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Abstract: The multi-robot coordination task is investigated in its Representation Space (RS).
First, the RS model of the robot system as well as its prescribed task is formulated by clarifying
the internal and external constraints affecting task realization. All constraints are depicted
as unreachable areas in RS model. Then, whether a task is feasible or not is transformed to
check 1) if the final representation denoting task realization of the robot system is reachable;
and 2) if there is a connecting trajectory illustrating the process that the start representation
varies to the final representation, amidst those unreachable areas denoting system constraints.
Performance of different planning algorithms are also evaluated upon the representation space,
from which the optimal planning algorithm could thus be recognized. The task of multi-robot
formation navigation in a warehouse environment is exemplified to illustrate the performance of
the proposed scheme: the formation of the robot system is maintained in motion with collisions
avoided. Moreover, by incorporating the task oriented motion planning framework, it is capable
of transforming an infeasible task into a feasible one with least adjustments in the system’s
formation to adapt to inner and/or external constraints during task realization.

1. INTRODUCTION

In many multi-robot coordination tasks, a group of robots
are required to march in a predefined spatial pattern or
formation. For example, in automatic warehouse applica-
tions, several robots are sometimes required to perform
storage and retrieval task in a specific formation. In search
and rescue tasks, a group of robots navigate inside a
building in formation to ensure a complete and efficient
search for survivals. And for transportation tasks, robots
sometimes need to maintain certain formation in order to
transport objects.

Many research work has already been dedicated to the
problem of multi-robot navigation in cluttered environ-
ment. Multi-robot system is difficult to be analyzed by
constructing configuration space model due to its ex-
tremely high dimension. Fully decentralized methods like
flocking or schooling strategies enable control and coor-
dinations of large groups of robots with relatively little
computation [1]. Each robot agent adjusts its velocity
according to its neighbors, subject to whole formation
requirements. However, in the presence of obstacles, for-
mation constraints or collision avoidance can not easily
be guaranteed. The relatively less centralized approaches
are behavior-based methods [4]. These approaches plan
motions by specifying the relations between the robots.
The robots move while maintain these relationships. Much
of these work do not guarantee that formation constraints
are maintained in the presence of obstacles. In [6], an
abstraction method was proposed to establish a bound-
ary for the robots, with which collision avoidance and
formation constraints can be guaranteed. However, in this
method, state information of each robot must be accessible
to all other robots to enable centralized control. Therefore,

the computational burden is extremely heavy when this
scheme is applied to robot groups of large numbers.

It is noted that the complexity of formation motion plan-
ning problem can greatly be reduced by combining motion
planning with the prescribed task. The idea of integrating
task and motion planning has been investigated for planar
robot navigation among movable obstacles . Obstacles can
be moved if they block the robot’s way from initial position
to goal position. The proposed approach decouples compu-
tations of the robot motions and obstacle movements and
maintains an explicit state of the task’s state space. Path
searching is conducted in this state space and probabilistic
completeness is proven. However, only planar applications
are considered and the proposed approach is not extend-
able for multi-robot system.

If the planner fails, it normally means that the task is
infeasible. Then how can an infeasible task be converted to
a feasible one? This problem is referred to as “Constraint
Relaxation” in [2]. The idea is to generate an initial
path considering only some of the constraints with high
priority and iteratively refine the path into a feasible
one by incorporating additional constraints [5]. A similar
strategy for multi-limbed robots moving on uneven terrain
is proposed in [3]. In [8], this problem is formulated as
Minimum Constraint Removal (MCR) motion planning
problem, in which the objective is to remove the fewest
constraints necessary to allow the start point and the goal
point connectable. A sampling-based motion planner is
presented that incrementally grows a roadmap according
to how many constraints are violated. The algorithm is
proved to be asymptotically optimal in that as more time
spent fewer numbers of obstacles need to be removed
to produce a feasible path. However, all these methods
mentioned above can only find out which constraint makes
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the task infeasible but can not provide hints on how to
modify the constraints to convert the task to be feasible.

