
Minimum Realization Tuning Strategy for
Dynamic Matrix Control ?

Daniel C. Jeronymo ∗ Antonio A. R. Coelho ∗

∗Automation and Systems Engineering Graduate Program,
Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
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Abstract: In this paper autotuning and self-tuning methods for Dynamic Matrix Control
(DMC) are presented with application to single-input single-output (SISO) processes which
can be approximated by a first-order-plus-dead-time model. In order to validate the method a
nonlinear control valve system described by a Wiener process is simulated. This process was
identified by a Hammerstein model and controlled by DMC with output compensator. The
proposed tuning methods have its performance compared to another standard method found in
literature, showing more conservative results regarding smoothness of the control action while
maintaining adequate performance on set-point tracking.
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1. INTRODUCTION

The algorithm of model-based predictive control by DMC
has kept its essence since its conception in the original
works by Cutler and Ramaker (1980). Innovations in this
area of predictive control are mainly presented for two
different problems: i) the mathematical representation of
the model and ii) control parameter tuning of horizons and
move suppression factor.

Tuning of DMC is problematic since there are no analytic
methods to obtain exact solutions which result in the
best desired responses and it is an ongoing topic of
research with contributions by Posada and Sanjuan (2008);
De Almeida et al. (2009); Matko et al. (2013), to name a
few. Qin and Badgwell (2003) presents an extensive review
of DMC for industrial applications and Kokate et al. (2010)
presents a literature review regarding tuning methods for
DMC in SISO processes. Among the autotuning methods
Shridhar and Cooper (1997) stands out for ease of usage
with a first-order-plus-dead-time (FOPDT) model.

In this paper we present a novel tuning method for
DMC with application to SISO processes which can be
represented by a FOPDT model. The method acts on two
fronts, first with an autotuning approach to ensure reliable
operation from the start and second with a self-tuning
approach to gain adaptive properties. For the autotuning
approach the method is based on a minimum realization
of DMC in order to analyze the closed-loop dynamics of
the system and tune the move suppression factor. When
the autotuning was expanded to better contemplate the
process model, considering the settling time and dead-
time, it was observed this expanded autotuning approach
is an hybrid between our move suppression tuning with
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(Shridhar and Cooper, 1997) horizons tuning. For the self-
tuning approach we use the online minimization of a cost
function aiming to reduce set-point tracking error and
control ringing.

To validate the method results are presented for the sim-
ulation of a nonlinear control valve described by a Wiener
process. The valve response is identified by a Hammerstein
model and controlled by DMC with output compensator.
Results for the proposed tuning are compared to Shridhar
and Cooper (1997) showing better characteristics regard-
ing control ringing and set-point tracking.

The rest of this paper is organized as follows. Section 2
makes a brief introduction to DMC, its parameters and
output compensation. Section 3 presents the foundation
for the proposed tuning method, showing an alternative
manual tuning method and the automatic tuning method.
Section 4 presents the case study for the nonlinear control
valve process. Section 5 presents the results obtained by
the proposed method and a comparison with Shridhar and
Cooper (1997). Finally, section 6 presents final considera-
tions about the method and future work.

2. DYNAMIC MATRIX CONTROL

Dynamic matrix control was one of the first algorithms
of what later became known as model predictive control
(MPC) and is widely employed in industrial processes (Qin
and Badgwell, 2003). In this type of controller the control
actions are calculated with the objective of minimizing a
cost function such as:

J =

Ny∑
j=1

[ŷ(t+ j)− yr(t+ j)]
2

+ λ

Nu∑
j=1

[∆x(t+ j − 1)]
2
,

(1)
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where ŷ is the predicted process output given by a process
model, in DMC’s case this is ŷ = G∆x+ f , free response
f = ∆G∆x + y depends only on past control actions,
G is the step response dynamic matrix, yr is the desired
set-point, Ny is the prediction horizon, Nu is the control
horizon and λ is the move suppression factor. The optimal
control action at any instant is given by solving equation
1 as a quadratic optimization problem:

∆x = (G′G+ λI)−1G′(yr − f) . (2)

2.1 Output Compensator

In nonlinear plants the errors between the process and
the linear process model severely degrades controller per-
formance creating the necessity of nonlinear models. The
Hammerstein model (Narendra and Gallman, 1966) sep-
arates plant dynamics in two parts, the first is a static
nonlinear (NL) gain and the second represents the linear
(L) dynamics:

x(t) = f(u(t)) =

m∑
i=1

γiu(t)i

Y (z)

X(z)
= G(z) . (3)

NLH-DMC (Non Linear Hammerstein - Dynamic Matrix
Control) controls the linear portion of the model and the
control signal is modified by an output compensator, as
shown in figure 1, which calculates the inverse function of
the static nonlinearity:

u(t) = f−1(x(t)) . (4)

Fig. 1. NLH-DMC block diagram.

