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Abstract: A framework to extend Luenberger observer to nonlinear systems is proposed. The
theory of invariant manifolds plays a central role in the framework. It is shown that the invariant
manifolds for observer design are often non-standard ones and this makes their computations
challenging. The proposed theory successfully removes the condition imposed on the system
to be observed in the previous research in nonlinear Luenberger observer. Numerical examples
show that the design methods proposed produce more effective observers compared with linear
observers.

1. INTRODUCTION

In practice, measurements of states of dynamical systems
are often limited. It is then natural to pose a problem of
reconstruction of states from the limited number of mea-
surements, which is called the observer design problem.
The first approach to this problem is attributed to Luen-
berger Luenberger [1964] who was the first to solve this
problem.However, attempts to the problem of state recon-
struction of nonlinear systems took longer to appear. The
output injection method (Krener and Isidori [1983]), high-
gain observer (Khalil [1999], Atassi and Khalil [1999]),
and H∞ approach (Pertew et al. [2006]), to name a few.
The basis of Luenberger observer is the invariance relation
between system to be observed and observer. Kazantsis
and Kravaris (Kazantzis and Kravaris [1998]) derived the
nonlinear counterpart for the Sylvester equation in Lu-
enberger [1964]. However, the paper does not deal with
practical methods for solving this pde except for Taylor
series expansion. Recent papers Andrieu and Praly [2006],
Andrieu [2010] investigate further this pde, but, still com-
putational aspects need to be studied.

The center, center-stable and stable manifolds are well-
known objects. of great importance. A detailed descrip-
tion and proof of its existence are presented in Kelley
[1967]. The difficulty of using the Taylor expansion-based
approach has been long recognized, an explicit example is
shown in Sakamoto [2013a]. Recently, a method for finding
the stable manifold based on iterative solution of certain
differential equations appeared. This method is suitable for
solution of practical problems, optimal control of nonlinear
1 This work was supported by the Czech Ministry of Education
through the grant No. LG12008 and by the Czech Science Foundation
through the grant No. 13-02149S.

systems among all. It is presented in Sakamoto and van der
Schaft [2008], Sakamoto [2013a] and successfully extended
to the construction of the center and center-stable man-
ifolds in Sakamoto and Rehák [2011] with application to
the optimal output regulation.

The aim of this paper is to propose a framework for
computing the invariant manifold that defines the system-
observer invariance relation based on the aforementioned
method for computation of the center, unstable or center-
unstable manifolds. It is equivalent to solve the pde derived
in Kazantzis and Kravaris [1998]. This is an alternative
approach compared to Andrieu and Praly [2006], Andrieu
[2010] in the sense that observer design can be explicitly
carried out. Also, the methods presented here enable to
remove the requirement of Kazantzis and Kravaris [1998],
namely that the linearization of the observed system must
be either asymptotically stable or have all eigenvalues
with positive real parts. Invariant manifolds that appear
in the observer design theory are non-standard in the
sense that the invariant manifold theory in Aulbach et al.
[1986], Coddington and Levinson [1955], Chow and Hale
[1982] cannot be applied. This comes from the fact that
the observer states which have stronger stability must be
dependent variables on the invariant manifold as well as
from the special way of interconnection of the system and
observer.

• Removing the assumption in Kazantzis and Kravaris
[1998] about the location of eigenvalues of the ob-
served system. This allows one to handle systems
with linearization having eigenvalues with positive,
negative and zero real parts.

• The proposed observer design method is more prac-
tical and viable than Andrieu and Praly [2006].
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• The computation method for invariant manifolds is
based on the flow approach for the manifolds (see
Sakamoto and van der Schaft [2008], Sakamoto and
Rehák [2011], Sakamoto [2013a]), which has been
already applied to many actual systems with ex-
perimental verifications (see Fujimoto and Sakamoto
[2011], Sakamoto [2013b]) and proven to be superior
to the Taylor method from the viewpoints of accuracy
and computational complexity.

The organization of the paper is as follows. The next
section contains the definition of the observer problem.
§3 provides the framework for observer design theory
based on invariant manifold theory. Next section proposes
the computational methods In section 6, we show some
illustrative numerical examples. Unfortunately, due to
space limitations, no proof of the Theorem 3.6 can be given
here. It will be presented in some future work.

