
Inverse Kinematics of Serial Manipulators

in Cluttered Environments using a new

Paradigm of Particle Swarm Optimization

Riccardo Falconi, Raffaele Grandi, Claudio Melchiorri

e-mail: {riccardo.falconi, raffaele.grandi, claudio.melchiorri}@unibo.it

Abstract: In this paper, a new Behavioral-based Particle Swarm Optimization algorithm
is proposed in order to solve the inverse kinematics problem for a manipulator operating
in an environment cluttered with obstacles. The introduced variant of the Particle Swarm
Optimization relies on the idea of dividing the population of the particles in subgroups, each of
which with a specific task, achieving in this manner a faster convergence to the final result. The
proposed algorithm is exploited in order to solve the inverse kinematics problem for a generic
serial manipulator both in its dexterous and reachable workspace.

Keywords: Particle swarm optimization, Inverse kinematics, Robotic manipulator, Obstacle
avoidance

1. INTRODUCTION

The solution of the inverse kinematics (IK) for a generic
manipulator has an important role in robotics, being the
task assigned to a robot manipulator typically defined in
the Cartesian space, while the robot itself is usually con-
trolled in the joint space. As well known, given a joint con-
figuration, the forward kinematics for serial manipulators
has always one solution, while the IK problem may have
one, none, or multiple solutions, (Siciliano and Khatib,
2008). Moreover, in the solution of the IK problem in gen-
eral one has to deal also with singularities and workspace
limits. Except for some well-known families of industrial
robots, in general there is no closed-form solution for
the inverse kinematics problem of a serial manipulator.
For this reason, this problem has been widely studied in
the last decade. One of the most exploited algorithms
for the solution of the inverse kinematics for a generic
serial manipulator was developed by Siciliano (1990). In
this work, the author proposed the so-called Closed Loop
Inverse Kinematics (CLIK) algorithm, an iterative method
to compute the joint configuration corresponding to a
desired final pose (position and orientation) of the end-
effector. This approach is based on the pseudo-inverse of
the Jacobian matrix J (or its transpose), from which it
follows the high computational complexity of the algo-
rithm. Moreover, it cannot take into account the presence
of obstacles in the robot’s workspace.

For these reasons, in recent years many other techniques
have been proposed to solve the IK of a manipulator.
For example, Beheshti and Tehrani (1999) implemented
an adaptive fuzzy logic controller in order to calculate
a suitable joint configuration for a desired pose of the
end-effector while avoiding obstacles. Another interesting
approach, used for example by Dash et al. (2011), is

⋆ Riccardo Falconi, Raffaele Grandi and Claudio Melchiorri are
with DEI, the Department of Electrical, Electronic and Information
Engineering “Guglielmo Marconi”, University of Bologna, Italy.

based on the implementation of neural networks. The main
drawback of this approach, anyway, is the necessity of
properly train the network in order to reach a sufficiently
accurate solution. Another proposed solutions for the
IK problem have been developed based on the Genetic
Algorithms (GAs). As an example, in (Nearchou, 1998) a
two-level genetic algorithm is exploited to estimate the a
suitable configuration of the joint variables for the robot
operating in complex environments.

One of the most promising techniques for the solution
of non-linear constrained optimization problems is the
Particle Swarm Optimization (PSO) algorithm. This opti-
mization technique has been introduced for the first time
by Kennedy and Eberhart (1995) and has been exploited
in a wide range of practical applications.In particular, PSO
and its variants have been applied also to the solution of
the IK for serial manipulators.For example, Du and Wu
(2011) implemented an improved PSO to estimate the IK
of reconfigurable modular robots, while in (Huang et al.,
2012) the PSO is applied to a 7-DOF manipulator. In
spite of the many techniques proposed to solve the IK
problem, rarely the presence of constraints is considered.
The aim of this work is to introduce a new paradigm of
PSO algorithm to compute a solution of the IK of generic
serial manipulators, considering constraints in both the
joint and in the work space.

This paper is organized as follows: in Sec. 2 the classic PSO
is introduced and the proposed variant of the algorithm is
elucidated. In Sec. 3 the Inverse Kinematic problem is in-
troduced and an appropriate fitness function is defined. In
Sec. 4 the simulation results used to validate our approach
are presented and discussed, while Sec. 5 concludes with
final remarks.