The planning and coordination approaches of multi-robot
system proposed above have widely been applied in prac-
tice. However they are all constrained by specific tasks
and robot system attributes. If either the task requirement
or the robot system configuration is changed, collision
avoidance or formation constraints can not be guaranteed.
The Representation Space (RS) strategy towards robot
task planning was first proposed by Su et al. in [7]. An RS
is constructed to denote all factors that affect the task ac-
complishments, including inner factors from robot system,
such as its motion ability and/or manipulation ability,
and outer factors from surrounding environments, such as
obstacle avoidance and/or mutual collision avoidance. At
the start and the end stage of the task realization, the
corresponding representations of the robot system could
be denoted in its affiliated RS. The process of the robot
system to accomplish a specific task is the process that the
robot’s representation varies subject to inner and outer
constraints in its RS. If the task is feasible, there must
be at least one trajectory in the RS connecting its start
representation to the end representation. And the optimal
strategy to accomplish the task could be figured out among
those trajectories subject to a prescribed optimal index.

On the other hand, if there is no trajectory connecting
start and end representation of the robot system in its
RS, the task should then be infeasible. In this case, the
factors that prohibit the task to be accomplished could
be recognized in its RS. And it is natural to see what
factors make the task infeasible and how to change those
factors to convert an infeasible task to a feasible one. In
this paper, we investigate the robotic formation motion
task in a task oriented motion planning framework based
on its affiliated RS. By mapping task related constraints
into representation space, it is possible to adjust the task
requirement and/or robot system and turn the original
infeasible task into a feasible one.

This paper is organized as follows. Section II introduces
the multi-robot formation task from the viewpoint of
representation space model of the robot system. Section
III investigates task realizability as well as its optimal
realizing strategy. Section IV shows how to transform
an infeasible task to a feasible one with the help of RS,
followed by Conclusions in Section V.

2. MULTI-ROBOT FORMATION TASK

For a mobile vehicle capable of translating and rotating in
a 2D environment, its configuration space is constructed
as a 3 dimensional manifold SE(2) = R2 × S1. For a
flying robot able to translate and rotate in 3D space, its
configuration space can be SE(3) = R3 × SO(3). The
configuration space model characterizes the location and
orientation of the robot. Similarly we can model a multi-
robot system using configuration space by combining the
configuration space model of each robot using Cartesian
product. This model, therefore, is of extremely high di-
mension. Planning in a space of such high dimension causes
computational problems. To solve the problem, we propose
the representation space of multi-robot formation task and
design the hierarchical structure.

Fig. 1. Maximum number of robots in a rectangular
formation

2.1 Representation Space Model

Based on the representation space framework, we can
model the multi-robot formation by modifying the idea
of generalized coordinates [4]. The task related attributes
may include location, orientation, pattern and size of a for-
mation, which can be described in terms of representation
variable.

Formation Reference Frame(FRF) The FRF is a
body frame whose origin and orientation are uniquely de-
termined for any configuration of the formation elements.

The position vector from the origin of the inertial frame I
to the origin of FRF is denoted by po = (po)I , where (·)I

indicates a column vector of components relative to frame
I.

The location of a formation is defined as location of the
origin of formation reference frame(FRF ). The orientation
of formation is defined as the orientation of the FRF .

During any rigid displacement of the formation character-
ized by a rotation R, FRF is also rotated by R and origin
of FRF remains rigidly fixed to the formation. We define
R as rotation matrix relating FRF frames and I, so that
for any vector r, (r)I = R · (r)FRF .

To define the formation pattern, we first define the notion
of formation feature points.

Formation Feature Point Formation feature points are
the elements in a formation from which the location and
orientation of all other elements can be derived.

The formation pattern σ is defined as σ = f(x1, x2, . . . , xp),
in which x1, x2, . . . , xp are feature points of certain
formation. The size s represents the boundary and size of
the abstraction which encloses the group of robots. The
choice of size s is very flexible, as long as the change
of formation shape can be modeled explicitly. Formation
feature points maintain the boundary of formation to keep
robots from escaping the formation.

Through the modeling of multi-robot formation, it is pos-
sible to characterize the po, R, s, σ by the representation
variables ζpo

, ζR, ζs, ζσ respectively. If task is navigation,
then only position and orientation information are neces-
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sary in most cases. Therefore, the representation model
can be constructed by ζ = (ζp, ζR). If task is to change
the formation shape, then the representation model can
be ζ = (ζσ, ζs).