2. NONLINEAR LUENBERGER OBSERVER
THEORY AND MOTIVATION OF THE RESEARCH

Let us consider the nonlinear system

ẋ = f̄(x) = Ax+ f(x), y = h(x) = Cx+ γ(x), (1)

where A is an n × n matrix, C is a 1 × n matrix and the
functions f : Rn → Rn and γ : Rn → R (which satisfy
f(0) = 0, Df(0) = 0, γ(0) = 0, Dγ(0) = 0) consist of
higher-order terms.

Assumption 2.1. The pair (C,A) is observable.

Luenberger’s notion of observer is based on invariant
manifold (invariant subspace in the case of linear systems)
of closed loop system (see, Luenberger [1964]).

Definition 2.2. A dynamical system ˙̂x = β(x̂, y) with
β : Rn × R → Rn is called an observer for (1) if there
exists a locally invertible (around the origin) map T :
Rn → Rn with T (0) = 0 such that x̂ = T (x) is an
positively invariant manifold for the composite system (1)-
(2.2) around (x, x̂) = (0, 0) and that the manifold is locally
positively attracting for the composite system.

An observer in the sense of Definition 2.2 is proposed by
Kazantsis and Kravaris under a restrictive assumption.

Theorem 2.3. (Kazantzis and Kravaris [1998], Theorem
1, 2) Assume that all eigenvalues of A lie in the left or
right open half complex plane. Then, there exists a locally
invertible analytic map T satisfying ∂T

∂x (x)f̄(x) = ÃT (x)+

bh(x), where Ã is a suitably chosen Hurwitz matrix and a

vector b ∈ Rn is such that the pair (Ã, b) is controllable.
Using T (x), the following system is an observer for (1):

˙̂x = f̄(x̂) +

(
∂T

∂x
(x̂)

)−1

b(y − h(x̂)) (2)

Remark 2.4. The key assumption in Kazantzis and Kravaris
[1998] is that the linearization of the system whose states
are reconstructed is either asymptotically stable or has
all eigenvalues with positive real parts. This is because
they rely on the so-called Lyapunov’s Auxiliary Theorem
and compute T (x) by the Taylor expansion approach. The
present paper aims at removing their assumptions and
present a computational framework for T (x) based on in-
variant manifold theory. To motivate our approach better,

let us consider a simple example of computing invariant
manifolds around the origin for ẋ = ax, ẇ = bw, ab ̸= 0.
Although this system of equations is uncoupled and looks
simple, the topological properties around the origin of the
equations in this study such as (8) can be well understood
with this example since the effect of higher order terms
is negligible. The invariant manifold w = T (x) satisfies
dT
dx × ax = bT (x), which is readily solved as

T (x) = ce
b
ax, c : arbitrary constant. The differentiabil-

ity and uniqueness of this solution can be summarized in
Table 1. We note that when ab < 0, which is included

unique not unique

Cr empty
r <

b

a
< r + 1

T (x) = ce
b
a
x

Cω b ̸= na for any n ∈ N
T (x) = 0

b = na for some n ∈ N
T (x) = ce

b
a
x

Table 1. The differentiability and uniqueness
of an invariant manifold

in the unique Cω case, the invariant manifold is a stable
or unstable manifold. The assumptions in Kazantzis and
Kravaris [1998] correspond to the unique Cω solution case
that only allows the observed system to have an asymp-
totic or a totally unstable linear part. The Cω smoothness
is necessary since they use the Taylor series approach. For
the purpose of observer design, however, C1 smoothness
is sufficient and, as was mentioned in Introduction, the
Taylor approach has serious drawbacks for solving non-
linear pdes (Sakamoto [2013a]). Generalizing their results
requires to handle the cases where non-unique Cr (r > 1)
solutions exist. The non-uniqueness causes a challenge in
the computation of invariant manifolds since most theories
of invariant manifolds rely on uniqueness.

3. INVARIANT MANIFOLD THEORY FOR
OBSERVER DESIGN

In this section, we show that the construction of map
T for observer mentioned in the previous section. The
construction procedure depends on the stability type of
the system to be observed. Let us consider the system of
ordinary differential equations of the following form.

ẋ = A1x+X(x, y, z)

ẏ = A2y + Y (x, y, z)

ż = A3z + Z(x, y, z)

(3)

where dimx = n1, dim y = n2, dim z = n3, with n = n1 +
n2 + n3, X : Rn → Rn1 , Y : Rn → Rn2 and Z : Rn → Rn3

are Ck functions (k > 1) with (X,Y, Z)(0, 0, 0) = 0,
D(X,Y, Z)(0, 0, 0) = 0.