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 8475

2. AN IMPROVED PARTICLE SWARM
OPTIMIZATION ALGORITHM

2.1 Background on Particle Swarm Optimization

In the original formulation of the PSO algorithm (Kennedy
and Eberhart, 1995), the authors presented an optimiza-
tion algorithm that consists of a number of particles mov-
ing in the search space of the given optimization problem.
More specifically, given a fitness function f(·) depending
on M parameters, the position of each particle represents
a possible solution. The position and velocity of the i-
th particle of the population P at the k-th iteration are
defined by the M -dimensional vectors

qi(k) =
[

qi1(k) . . . q
i
M (k)

]T
(1)

vi(k) =
[

vi1(k) . . . v
i
M (k)

]T
(2)

for i = 1 . . . ‖P‖, where the operator ‖ · ‖ represents the
cardinality of a given set. By assuming a communication
topology between the particles of P , the Neighbors subset
w.r.t the i-th particle is defined as

Ni(k) = {j ∈ P : i ⇔ j}

where the symbol ⇔ is used to address the exchange
of information between particles. Let us remark that, as
pointed out by Akat and Gazi (2008) , the communication
topology can affect the speed of convergence of the PSO
algorithm.

In the PSO algorithm, the trajectory of each particle
through the search space depends on few key informa-
tion, in particular on the personal best solution qi

p(k), the

neighbors best qi
n(k) and the global best qg(k). These three

terms correspond respectively to the coordinates of the
best value the i-th particle found so far, the best value
found by the neighbors Ni and the best value found by the
whole population P . More specifically, by assuming we are
considering the minimization problem of a fitness function
f(·), the terms qi

n(k) and qg(k) are defined respectively as

qi
n(k) =

{

qj
p(k) s.t. f(q

j
p(k)) < f(qh

p(k)), ∀h ∈ Ni(k)
}

qg(k) =
{

qj
p(k) s.t. f(q

j
p(k)) < f(qh

p(k)), ∀h ∈ P
}

As the value of qg(k) is the same for all the particles, the
exponent i in the left term of the previous equation has
been omitted.

At its start, the PSO algorithm initializes the particles
positions qi(0) and velocities vi(0) with random values,
typically limited in a predefined range. At each iteration,
the velocity and the position of the i-th particle are
updated according to the following equations

vi(k + 1) = 0χ

(

wi · vi(k) + φp ·∆
i
p(k) +

+ φn ·∆i
n(k) + φg ·∆

i
g(k)

)

(3)

qi(k + 1) = qi(k) + vi(k + 1) (4)

where wi is a scalar constant that represents the inertia
of the i-th particle, 0χ is a random number in [0.9, 1]
called constriction factor (Eberhart and Shi, 2000) in-
troduced to limit the speed of the particles, and φp, φn,
φg are tuning parameters modulating the influence that

each component has on the velocity update. The values
of theses parameters are typically tuned empirically (e.g.

see (Tewolde et al., 2009)).The terms ∆i
p(k), ∆

i
n(k) and

∆g(k) represent the velocity contribution given by the best
personal qi

p(k), the best neighborhood qi
n(k) and the best

global qg, respectively. They are defined as

∆i
p(k) = λp ·

(

qi
p(k)− qi(k)

)

∆i
n(k) = λn ·

(

qi
n(k)− qi(k)

)

(5)

∆i
g(k) = λg ·

(

qg(k)− qi(k)
)

where λp, λn and λg are random numbers from the
standard uniform distribution on the open interval]0, 1[.
They are computed at each iteration of the algorithm in
order to give a certain degree of variation to the behavior
of the particles.

2.2 Behavioral-based Particle Swarm Optimization

Despite its success in real world applications, the PSO
algorithm has some drawbacks. In fact, the trajectories
of the particles and their efficiency in exploring the search
space depend on a set of constants that have to be carefully
tuned case by case. Moreover, depending on the initial
position of the particles, they can be attracted too fast to
a local minimum region (plateau) and thus they could not
be able to properly explore the search space. To avoid these
limitations, we have defined a new paradigm of PSO. In
our approach, the particles of P are divided in S distinct
subgroups, each one with a different behavior in order to
improve the performances of the algorithm. More formally:

S
⋃

h=1

Gh = P ∧
S
⋂

h=1

Gh = 0

In our modified version of the PSO algorithm, the infor-
mation exchange between particles is assured by a fully
informed communication topology, i.e. each particle is
virtually connected to any other one.