In the case where f is a polynomial equation, f−1 is
given by the iterative search (IS) of the roots of f(u(t))−
x(t) = 0. There is no guarantee the inverse function is
injective and results only in real values. As such, complex
solutions are discarded and in case of multiple solutions
u(t) is selected to minimize the criterium |u(t)− u(t− 1)|.

3. MOVE SUPPRESSION FACTOR TUNING

Considering a process where the linear dynamics can be
adequately approximated by a FOPDT model:

Y (s)

U(s)
=
Kpe

−θps

τps+ 1
, (5)

discretizing the above model by zero-pole mapping z =
esTs , where Ts is the sampling interval:

Y (z)

U(z)
=

b0z
−d

1 + a1z−1
, (6)

where the discrete delay d = ceil(θp/Ts) + 1, b0 =

Kp

(
1− e−Ts/τp

)
and a1 = −exp (−Ts/τp).

Let us consider then the parameter choice N = Ny =
Nu = 1 for a plant with discrete unit delay, d = 1.
In practice this choice of parameters is dangerous for a
number of reasons, N = 1 doesn’t appropriately describe
the step response dynamics and mis-represents the free
response f , Ny = Nu may result in unstable closed-loop
dynamics in the presence of non-minimum phase zeros.
Later it will be shown that: i) the delay does not affect
the tuning of λ in certain parametric considerations; ii)
the parameters N,Ny, Nu = 1 only purpose is that of
an initial analysis of DMC’s behavior, after all there are
better choices for the horizons.

With these parameters DMC ignores past control actions
in the free response, it will use a single one step ahead
prediction and seek to minimize a single future control
action. This choice is fortuitous for the analysis at hand
for it reduces DMC to a minimum realization allowing for
a simple algebraical analysis, resulting in G = G′ = b0 and
∆G = ∅. The free response f = ∆G∆x+y becomes f = y
and the control action ∆x = (b20 + λ)−1b0 (yr − y).

Manipulating the control law and using a RST structure
(Sumar et al., 2009) given by Ru = Tyr − Sy, we obtain
R = (G′G + λ)∆, T = G′ and S = G′. The closed-loop
transfer function is given by Y (z)/Yr(z) = TB/(RA +
BS) where B and A are, respectively, numerator and
denominator of plant model G(z). Finally we achieve
a second order system which describes the closed-loop
behavior of the controlled system:

b20z
−1

b20 + λ+ (a1b20 − λ+ a1λ) z−1 − (a1b20 + a1λ) z−2
. (7)

The denominator of equation 7 can be rewritten in the
usual form for root locus analysis:

∆(s) = 1 + λ
1 + (a1 − 1)z−1 − a1z−2

b20 + a1b20z
−1 − a1b20z−2

. (8)

Finally, with equations 7 and 8, it is possible to tune the
move suppression coefficient to achieve a specific system
response, such as finding poles which attend overshoot and
settling time specifications.

3.1 Root Locus Optimization

For the automatic tuning of the move suppression coef-
ficient we propose the optimization of the root locus of
equation 7 on the variable λ, aiming for poles zcl with null
imaginary components, to avoid oscillatory behavior, and
pole absolute value minimization, for faster settling time.
This is a tradeoff between fast response time and small
overshoot, being achieved by the following optimization
problem:

min
λ

100
∑
|imag(zcl)|+

∑
|real(zcl)| . (9)
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We used a quasi-Newton interior-point method (IPM)
with Hessian approximation by Broyden Fletcher Goldfarb
Shanno (BFGS) algorithm (Nocedal and Wright, 2006) for
solving this problem and achieving the optimum λ∗at.

3.2 Online Optimization

Aiming to provide the tuning with adaptive capabilities
through self-tuning we propose that for each iteration the
following optimization problem must be solved:

min
λ

(1− α)E {|ŷ − yr|}+ αE {|∆x|} , (10)

where α is limited to the range [0, 1] and controls the
tradeoff between set-point tracking, lower values, and
control ringing suppression, higher values. Substituting the
definitions from section 2 for ŷ and ∆x:

min
λ

(1− α)E
{∣∣G(G′G+ λI)−1G′(yr − f) + f − yr

∣∣}
+αE

{∣∣(G′G+ λI)−1G′(yr − f)
∣∣} . (11)

Being a transcendental equation there is no trivial solution
and a numeric method must be used, again we chose the
same IPM approach. The solution λ∗at found by the auto-
tuning approach is used as initial search point for the local
optimization at the first control iteration, resulting in a
locally optimal λ∗st. In subsequent iterations the last λ∗st is
used as initial search point.

The result of this self-tuning approach is a different λ∗st
for each iteration, making it necessary to recalculate the
control action given by equation 2 in terms of λ∗st.