Assumption 3.1. Real parts of all the eigenvalues of A1,
A2 and A3 are negative, zero and positive, respectively.

Assumption 3.2. System (3) is forward and backward
complete.

To avoid the non-uniqueness of center manifolds a cut-off
function for the y-component is used (Sijbrand [1985]).

X̃(x, y, z) = X

(
x, yψ

(
|y|
δ

)
, z

)
Ỹ (x, y, z) = Y

(
x, yψ

(
|y|
δ

)
, z

)
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Z̃(x, y, z) = Z

(
x, yψ

(
|y|
δ

)
, z

)
,

δ > 0 is a constant and ψ : [0,∞) → [0, 1] is a C∞

function satisfying ψ(s) = 1 on [0, 1] and ψ(s) = 0 on

[2,∞). Hereafter, we re-write X̃, Ỹ and Z̃ as X, Y and Z.

The goal is to find an invariant manifold w = η(x, y, z) in
a neighborhood of the origin for (3) and a system

ẇ = Ãw +W (x, y, z), (4)

where dimw = n, W : Rn → Rn is Ck function (k > 1)
with W (0, 0, 0) = 0, DW (0, 0, 0) = 0. For system (4), we
assume the following.

Assumption 3.3. Ã ∈ Rn×n is an asymptotically stable
matrix and it satisfies Reλi(Ã) < Reλj(A1) for i =
1, . . . , n, j = 1, . . . , n1, where λi denotes the i-th eigen-
values of a matrix.

The following lemma (Kelley [1967]) plays an crucial role.

Lemma 3.4. For (3), there exist unique invariant mani-
folds

(i) Ck stable manifold: y = s1(x), z = s2(x)
(ii) Ck−1 center manifold: x = c1(y), z = c2(y)
(iii) Ck unstable manifold: x = u1(z), y = u2(z)
(iv) Ck−1 center-stable manifold: z = cs(x, y)
(v) Ck−1 center-unstable manifold: x = cu(y, z)

These manifolds are defined in neighborhoods of the origin
in appropriate subspaces.

We first consider the special case below.

Proposition 3.5. Suppose that n1 = 0. Then, there exists
a center-unstable manifold w = η(y, z) of (3) and (4),
which is unique in a neighborhood of the origin. It can
be computed by

η(y, z) =

∫ 0

−∞
e−ÃsW (φ(s, y, z)) ds, (5)

where φ(t, y, z) denotes the solution of (3) starting from
(y, z) ∈ U at t = 0 with U being the domain of attraction
for the center-unstable manifold in the negative time
direction.

Note that the case in Proposition 3.5 includes n1 = n2 = 0,
in which an unstable manifold is computed and the case
n1 = n3 = 0, in which a center manifold is computed. Note
also that formula (5) is a special case of the algorithm in
Sakamoto and Rehák [2011] due to the one-way interaction
structure between (3) and (4).

Theorem 3.6. When n3 = 0, an invariant manifold w =
η(x, y) exists in a neighborhood of (x, y) = (0, 0). This
manifold is C1 but not unique.

The proof of Theorem 3.6 is omitted due to space limita-
tions.

Theorem 3.7. When n1, n3 > 1, there exists a C1 invari-
ant manifold w = η(x, y, z) in a neighborhood of the origin.
This manifold is not unique, but, it is unique and Ck−1 on
the center-unstable manifold x = cu(y, z) in Lemma 3.4.

Remark 3.8. Unlike the one in Proposition 3.5, the invari-
ant manifolds in Theorems 3.6, 3.7 are non-standard ones
in the sense that the standard theory in Lemma 3.4 or

computations in Sakamoto and Rehák [2011] cannot be
applied. In Theorem 3.6, if one seeks an invariant manifold
of the form (x, y) = ζ(w), where the variable with stronger
stability is chosen as an independent variable, it uniquely
exists and the theory in Aulbach et al. [1986], Chow and
Hale [1982], Coddington and Levinson [1955] can be used.
But, then, due to the one-way interaction between (3)
and (4), the trivial manifold ζ = 0 is obtained and no
other manifold is found because of the uniqueness. Thus,
the attempt to use the standard theory and converts the
relation (x, y) = ζ(w) to get w = η(x, y) necessarily fails.