For the sake of clarity, let us consider the case of three
different subgroups (i.e. S = 3) optimizing the generic
fitness function f(·). The behavior of the particles in each
subgroup has been designed in order to globally speed up
the convergence of the algorithm and, at the same time
increase the explored area of the search space (i.e. avoiding
the particles to be trapped in a local plateau).

The particles in G1 perform local optimization by exploit-
ing the gradient descend algorithm (Snyman, 2005), thus
their velocities are updated at each iteration according to

vi(k+1) = −1w ·∇f(qi(k))−1kg ·∆
i
g(k), for i ∈ G1 (6)

where 1w is the inertia characterizing group G1 and
1kg is a

tuning constant. The term 1kg ·∆
i
g(k) has been introduced

in order to assure that, if the global best qg(k), is away
from the particles in G1 they can escape local mimina. The
particles of G2 and G3 update their velocities by exploiting
a modified version of the PSO algorithm, namely:

vi(k + 1)=hχ

(

hw · vi(k) + hγp(k) ·∆
i
p(k) +

+ hγn(k) ·∆
i
n(k) +

hγg(k) ·∆
i
g(k)

)

(7)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8476

0 1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

5

10

15

3kg = 0.5
3kg = 1.0
3kg = 1.5

δi(k)

−∞
⇓

Fig. 1. Function 3γg(k) depending on the value of δi(k) for
different values of 3kg (here Ω(k) = 3).

for i ∈ Gh. The terms hχ, hw are respectively the con-
striction factor and the inertia of the particles of the h-
th group, while the terms ∆i

p(k), ∆
i
n(k) and ∆i

g(k) are

the same as defined in Eq. 5. The terms hγp(k),
hγn(k)

and hγg(k) represent the key point of the B-PSO. In
fact, depending on their definition it is possible to obtain
different behaviors for the particles of each subgroup.

Before characterizing in details the behavior of subgroups
G2 and G3, let us introduce the memory factor ζ(k)
(Grandi et al., 2012) defined as

ζ(k + 1) =

{

ζ(k) + 1 if q̃g(k + 1) ≤ ζ̃

1 otherwise
(8)

where q̃g(k+1) = |qg(k+1)−qg(k)| and the value of ζ̃ is
a constant threshold that represents how far qg(k+1) has
to be from qg(k) to be considered a new optimal solution.
Roughly speaking, the value of ζ(k) increases as long as
the value of qg(k+1) ≈ qg(k), i.e. the algorithm does not
find a significantly better optimal solution.

It is now possible to define the behaviors of the particles
in G2 and G3 by properly define the terms hγp(k),

hγn(k),
hγg(k). More specifically, the particles in group G2 are
used as short-range explorers, i.e. they search for optimal
solutions in an area of the search space close to the
actual best solution qg(k). To define their behavior, the
parameters introduce in the Eq. 7 (for h = 2) are:

2γp(k) = 2kp · ζ
−1(k)

2γn(k) = 2kn · ζ−1(k)
2γg(k) = 2kg · ζ(k)

(9)

where the constants 2kp,
2kn,

2kg are tuning parameters
typically set to 2.05 (Hu and Eberhart, 2002). From Eq. 8
and Eq. 9, it follows that as long as the best solution is
not substantially improved, and thus the value of ζ(k)
increases, the influence of the terms 2γp(k) and 2γn(k)
vanishes and the effect of 2γg(k) increases. Moreover, as
0.9 ≤ χi ≤ 1, the particles in G2 tend to collapse on qg. In
this way, G2 explores the area surrounding qg(k).

The particles in group G3 are used instead for long-
range exploration, i.e. their task is to search possible
optimal solution in region of the search space that are far
away from the actual qg(k). In this case, the parameters

hγp(k),
hγn(k),

hγg(k), (for h = 3) are given by
3γp(k) = 0
3γn(k) = 0
3γg(k) =

3kg ·

(

δi(k)−
1

tanh(δi(k))
+ Ω(k)

) (10)

where 3kg is a constant typically set to 2.05 (Hu and Eber-
hart, 2002) and δi(k) = |qg(k) − qi(k)| is the Euclidean

distance between the i-th particle and the actual qi
g(k).