4. CASE STUDY

In order to assess the proposed methods a nonlinear con-
trol valve process commonly found in literature (Wigren,
1990; Al-Duwaish and Naeem, 2001) was simulated. The
system is depicted in figure 2, adapted from Cable (2005).

Fig. 2. Control valve process diagram.

This process is described by the following Wiener model:

x(t) =
0, 616z−1 + 0, 05343z−2

1− 1, 5714z−1 + 0, 6873z−2
u(t) ,

y(t) =
x(k)√

0, 1 + 0, 9x2(t)
. (12)

Its input u(k) is limited to the range [0 0.4] and it has
a sampling time of Ts = 0.1s . The static curve for this

process is presented in figure 3 where the nonlinear output
behavior of the process is clearly observable.
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Fig. 3. Static curve, input-output characteristic, for the
control valve process.

4.1 Hammerstein Model Identification

The application of DMC in this case study requires the
identification of a Hammerstein model from the process
described by a Wiener model. For this we considered a
nonlinear static gain polynomial function of order m = 3,
the uneven degree guarantees a real valued root, and a
linear function of orders nb = 1 e na = 2, that is:

x(t) = γ1u(t) + γ2u(t)2 + γ3u(t)3 ,

Y (z)

X(z)
=

b0 + b1z
−1

1 + a1z−1 + a2z−2
z−1 , (13)

and the following root mean squared error (RMSE) opti-
mization problem was elaborated for the identification of
model parameters:

min
b0,1,a1,2,γ1,2,3

√√√√ 1

n

n∑
t=1

(y(t)− ŷ(t))
2
, (14)

where n is the number of samples. Again the IPM approach
was used for this optimization task resulting in:

b0 = −1.593896845712190 ,

b1 = 0.704732341842690 ,

a1 = 2.797526045953196 ,

a2 = −0.862005679935081 ,

γ1 = 0.194536814826656 ,

γ2 = −0.200460554117093 ,

γ3 = 0.007938804763741 , (15)

resulting in RMSE = 0.006. The final model identification
results are exhibited in figure 4.
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Fig. 4. Control valve process and identified Hammerstein
model.

4.2 FOPDT Model Identification

Tuning of horizons requires a FOPDT model, which ap-
proximates process’ static gain, time constant and dead-
time. For this we used the identification method from
Smith (1972), applying it to the linear dynamics of equa-
tion 13 and resulting in the following parameters:

Kp = 17.4658 ,

τp = 0.2488 ,

θp = 0.1767 . (16)

4.3 Tuning Cases

In order to analyze the proposed method we consider the
following 4 tuning cases:

Tuning 1
In this first case the well known DMC tuning proposed
by Shridhar and Cooper (1997) is used for comparison.

N =

⌈
5
τ

Ts
+ dθp/Ts + 1e

⌉
,

Ny = N ,

1 ≤ Nu ≥ 6 ,

λ =
NuK

2
p

500

(
3, 5

τ

Ts
+ 2− Nu − 1

2

)
. (17)

Tuning 2
In this second case the minimum realization tuning of
our proposal is used for demonstration purposes.

N = 1 ,

Ny = 1 ,

Nu = 1 ,

λ = λ∗at . (18)

Although useful for analysis this tuning is very poor
from a practical point of view since N = 1 ignores
almost the entire step response as well as any delay.
Another major problem is the choice of horizons Ny =

Nu = 1 results in unstable closed-loop poles in the
presence of non-minimum phase zeros.

The advantage of this tuning is that in these paramet-
ric conditions the move suppression factor tends to be
extremely conservative since the control horizon is the
smallest possible and it allows an easy algebraical anal-
ysis of the closed-loop dynamics, allowing the proposed
tuning approaches.

Tuning 3
To improve the former tuning it is necessary to consider
both the settling time and delay. With the incorpo-
ration of these dynamics the tuning allows DMC to
control non-minimum phase processes and high dead-
time. With the incorporation of dead-time to the tuning
of N and Ny the move suppression coefficient λ becomes
independent of delay (Shridhar and Cooper, 1997), jus-
tifying disregarding of delay in λ tuning.

By considering the time constant, process delay and
future control actions, we achieved a tuning method
which is an hybrid between the horizons tuning proposed
by Shridhar and Cooper (1997) and the move suppres-
sion factor autotuning proposed by us:

N =

⌈
5
τ

Ts
+ dθp/Ts + 1e

⌉
,

Ny = N ,

1 ≤ Nu ≥ 6 ,

λ = λ∗at . (19)

Tuning 4
This last tuning case expands the former with the in-
clusion of our self-tuning approach, using λ∗at as initial
search point and α = 0.9 which prioritizes the suppres-
sion of control ringing.