Proof of Theorem 3.7: First of all, the center-unstable
manifold x = cu(y, z) for (3) exists and it is unique.
From Proposition 3.5, there exists a unique center-unstable
manifold w = ηcu(y, z) for the system

ẏ = A2y + Y (cu(y, z), y, z)

ż = A3z + Z(cu(y, z), y, z)

ẇ = Ãw +W (cu(y, z), y, z).

(6)

The invariant manifold w = η(x, y, z) we seek must
agree with w = ηcu(y, z) on x = cu(y, z), namely,
η(cu(y, z), y, z) = ηcu(y, z). Next, we compute an invariant
manifold w = ηcs(x, y) for

ẋ = A1x+X(x, y, cs(x, y))

ẏ = A2y + Y (x, y, cs(x, y))

ẇ = Ãw +W (x, y, cs(x, y)).

using Theorem 3.6, where z = cs(x, y) is the center-stable
manifold for (3). The invariant manifold w = ηcs(x, y)
is not unique, but, it is possible to prove that there
exists an invariant manifold w = η(x, y, z) satisfying
η(cu(y, z), y, z) = ηcu(y, z), η(x, y, cs(x, y)) = ηcs(x, y)
by connecting these two manifolds with the flows of the
original ode (3). 2

4. COMPUTATIONAL METHOD

4.1 General case

Here, we describe the computation for the case in Theorem
3.7. To be more specific, it will be shown how the mani-
folds from the previous section are obtained. Step 1: Let
Mcu = {(x, y, z) |x = cu(y, z), (y, z) ∈ V } be the center-
unstable manifold in (3). To compute this, the algorithm
in Sakamoto and Rehák [2011] is applied with |y0|, |z0|
sufficiently small so that the algorithm converges.

The set M
(k)
cu :=

{
(xk(t, y0, z0), yk(t, y0, z0), zk(t, y0, z0)) |

(y0, z0) ∈ V, t 6 0
}

is an approximation of Mcu in the sense that on M
(k)
cu , it

approximately holds that
xk(t, y0, z0) = cu(yk(t, y0, z0), zk(t, y0, z0)).

Step 2: Set

wk(t, y0, z0) =

∫ t

−∞
eÃ(t−s)W (xk(s, y0, z0), yk(s, y0, z0),
zk(s, y0, z0)) ds.

The convergence of this integral and the fact that
xk(t, y0, z0), yk(t, y0, z0), zk(t, y0, z0), wk(t, y0, z0) → 0 as
t→ −∞ can be shown as in Sakamoto and Rehák [2011].
Note that the latter property will eventually guarantee
that η(0, 0, 0) = 0.
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Step 3: Define the set

Ω′
(k)

=
{
(xk(t, y0, z0), yk(t, y0, z0), zk(t, y0, z0), wk(t, y0, z0)) |

(y0, z0) ∈ V, t 6 0
}
,

using the computation in Step 2. Note that this set is a
parametrization of the center-unstable manifold for (6) in
an approximate sense. Take a point (x0, y0, z0, w0) ∈ Ω′

(k)

and a sufficiently large tf > 0. Solve the boundary value
problem:

P (x0, y0, z0, w0) :{
System (3) with (x(tf ), y(tf ), z(tf )) = (x0, y0, z0),

System (4) with w(tf ) = w0.

Define the set

Ω(k) =
{
(x(t), y(t), z(t), w(t)) |(x(t), y(t), z(t), w(t))

solves P (x0, y0, z0, w0),

(x0, y0, z0, w0) ∈ Ω′
(k), t 6 0

}
.

As k → ∞, Ω(k) approximates the invariant manifold of (3)
and (4) around the origin, on which w = ηcu(y, z) holds.

Step 4: Compute a function ηk(x, y, z) such that w =
ηk(x, y, z) on Ω(k). This computation can be done using
polynomial fitting or multi-dimensional interpolation.

4.2 Stable case

The computation of the invariant manifold in Theorem
3.6 (z-component missing) is not as complicated as that
in Theorem 3.7. The initial value w0 in (4) can be fixed
arbitrarily. One just computes (3), (4) to get the set

Ω = {(x(t), y(t), w(t)) | (x(0), y(0)) ∈ U} ,
where U is the domain of attraction for (3). For this, no
iterative computation is necessary. Then, one computes
η(x, y) such that w = η(x, y) on Ω. Theorem 3.6 guaran-
tees that η is C1, η(0, 0) = 0 and ∂η/∂(x, y)(0, 0) = 0.

