ,u
r+1
c ,yr+1

c , zr+1) = ΠC1(xrp, x
r
p,N ,u

r
p,y

r
p, z

r
p),

(11)
which boils down to the following optimization problem

min
xc,N ,yc,z,xc,uc

‖(xr+1
c , x

r+1
c,N

,u
r+1
c ,y

r+1
c , z

r+1
)− (x

r
p, x

r
p,N ,u

r
p,y

r
p, z

r
p)‖

2
2,

(12)

s.t. xc,k+1 = Axc,k + Buc,k, k = 0, · · · , N − 1,

yc,k = Cxc,k +Duc,k,+gk, k = 0, · · · , N − 1,

zk = Exc,k + Fuc,k + hk, k = 0, · · · , N − 1,

which can be solved efficiently using Riccati recursion Rao
et al. [1998].

5.3 Step 3

Update the scaled dual variables

(xr+1
s , xr+1

s,N ,u
r+1
s ,yr+1

s , zr+1
s ) = (xrs, x

r
s,N ,u

r
s,y

r
s, z

r
s)

+((xr+1, xr+1
N ,ur+1,yr+1, zr+1)− (xr+1

c , xr+1
c,N ,u

r+1
c ,

yr+1
c , zr+1

c )).

Remark 1. The MPC formulation of (9) satisfies all the
Assumptions (a)-(g) in Hong and Luo [2013], we can
conclude that if we choose the step size ρ small enough,
the sequence of the above iterates of the primal and dual
variables and the sequence of function values f(xrN ,y

r)
converge R-linearly (see Theorem 3.1 and Corollary 3.1 in
Hong and Luo [2013]).

6. DISTRIBUTED MPC VIA ADMM

For the linear systems (1)-(3). Introduce a non-overlapping
partition of M subsystems Si, i = 1, · · · ,M . Let xik ∈ Rni

denote the state of subsystem Si, i.e.

xk = [(x1k)T, (x2k)T, · · · , (xMk )T]T,

with
∑M
i=1 ni = n. Each subsystem Si has its own input

vector uik ∈ Rmi and output vector yik ∈ Rpi ,

uk = [(u1k)T, (u2k)T, · · · , (uMk )T]T,

yk = [(y1k)T, (y2k)T, · · · , (yMk )T]T,

with
∑M
i=1mi = m and

∑M
i=1 pi = p. Thus, we can write x

1
k+1

.

.

.

x
M
k+1

 =

[
A11 · · · A1M

.

.

.
.
.
.

.

.

.

AM1 · · · AMM

]x1k..
.

x
M
k

+

[
B11 · · · B1M

.

.

.
.
.
.

.

.

.

BM1 · · · BMM

]u1
k

.

.

.

u
M
k

,
 y

1
k

.

.

.

y
M
k

=

[
C11 · · · C1M

.

.

.
. .
.

.

.

.

CM1 · · · CMM

]x1k..
.

x
M
k

+

[
D11 · · · D1M

.

.

.
. .
.

.

.

.

DM1 · · · DMM

]u1
k

.

.

.

u
M
k

+

 g1k..
.

g
M
k
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The dynamics for subsystem Si can be expressed as

xik+1 =Aiix
i
k +Biiu

i
k +

∑
j∈Ni

(Aijx
j
k +Biju

j
k), xi0 = x̄i,

yik =Ciix
i
k +Diiu

i
k +

∑
j∈Ni

(Cijx
j
k +Diju

j
k) + gik.

Let Lij =

[
Aij Bij
Cij Dij

]
denote the interconnection matrices,

and let lij = ‖Lij‖ denote the interconnection gain.
The set of neighbors of subsystem Si, which have direct
influence on subsystem Si, is defined by the set

Ni = {j ∈ {1, · · · ,M}|Lij 6= 0}, i = 1, · · · ,M.

Consider the distributed model predictive control (MPC)
setup,

min

M∑
i=1

(
N−1∑
k=0

‖yik‖22 + ‖xiN‖22,Qi

)
, (13)

s.t. xik+1 = Aiix
i
k +Biiu

i
k +

∑
j∈Ni

(Aijx
j
k +Biju

j
k),

(13.1)

yik = Ciix
i
k +Diiu

i
k +

∑
j∈Ni

(Cijx
j
k +Diju

j
k) + gik,

(13.2)

zik = Eix
i
k + Fiu

i
k + hik, (13.3)

zik ≥ 0. (13.4)

6.1 Separable MPC Formulation for Distributed Systems

For the distributed MPC problem (13), the vector vari-
ables are xi = [(xi0)T, · · · , (xiN−1)T]T, ui = [(ui0)T, · · · ,
(uiN−1)T]T, yi = [(yi0)T, · · · , (yiN−1)T]T, zi = [(zi0)T, · · · ,
(ziN−1)T]T for i = 1, · · · ,M and x = [(x1)T, · · · , (xM )T]T,

u = [(u1)T, · · · , (uM )T]T, y = [(y1)T, · · · , (yM )T]T, z =
[(z1)T, · · · , (zM )T]T, xN = [(x1N )T, · · · , (xMN )T]T.