The term Ω(k) in Eq. 10 is a function of a threshold
parameter ρ(k), namely

Ω(k) =
1

tanh(ρ(k))
− ρ(k) (11)

i.e. if distance between the i-th particle and qg(k) is
lower than a threshold ρ(k), then the area around qq(k)
is repulsive, attractive otherwise (see Fig. 1). In order
to ensure that the particles in G3 can act as long-range
explorers able to adapt their behavior depending on the
fitness function, the value of ρ(k) is defined as a function
of the memory factor as

ρ(k) = α · | sin (β · ζ(k)) | (12)

where the two parameters α, β are used to define the
maximum radius of expansion of the repulsive zone and
the frequency in the variation of ρ(k), respectively.

The choice of the values in Eq. 10 can be explained as
follows. From Eq. 10 and Eq. 11, the increasing value
of ζ(k) leads to a value of Ω(k) that changes according
to Eq. 12, thus pushing the particles in G3 away from
qg(k). As a consequence, as long as the best solution
is not consistently improved, the group G3 is pushed to
explore areas of the search space that are far from qg.

Once vi(k + 1) is calculated, the position of each particle
is then updated as in Eq. 4.

The effectiveness of the B-PSO algorithm w.r.t. the classic
PSO algorithm has been investigated by collecting statis-
tical results gathered with Matlab simulations. In partic-
ular, a set of benchmark functions typically used in the
literature to test meta-heuristic optimization algorithms
has been considered. The results are presented in (Falconi
et al., 2013).

3. B-PSO APPLIED TO THE INVERSE KINEMATICS
PROBLEM

The B-PSO algorithm presented in Sec. 2.2 has been
exploited to solve the inverse kinematics problem for a
generic M degrees of freedom manipulator operating in
presence of No environmental obstacles.

3.1 The fitness function

The idea beyond the use of B-PSO algorithm is to calculate
the inverse kinematics of a manipulator operating in an
environment cluttered with obstacles by working directly
in the joint space, thus avoiding any problem related to
singularities. Given a M degrees-of-freedom manipulator,
each particle of P represents a possible joint configuration
of the manipulator.

The direct kinematics function of the robot whose joint
configuration is defined by qi(k) is thus given by

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8477

fkine(q
i(k)) =0 TM (qi(k)) =

[

0Ri
M (k) 0pi

M (k)

[0 0 0] 1

]

(13)

where 0Ri
M (k) ∈ R

3×3, 0pi
M (k) ∈ R

3×1 represent the ori-
entation and position of the end-effector depending on the
current joint configuration, respectively. The desired final
pose of the end-effector can be defined by the homogeneous
matrix T d ∈ R

4×4, i.e.

T d =

[

Rd pd

[0 0 0] 1

]

(14)

where Rd ∈ R
3×3 and pd ∈ R

3×1 represent the desired
orientation and position of the end-effector, respectively.
From Eq. 13 and Eq. 14, it is thus possible to calculate at
instant k the position error ∆p(k) and the angular error
∆a(k). More formally, the position error is defined as

∆p(k) =
(

pd −
0pi

M (k)
)2

(15)

To calculate the angular error and at the same time avoid
the singularities that typically arise when the Euler angles
are used, we have used the quaternion representation. As
it is well known, a unit quaternion expressed in a given

frame Fw is a four dimensional vector ǫ =
[

ǫ0,η
T
]T

∈ R
4,

where ǫ0 denotes the scalar part of the quaternion and

η = [ǫ1, ǫ2, ǫ3]
T
denotes its vectorial part. Moreover

ǫ = ǫ0 + ǫ1î+ ǫ2ĵ + ǫ3k̂

with the constraint ǫ20+ ǫ21+ ǫ22+ ǫ23 = 1; î, ĵ, k̂ are the unit
vectors of the x, y, z axes of frame Fw. Given a rotation
matrix R = [Rij] ∈ R

3×3 that describes the asset of the
body frame Fb with respect to the inertial frame Fw, the
corresponding quaternion can be computed as:

ǫ0=
1

2

√

1 +R11 +R22 +R33, ǫ1=
R32 −R23

4 · ǫ0

ǫ2=
R13 −R31

4 · ǫ0
, ǫ3=

R21 −R12

4 · ǫ0

(16)

The derivative of the quaternion vector is calculated using

the quaternion propagation rule, namely ǫ̇ =
[

ǫ̇0, η̇
T
]T

with

ǫ̇0 = −
1

2
ǫ̂
T
ω η̇ =

1

2

[

ǫ0I3 + η×
]