Remark 4.1. Numerical computation raises other issues
that cannot be discussed into detail here. For instance, one
of them is the influence of integration on finite intervals
rather than on infinite ones or the number of points used
for interpolation.

5. OBSERVER DESIGN

Conversion of the system into the form suitable for apply-
ing the above algorithm is described here. The observed
system must be transformed into a block-diagonal form as
in (3) and it must fit (4).

The equation for observer design is given by

˙̄w = Ãw̄ + bh(ξ) (7)

Ã introduced before, ξT = (xT , yT , zT ), b ∈ Rn and
∂h
∂ξ (0) ̸= 0. Hence this equation is not in the form (4).

Let us define h(ξ) = Cξ+ γ(ξ) where the smooth function
γ vanishes at the origin together with its derivatives.

To remove the off-diagonal first-order terms, one uses a
state transformation which will be defined below. Let Γ =(

A 0
bC Ã

)
with A = diag(A1, A2, A3) The transformation

matrix converting the matrix Γ into the block-diagonal

form is ( I 0
S I ) , where S is the unique solution of −SA +

ÃS + bC = 0. This equation has solution if λi(−A) +
λj(Ã) ̸= 0 for all i, j = 1, . . . , n, which can be satisfied

by choosing Ã so that max(ReEigÃ) < min(ReEigA).
Note that the variable ξ remains unchanged. In the new
coordinates w = w̄ − Sξ, the combined system reads

ξ̇ = Aξ + φ(ξ)

ẇ = Ãw +W (ξ),
(8)

where W consists of higher order terms f , γ. Additionally,
Ã and b are chosen so that (Ã, b) is controllable, which
assures, with the observability of (C,A), that S is a
nonsingular matrix.

Carrying out the computations from the prebious section,
one obtains the manifold w = η(ξ) = η(x, y, z) Using the
inverse transformation, we get w̄ = T (ξ) = η(ξ) + Sξ.
The function T is differentiable, moreover, its Jacobian is
nonzero at the origin due to the nonsigularity of S and
vanishing properties at the origin of the center-unstable
manifold. Hence, the observer in the form (2) can be
constructed with this function.

6. NUMERICAL EXAMPLES

6.1 Stable+unstable case 1

Consider a nonlinear system(
ẋ1
ẋ2

)
=

(
x1 − x31 + x2
x1 + x21x2 − x2

)
(9)

The matrix A =
(
1 1
1 −1

)
has eigenvalues ±

√
2 and we apply

Theorem 3.7 and its computation described in §4. Fig. 1

-10 -5 0 5 10
-10

-5

0

5

10

x1

x2

 

 

unstable manifold

stable manifold

Fig. 1. Stable and unstable manifolds

shows the computed stable and unstable manifolds of (9).
Let the observer candidate (in w̄-space) be

˙̄w = Ãw̄ + by, y = x1, (10)

where Ã =
(−2.7 0

2 −3

)
, b = (1, 1)T .

The values of η on the unstable manifold, namely ηcu is
first computed. To compute the values of η in a neigh-
borhood of the origin, flows of (9) are computed, which
are shown in Fig. 2. Integration of (9), (10) computes the
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0 5 10 15

-2

0

2

4

6

8

x1

x2

 

 

stable manifold

unstable manifold

Fig. 2. Flows around the origin

values of w for each flow, obtaining the set Ω(k), where k
is the iteration number of the algorithm in Sakamoto and
Rehák [2011]. Finally, η(x1, x2) is approximated by 5-th
order polynomials. Finally, T (x1, x2) = η(x1, x2)+S ( x1

x2
),

with S = ( 0.699 0.189
1.42 0.451 ). The observer equation is(

˙̂x1
˙̂x2

)
=

(
x̂1 + x̂2 − x̂31
x̂1 − x̂2x̂

2
1x̂2

)
+

(
∂T

∂x̂
(x̂)

)−1 (
x1 − x̂1
x1 − x̂1

)
.

The simulation results are shown in Figs. 3, 4. The
computation is performed in time duration [0, 2].