The objective function is

f(xN ,y) =

M∑
i=1

fi(x
i
N ,y

i) =

M∑
i=1

(
N−1∑
k=0

‖yik‖22 + ‖xiN‖22,Qi

)
.

The constraints in (13) can be formulated into the follow-
ing two constraint sets:

Ci1 = {(xi, xiN ,ui,yi, zi)|(13.1), (13.2), (13.3)},
and

Ci2 = {zi|(13.4)}.
Then, we can write (13) as

min
xi
N
,xi,ui,yi,zi

M∑
i=1

(
fi(x

i
N ,y

i)+ICi1(xiN ,x
i,ui, zi) + ICi2(zi)

)
.

By introducing extra variables xic, x
i
c,N , uic, y

i
c and zic and

extra consensus constraints, we can separate the objective
functions and write it equivalently as

min
xi
N
,xi
c,N

,xi,xic,u
i,uic,y

i,yic,z
i,zic

M∑
i=1

(
fi(x

i
N ,y

i)

+ICi1(xic, x
i
c,N ,u

i
c,y

i
c, z

i) + ICi2(zic)
)
, (14)

s.t. xi = xic,

xiN = xic,N ,

ui = uic,

yi = yic,

zi = zic.

The scaled augmented Lagrangian is

Lρ =

M∑
i=1

(
fi(x

i
N ,y

i) + ICi1(xic, x
i
c,N ,u

i
c,y

i
c, z

i)

+ICi2(zic)+
ρ

2
(‖xi−xic+xis‖22+‖xiN−xic,N+xis,N‖22

+‖ui − uic + uis‖22 + ‖yi − yic + yis‖22
+‖zi − zic + zis‖22)

)
+ constant,

where (xis, x
i
s,N ,u

i
s,y

i
s, z

i
s) are the scaled dual variables.

6.2 ADMM-type MPC Algorithm for Distributed Systems

Next, we will present the coordinate search iterations
of ADMM with respect to the local variables of each
subpartition i of the system block and their corresponding
constraint sets Ci1 and Ci2.

Step 1

(x
r+1

,x
r+1
N

,u
r+1

,y
r+1

, z
r+1
c )

= argminx,xN ,u,y,zc
Lρ(x, xN ,u,y, z

r
,x
r
c , x

r
c,N ,u

r
c ,y

r
c , zc),

= argminx,xN ,u,y,zc

(
f(xN ,y) + IC2

(zc) +
ρ

2
(‖x− x

r
c + x

r
s‖

2
2

+‖xN − x
r
c,N + x

r
s,N‖

2
2 + ‖u− u

r
c + u

r
s‖

2
2 + ‖y − y

r
c + y

r
s‖

2
2

+‖zr − zc + z
r
s‖

2
2)
)
,

The solutions are

xi,r+1
k = xi,rc,k − x

i,r
s,k, k = 0, 1, · · · , N − 1,

xi,r+1
N = (2Qi + ρInix)−1ρ(xrc,N − xrs,N ),

ui,r+1
k = ui,rc,k − u

i,r
s,k, k = 0, 1, · · · , N − 1,

yi,r+1
k = (2 + ρ)−1ρ(yi,rc,k − y

i,r
s,k), k = 0, 1, · · · , N − 1,

zi,r+1
c,k = ΠCi2(zi,rk + zi,rs,k)⇔ zi,r+1

c,k = max{zi,rk + zi,rs,k, 0},
k= 0, 1, · · · , N − 1.

Step 2

(x
i,r+1
c,N

,y
i,r+1
c , z

i,r+1
,x
i,r+1
c ,u

i,r+1
c )

=argmin
xi
c,N

,yic,z
i,xic,u

i
c
Lρ(x

i
c,x

i,r+1
,x
i,r+1
N

,u
i
c,u

i,r+1
,y
i,r+1

,

z
i
,x
i
c,y

i
c,z

i,r+1
c ),

=argmin
xi
c,N

,yic,z
i,xic,u

i
c
ICi

1
(x
i
c, x

i
c,N ,u

i
c,y

i
c, z

i
)

+
ρ

2
(‖xi,r+1

N
−xic,N+x

i,r
s,N
‖22+‖x

i,r+1−x
i
c + x

i,r
s ‖

2
2+‖u

i − u
i,r+1
c + u

i,r
s ‖

2
2

+‖yi,r+1−y
i
c + y

i,r
s ‖

2
2+‖z

i − z
i,r+1
c + z

i,r
s ‖

2
2). (15)

Denote
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(xi,rp , xi,rp,N ,u
i,r
p ,yi,rp , zi,rp ) = (xi,r+1 + xi,rs , xi,r+1

N + xi,rs,N ,

ui,r+1 + ui,rs ,yi,r+1 + yi,rs , zi,r+1
c − zi,rs ),

the optimization problem (15) becomes an Euclidean pro-
jection onto the set Ci1, i.e.