N =

⌈
5
τ

Ts
+ dθp/Ts + 1e

⌉
,

Ny = N ,

1 ≤ Nu ≥ 6 ,

λ(t) = λ∗st . (20)

The root locus given by equation 8 for this case study
is presented in figure 5, indicating the optimal result
achieved by the optimization of equation 9 of λ∗at = 850.1
and the near breakaway point. The parameters for all
tuning cases are presented in table 1.

Table 1. Parameters for each tuning case.

Sintonia N Ny Nu λ

1 (Shridhar and Cooper) 16 16 5 26.46
2 (pure) 1 1 1 850.1

3 (hybrid) 16 16 5 850.1
4 (hybrid self-tune ) 16 16 5 λ∗st

5. RESULTS

Results are presented for the four tuning cases in figure 6,
with reference 0.1 in 0-5s, 0.7 in 5-10s and 0.3 for the rest
of the simulation. A load disturbance is introduced at 15
seconds. These results show Shridhar and Cooper’s tuning
is extremely aggressive with low settling time but upper
and lower control action saturations, higher control ringing
and set-point tracking difficulties during saturation. The
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Fig. 5. Root locus for the case study indicating the optimal
λ∗at = 850.1.

pure, hypothetical, tuning is clearly not an effective op-
tion. The hybrid and self-tuning approaches present very
similar results, with a settling time not much slower from
Shridhar and Cooper’s, yet with a much more conservative
control action and reduced ringing. The self-tuning ap-
proach shows slightly, almost unnoticeable, better results
for set-point tracking than the autotune approach without
sacrificing the conservative control action.

Figure 7 presents the optimal move suppression coefficients
for the self-tuning approach. In the beginning it does not
deviate from λ∗at, indicating it is a true local optimum. it is
interesting how this approach adjusts for more aggressive
control during set-point changes to settle the tracking er-
ror, yet it presents a much more conservative action in the
saturation region, indicating desired adaptive properties.
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Fig. 7. Move suppression values for self-tuning approach.

6. CONCLUSION

In this paper we presented a novel tuning approach for
DMC based on autotuning and self-tuning methods. A
minimum realization of DMC was achieved under a partic-
ular choice of parameters, allowing for an automatic alge-
braical analysis of the closed-loop characteristics, resulting
in an autotuned move suppression factor. Aiming to pro-
vide the method with adaptive properties a minimization
problem is solved for each control action, self-tuning the
move suppression factor and allowing for more accurate
set-point tracking or control ringing attenuation.

This minimum realization purpose is that of an approx-
imation to the move suppression factor effects on the
closed-loop response. In practice, the choice of horizons
considering FOPDT model parameters such as static gain,
time constant and dead-time, resulted in an approach
which resembles an hybrid between our move suppression
coefficient tuning with the horizons tuning of Shridhar and
Cooper (1997).

Our approach was compared to Shridhar and Cooper
(1997) showing a much more conservative control action
without any lost to set-point tracking performance. In
fact, this approach exhibited better set-point tracking
performance under control saturation.

It is important to emphasize our method does not in-
ovate the tuning of horizons only the move suppression
factor, where a more accurate tuning is attained through
automatic calibration. This optimization tuning results
in a system response in the performance limit - a mod-
erately aggressive response with low control oscillation.
Simulation results for this particular nonlinear case study
motivates the application of this method to other classes
of processes.

Future work will focus on expanding DMC’s minimum
realization to a full realization, in order to more accurately
assess the closed-loop effects of the move suppression
coefficient.
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Appendix A. MANUAL TUNING

An alternative to the automatic tuning shown in section
3 is manual tuning. The system response specification
for move suppression tuning may be elaborated through
classical methods (see Franklin et al. (2002)), using ζ, the
damping ratio, and wn, the undamped natural frequency.
For the overshoot specificationMp and for the specification

of settling time ts5%: ζ =

√
logMp

2

π2+logMp
2 , wn = 3

ζts5%
.

The target poles zt can be obtained by the classical second
order model where the poles are given by s2 + 2ζwns +

w2
n = 0, thus st1,2 = −ζwn±j

√
1− ζ2wn. Using the pole-

zero mapping we obtain the discrete poles:

zt1,2 = e−ζwnTse±j
√

1−ζ2wnTs . (A.1)

Finally, tuning is then only a matter of finding the value
of λ which places the root locus of the closed-loop system
as close as possible to zt.

A.1 Root Locus Optimization

Considering zcl, the poles of the closed-loop system from
equation 7, and zt, the desired poles obtained from equa-
tion A.1, it is necessary to find the value of λ which
minimizes the Cartesian distance between these poles:

min
λ

√
(zt1 − zcl1)2 + (zt2 − zcl2)2 , (A.2)

thus achieving the optimum value λ∗at.

Any optimization method may be employed to solve this
nonlinear problem.
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