ω (17)

being I3 the 3 × 3 identity matrix. Further discussions
on quaternion properties and on the quaternion propa-
gation rule can be found e.g. in (Caccavale and Villani,

1999).Given two generic quaternions ǫ1 =
[

a0, ηT
a

]T

and ǫ2 =
[

b0, ηT
b

]T
, the angular error ∆a(ǫ1, ǫ2) =

[

δǫ0, δηT
]T

is defined as:

∆a(ǫ1, ǫ2)=

[

δǫ0
δη

]

=

[

a0 −ηT
a

ηa a0I3 + η×

a

]

[

b0
−ηb

]

(18)

where η×

a is the 3 × 3 skew symmetric matrix generated
from the vector ηa, i.e.

ηa =

[

s1
s2
s3

]

=⇒ η×

a =

[

0 −s3 s2
s3 0 −s1

−s2 s1 0

]

.

By exploiting Eq. 18, it is now possible to define the an-
gular error between the desired and the actual orientation
of the manipulator’s end-effector, i.e.

∆a(k) = ∆a(ǫd, ǫ
i(k))2 (19)

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

2

3

4

5

6

7

8

9

dih,j

∆
h
,j

o
(q

i
(k
))

dih,j ≤ rho

µh,j
o = 1

dih,j > rho

µh,j
o = 0

⇑
+∞

Fig. 2. Profile of the function in Eq. 21, assuming spherical
obstacles.

where ǫi(k) and ǫd are the quaternions corresponding to
0Ri

M (k) and Rd as introduced in Eq. 13 and Eq. 14,
respectively.

In order to include the No obstacles placed in the robot’s
workspace as part of the fitness function, another term
∆o(k) has to be defined. Namely,

∆o(k) =

No
∑

h=1

M
∑

j=1

∆h,j
o (qi(k)) (20)

where ∆h,j
o (qi(k)) takes into account the fitness cost cor-

responding to a collision between the h-th obstacle and the
j-th link of the manipulator. Roughly speaking, the term
∆o(k) maps the obstacles from the robot’s workspace to
its joint space.

For the sake of clarity, let us consider obstacles with
spherical shape, i.e. the generic h-th obstacle is fully
described by its radius rho and the position of its center ph

o

w.r.t. a common reference frame Fw (typically the robot’s
base frame). Furthermore, let us suppose that the links of
the manipulator can be represented as segments.

Then, the term ∆h,j
o (qi(k)) introduced in Eq. 20 is defined

as (see Fig. 2),

∆h,j
o (qi(k)) = µh,j

o

(

tanh

(

1

dih,j

)

− tanh

(

1

rho

)

)

(21)

where dih,j is the Euclidean minimum distance between
the center of the h-th obstacle and the j-th link of the
manipulator (see Fig. 3). The value of µh,j

o is a constant
such that

µh,j
o =

{

1 if dih,j ≤ rho

0 otherwise

Finally, the fitness function exploited by B-PSO is defined
as

f(qi) = Kp ·∆p(k) +Ka ·∆a(k) +Ko ·∆o(k) (22)

where Kp ≥ 0, Ka ≥ 0 and Ko ≥ 0 are a tuning
parameters.

Let us remark that, depending on the value of the tuning
parameters Kp, Ka in Eq. 22, the B-PSO algorithm can
solve the inverse kinematics function w.r.t. the robot
dextrous workspace (Kp > 0 ∧ Ka > 0) or w.r.t. its
reachable workspace (Kp > 0 ∧ Ka = 0) (Siciliano and
Khatib, 2008).

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8478

x

y

x

y

−0.5 0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

rhodih,1

dih,2

dih,3

Fw

T d

J1

J2

J3

0TM (qi(k))

h-th obstacle

Fig. 3. An example of a planar manipulator performing
a positioning task in an environment with circular
obstacles.