0 0.5 1 1.5 2
-1

0

1

2

3

4

 

 

x1

x2

x1hat

x2hat

Fig. 3. States of system and nonlinear observer

0 0.5 1 1.5 2
-12

-10

-8

-6

-4

-2

0

2

4

 

 

x1

x2

x1hatL

x2hatL

Fig. 4. States of system and linear observer

6.2 Stable+unstable case 2

Let φ(x1, x2) = 0.1(x1+x2)exp(
−16

(x1+x2)2
) if ∥(x1, x2)∥ ̸= 0,

φ(0, 0) = 0. Next system is described by equations(
ẋ1
ẋ2

)
=

(
x1 + x2
x1 − x2

)
+

1

5

(
−x31
x21x2

)
+

(
1
1

)
φ(x1, x2)

Note that the Taylor series of the function φ does not
converge at any neighborhood of the origin. Still, the
method described here is applicable. As in the previous
example, the approximation by fifth-order polynomials
is used. The observer was defined by matrices Ã =(−3 0

2 −3 ,
)
b = (1, 1)T the observable state being x1 again.

The observer attains the form(
˙̂x1
˙̂x2

)
=

(
x̂1 + x̂2
x̂1 − x̂2

)
+

1

5

(
−x̂31
x̂21x̂2

)
+ 0.1φ(x̂1, x̂2)

+

(
∂T

∂x̂
(x̂)

)−1 (
1
1

)
(x1 − x̂1). (11)

This leads to S =
(
0.321 −0.189
0.523 −0.451

)
. The Fig. 5 and 6 show

the difference between the observer computed as described
here and the Taylor polynomials-based one (using polyno-
mials of degree 5).

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5
System and nonlinear observer

 

 
x1
x2
x1hat
x2hat

Fig. 5. States of system and nonlinear observer

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5
System and Taylor observer

 

 

x1
x2
x1hatT
x2hatT

Fig. 6. States of system and observer constructed using
Taylor expansions

6.3 Stable case

In this section, we consider a lightly damped nonlinear
oscillator z̈ + 0.1ż + z3 = 0 with measurement y = z. The
state space equation is
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(
ẋ1
ẋ2

)
=

(
0 1
−1 −0.1

)(
x1
x2

)
+

(
0

−x31

)
, y = x1.

The observer will be designed based on ˙̄w = Ãw̄+by, Ã =(−0.5 0
0 −0.3

)
, b = (1,−1)T . After block-diagonalizing the

linear part of (6.3)-(6.3), the computation described in
§4.2 is applied. η(x1, x2) is approximated by 10-th order
polynomials. Finally, T (x1, x2) = η(x1, x2) + S ( x1

x2
), with

S =
(

0.333 −0.833
−0.189 0.943

)
. The observer equation in (x̂1, x̂2)-

space is(
˙̂x1
˙̂x2

)
=

(
x̂2

−x̂1 − x̂31 − 0.1x̂2

)
+

(
∂T

∂x̂
(x̂)

)−1(
x1 − x̂1

−(x1 − x̂1)

)
.

Fig. 7 shows the states of system, nonlinear observer and
linear observer. Fig. 8 shows the estimation errors of two
observers. It can be seen that the errors in the nonlinear
observer are smaller and converge faster than the linear
observer.
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Fig. 7. States of system, nonlinear, linear observers
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Fig. 8. Errors of nonlinear and linear observers

7. CONCLUDING REMARKS

A nonlinear extension of Luenberger observers based on
computation of invariant manifolds is presented. These
manifolds are rather nonstandard and their computation
differs according to the stability of the observed system.
Efficiency and capability of the algorithm was illustrated

by an example. Issues concerning computation in higher
dimensions as well as deriving error estimates remain an
open problem for future.

REFERENCES

Vincent Andrieu. Exponential convergence of nonlinear
luenberger observers. In Proc. of 49th IEEE Conference
on Decision and Control, pages 2163–2168, 2010.

Vincent Andrieu and Laurent Praly. On the existence
of a Kazantzis-Kravaris/Luenberger observer. SIAM J.
Control Optim., 45(2):432–456, 2006.

Ahmad N. Atassi and Hassan K. Khalil. A separation
principle for the stabilization of a class of nonlinear
systems. IEEE Trans. Automat. Control, 44(9):1672–
1687, 1999.

B. Aulbach, D. Flockerzi, and W. Knobloch. Invariant
manifolds and the concept of asymptotic phase. Časopis
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