(xi,r+1
c , xi,r+1

c,N ,ui,r+1
c ,yi,r+1

c , zi,r+1)

= ΠCi1(xi,rp , xi,rp,N ,u
i,r
p ,yi,rp , zi,rp ),

which boils down to the following optimization problem
min

xi
c,N

,yic,z
i,xic,u

i
c

‖(xi,r+1
c , x

i,r+1
c,N

,u
i,r+1
c ,y

i,r+1
c , z

i,r+1
)

− (x
i,r
p , x

i,r
p,N

,u
i,r
p ,y

i,r
p , z

i,r
p )‖22, (16)

s.t. x
i,r+1
c,k+1

= Aiix
i,r+1
c,k

+ Biiu
i,r+1
c,k

+

∑
j<i,j∈Ni

(Aijx
j,r+1
c,k

+ Biju
j,r+1
c,k

),

+

∑
j>i,j∈Ni

(Aijx
j,r
c,k

+ Biju
j,r
c,k

), k = 0, · · · , N − 1,

y
i,r+1
c,k

= Ciix
i,r+1
c,k

+

∑
j<i,j∈Ni

Cijx
j,r+1
c,k

+

∑
j>i,j∈Ni

Cijx
j,r
c,k

+Diiu
i,r+1
c,k

+

∑
j<i,j∈Ni

Diju
j,r+1
c,k

+

∑
j>i,j∈Ni

Diju
j,r
c,k

+ g
i
k,

k = 0, · · · , N − 1,

z
i,r+1
k

= Eix
i,r+1
c,k

+ Fiu
i,r+1
c,k

+ h
i
k, k = 0, · · · , N − 1,

which can be solved by Riccati recursion Rao et al. [1998].

Step 3 Update the scaled dual variables

(xr+1
s , xr+1

s,N ,u
r+1
s ,yr+1

s , zr+1
s ) = (xrs, x

r
s,N ,u

r
s,y

r
s, z

r
s)

+((xr+1, xr+1
N ,ur+1,yr+1, zr+1)− (yr+1

c , xr+1
c,N ,y

r+1
c ,

yr+1
c , zr+1

c )).

7. ON CONVERGENCE RATE

Theorem 1. The sequence of the above ADMM iter-
ates {(xr, xrN ,ur,yr, zr,xrs, xrs,N ,urs,yrs, zrs)} for solving

the distributed MPC problem (14) converges R-linearly to
an optimal solution, provided the step size ρ is sufficiently
small. Moreover, the sequence of function values f(xrN ,y

r)
also converges R-linearly.

Proof. The convex problem (14) satisfies:

• The primal and dual optimum can be attained and
unique (Strong duality holds).
• θi(νi)’s in (6) correspond to either fi(x

i
N ,y

i) +
ICi2(zic) or ICi1(xic, x

i
c,N ,u

i
c,y

i
c, z

i) in (14), where fi’s

are strictly convex and continuously differentiable.
• Ci1 and Ci2 are polyhedral sets.
• Each sub matrix Li’s in (6) equal I or −I in (14).

Then the proof follows from Theorem 3.1 and Corollary
3.1 in Hong and Luo [2013]. 2

8. ILLUSTRATIVE EXAMPLE

Let’s consider a DMPC problem that is similar to Gisels-
son and Rantzer [2013] which is randomly generated. The
dynamical system consists three subsystems and each sub-
system has five states and one input. As the problem is
a regulation problem, the output of the ith subsystem
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Fig. 1. Trajectories evolution from initial conditions.

is chosen to be yik =

(
I5
0

)
xik +

(
0
I1

)
uik. Both state

and input constraints are set within the range [−2, 2]. The
control horizon is chosen to N = 5. All the computations
and simulations are performed in MATLAB and CVX. In
Fig. 1, the performance of the Distributed ADMM MPC
algorithm described in Section 6 is compared with the
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centralized MPC result from CVX. From the simulations
we find that the states evolution of the distributed ADMM
MPC developed in this paper, which are marked as circles,
can work as well as the centralized MPC computed with
CVX, which are marked as stars. Fig. 2 shows the linear
convergence of the objective function in the iterates.
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Fig. 2. Norm(fk−f∗) versus iteration for 1st sampl. time.

9. CONCLUSIONS

This paper derived an ADMM-type algorithm for solving
large-scale MPC problem. The update of the state vari-
ables is in sequential and the estimate error can also be
caused by communication delays and dropouts, which indi-
cate the potential to develop more efficient communication
schemes for distributed ADMM algorithms in the future.
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