Table 1. Denavit-Hartenber parameters of the
3-DOF planar manipulator

di θi ai αi

Joint 1 0 θ1 1 0

Joint 2 0 θ2 1 0

Joint 3 0 θ2 1 0

4. SIMULATIONS

In order to prove the effectiveness of the presented al-
gorithm, several Matlab simulations considering different
scenarios have been performed. In the following, without
loss of generality, we refer to the planar manipulator
with three rotational joints described by the Denavit-
Hartenberg parameters reported in Tab. 1. As a conse-
quence, each particle performing B-PSO is now defined
as qi(k) = [θ1, θ2, θ3]

T , where θ1, θ2, θ3 are the joint
variables. More in details, two different cases have been
considered in our simulations. In the first case, we have
studied an environment with two obstacles (see Fig. 4(a))
and the IK problem has been solved in the dexterous
workspace, i.e. in the fitness function defined in Eq. 22 we
set Kp = Ka = Ko = 1. In the second case, we have tested
two scenarios with increasing complexity (see Fig. 4(b) and
Fig. 4(c), solving the inverse kinematics problem w.r.t. the
reachable workspace of the manipulator, i.e. in Eq. 22 we
set Kp = Ko = 1 and Ka = 0.

Data have been collected by running 100 simulations on
the three different scenarios (see Fig. 4). Similar simula-
tions have been performed also with the standard PSO
algorithm introduced in Sec. 2.1, thus providing a signif-
icant comparison between the two methodologies. Let us
remark that it is not possible to compare the B-PSO with
the CLIK algorithm since this cannot deal with obstacles
placed in the robot’s workspace. More in particular, both
the PSO and B-PSO algorithms exploit a population of a
total of 20 particles that, in the case of B-PSO with three
subgroups, are divided as ‖G1‖ = 1, ‖G2‖ = 5, ‖G3‖ = 14
(or, for brevity, 1− 5− 14).

An analysis of the simulation data regarding the perfor-
mances of PSO and B-PSO is reported in Tab. 2, where
for both the algorithms the mean convergence time (TPSO,

TB−PSO), the time standard deviation (T̂PSO, T̂B−PSO)
and the success rate (S%,PSO, S%,B−PSO) are reported.
The time efficiency ηT of the B-PSO w.r.t. the classic PSO
algorithm is reported in the last column, where

ηT =
TPSO

TB−PSO

Each simulation is concluded if the algorithm reaches
a configuration corresponding to a value of the fitness
function lower than a predefined threshold ε or if the
number of iteration is greater than a predefined value
kmax, i.e. the algorithm stops when

(

f(qg(k)) ≤ ε
)

∨ (k > kmax)

In our experiments, we set ε = 10−3 and kmax = 1000.

4.1 Discussion of the results

As it can be seen in Tab. 2, the B-PSO algorithm presents
better performances w.r.t. the standard PSO. In each sce-
nario the PSO has a success rate that is significantly low,
while the B-PSO algorithm is always able to find a solution
for the IK problem. Moreover, even in case of success, the
PSO presents a significantly higher convergence time if
compared with B-PSO. The low convergence rate of the
PSO is related to the fact that the obstacles introduced
in the workspace are mapped into the joint space through
∆o(k) (in Eq. 20), thus the search space presents many
plateaus where the swarm can eventually be trapped. In
fact, while on one side the 0χ factor introduced in Eq. 3
avoids the swarm to diverge, on the other side it forces the
particles to collapse to qg(k). As a consequence, after few
iterations the swarm is not able to properly explore the
search space. This problem has been avoided in B-PSO by
introducing the long-range explorers (particles in group
G3). On the other side, the particles in G1 and G2 have a
behavior that leads them to local optimization in an area
of the search space localized around the current qg(k),
thus speeding up the convergence of the algorithm. It is
worth to notice that, as it could be expected, by increasing
the complexity of the environment, the average number of
iterations required to reach f(qg(k)) ≤ ε increases. At the
same time, the success rate of the PSO algorithm decreases
while the success rate of the B-PSO is always 100%.

5. CONCLUSIONS

In this paper, a Behavioral-based Particle Swarm Opti-
mization algorithm has been presented in order to solve the
inverse kinematics problem for a serial robot operating in
an environment cluttered with obstacles. The defined fit-
ness function can take into account not only the problem of
positioning the end-effector in a desired point in the space,
but it considers also the problem of its final orientation.
The effectiveness of the B-PSO regarding the IK problem
have been proved by means of simulations. By comparing
the gathered results with analogous simulations performed
with standard PSO algorithm, it follows that not only our
approach has a 100% success rate, but also that the B-PSO
converges faster than PSO.

REFERENCES

Akat, S.B. and Gazi, V. (2008). Particle swarm opti-
mization with dynamic neighborhood topology: Three

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8479

y

z

y

z

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

T d

Fw

(a)

y

z

yz

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

T d

Fw

(b)

y

z

z
y

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

T d

Fw

(c)

Fig. 4. Scenarios with increasing complexity considered in the simulation runs. One of the solutions calculated by B-PSO
is depicted in each scenario.

Table 2. Results collected over 100 simulation run w.r.t. the environments reported in Fig. 4.

PSO with N=20 B-PSO with N=1-5-14

Mean time Standard dev. Success rate Mean time Standard dev. Success rate Time eff.

TPSO T̂PSO S%,PSO TB−PSO T̂B−PSO S%,B−PSO ηT

Scenario 1 (Fig.4(a)) 85.5 215.6 85% 46.4 21.6 100% 1.84

Kp = Ka = Ko = 1

Scenario 2 (Fig.4(b)) 445.2 419.5 65% 67.2 19.8 100% 6.25

Kp = Ko = 1, Ka = 0

Scenario 3 (Fig.4(c)) 628.1 393.1 50% 78.1 25.3 100% 8.04

Kp = Ko = 1, Ka = 0

neighborhood strategies and preliminary results. 2008
IEEE Swarm Intelligence Symposium, 1–8.

Beheshti, M. and Tehrani, A. (1999). Obstacle avoidance
for kinematically redundant robots using an adaptive
fuzzy logic algorithm. In American Control Conference,
1999. Proceedings of the 1999.

Caccavale, F. and Villani, L. (1999). Output feedback
control for attitude tracking. Systems & Control Letters,
38(2), 91 – 98.

Dash, K.K., Choudhury, B., Khuntia, A.K., and Biswal, B.
(2011). A neural network based inverse kinematic prob-
lem. In Recent Advances in Intelligent Computational
Systems (RAICS), 2011 IEEE, 471–476.

Du, Y. and Wu, Y. (2011). Application of ipso algorithm
to inverse kinematics solution of reconfigurable modular
robots. In Mechatronic Science, Electric Engineering
and Computer (MEC), 2011 International Conference
on.

Eberhart, R. and Shi, Y. (2000). Comparing inertia
weights and constriction factors in particle swarm op-
timization. In Evolutionary Computation, 2000. Proc.
2000 Congress on, 84 –88 vol.1.

Falconi, R., Grandi, R., and Melchiorri, C. (2013). A
behavioral-based approach to particle swarm optimiza-
tion. In to the 10th IEEE International Conference on
Robotics and Biomimetics, 2013. ROBIO 2013.

Grandi, R., Falconi, R., and Melchiorri, C. (2012). A
navigation strategy for multi-robot systems based on
particle swarm optimization techniques. In Proceedings
of the 10th IFAC Symposium on Robot Control 2012.

Hu, X. and Eberhart, R. (2002). Adaptive particle swarm
optimization: detection and response to dynamic sys-

tems. In Evolutionary Computation, 2002. CEC ’02.
Proceedings of the 2002 Congress on, volume 2.

Huang, H.C., Chen, C.P., and Wang, P.R. (2012). Particle
swarm optimization for solving the inverse kinematics of
7-dof robotic manipulators. In Systems, Man, and Cy-
bernetics (SMC), 2012 IEEE International Conference
on, 3105–3110.

Kennedy, J. and Eberhart, R. (1995). Particle swarm
optimization. In Neural Networks, 1995. Proceedings.,
IEEE International Conference on, volume 4, 1942 –
1948 vol.4.

Nearchou, A.C. (1998). Solving the inverse kinematics
problem of redundant robots operating in complex envi-
ronments via a modified genetic algorithm. Mechanism
and Machine Theory, 33(3), 273 – 292.

Siciliano, B. (1990). Kinematic control of redundant robot
manipulators: A tutorial. Journal of Intelligent Robotic
Systems, 3, 201–212.

Siciliano, B. and Khatib, O. (eds.) (2008). Springer
Handbook of Robotics. Springer.

Snyman, J.A. (2005). Practical Mathematical Optimiza-
tion: An Introduction to Basic Optimization Theory and
Classical and New Gradient-Based Algorithms. Applied
Optimization, Vol. 97. Springer-Verlag New York, Inc.,
second edition.

Tewolde, G.S., Hanna, D.M., and Haskell, R.E. (2009).
Enhancing performance of pso with automatic param-
eter tuning technique. 2009 IEEE Swarm Intelligence
Symposium, 67–73.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8480