For a infeasible task, if either the initial representation or
the goal representation are within the unreachable scope
of representation space, task or robot system must be
modified to make sure that both the initial representation
and goal representation are within the reachable region
of representation space. When the task is infeasible due
to there is no feasible solution of the motion planning
problem, the representation model must be rebuilt in order
to remove the constraints that make the task infeasible.
Therefore, it is possible to evaluate the task realization
under the representation space framework.

2.2 Hierarchical structure

This section presents the specification of hierarchical struc-
ture of the approach. At the bottom level, individual
robots execute the continuous controllers that are designed
to satisfy internal constraints and maintain desired for-
mation shape. At the middle level, the robots that act
as the formation feature points communicate with each
other to maintain certain formation constraints. At the
top level, the formation navigates the space while avoid
collision with the obstacles. In general, the team of robots
except the formation feature points can be heterogeneous;
thus they might not share the same configuration space.

To eliminate the possibility of local minima which may
occur when incorporate two controllers, the hierarchical
control system enables multiple time scale approach[6].
Motion of individual robots are assumed to evolve on
a much faster time-scale than the motion of formation.
Sufficient time scale separation between formation and in-
dividual robots ensures the two controllers can be designed
independently.

Input to each agent in the local reference frame of the
formation is

uF
i = uF

i (xf
1 , xf

2 , . . . , xf
p , s), (1)

in which, xf
i is the position of formation feature points i

and s is the shape.

Moreover, input to each agent in the global reference frame
can be derived as

ui = R(θ)uF
i + upo

F , (2)
where upo

F is the translational component of the abstrac-
tion input, R(θ) is the rotation matrix at θ, and uF

i is the
individual input of robot i in the local coordinate frame
defined by FRF .

Since the boundary restricts the allowable space for the
robot motion, the robots’ configuration space is decoupled
from the cluttered physical workspace. To solve the local
navigation problem, we can use navigation function ap-
proach that guaranteeing that the robots stay within the
formation boundary. If the robot formation was being used
for surveillance of different spaces, a Voronoi coverage type
controller [9] can be used. If it is required to maintain a
specific shape, [2] can be used. For stricter formations, [10]
provide a more structured organization of robots.

2.3 Task Related Constraints

In multi-robot formation task, the external constraints
include obstacle constraints of the environment and for-
mation constraints. In order to avoid collisions, robots
must maintain a minimum distance from each other. A
maximum distance must be maintained if two robots need
to keep communication link.

Setting shape constraints [10] is critical to ensure there
is enough space in the formation to maintain the desired
shape. Knowing the shape of the formation, we can de-
termine the minimum size of formation so that it is large
enough to contain the number of robots in the formation.
The minimum size will depend on the number of robots
in the formation, the desired formation shape and a min-
imum distance for collision constraint δmin, if desired. It
is possible that two formations with the same number of
robots require different shape constraints.

For a rectangular formation, we use infinity norm:

n ≤ (�sw(n)
δmin

� + 1)(�sh(n)
δmin

� + 1). (3)

If we would like to additionally ensure graph completeness
in the formation, we can enforce max{sw, sh} ≤ δmax,
where δmax is the maximum distance at which commu-
nication can occur. Fig.1 illustrates an example of the
maximum number of robots in a group. Here, δmax

δmin
= 4,

so that nmax = (4 + 1)2 = 25 is the maximum number of
robots in the group. Although these are general guidelines,
choosing the shape constraints relies heavily on the robot
formation.

3. TASK FEASIBILITY AND OPTIMALITY

3.1 Completeness of Planning Algorithm

The concept of task feasibility is closely related to com-
pleteness, which has been studied extensively.

Completeness In robot motion planning, an algorithm
A, for problem P, accepts an instance of P. A is complete
for P if it is guaranteed to find a solution when one exists
and to return failure otherwise.

From the definition, we can derive the two conditions for
completeness:

Corollary: Two Conditions for completeness

1.If a solution exists, A should find it in finite time.

2. If no solution exist, A should terminate in finite time
and report failure.

Roadmap methods and exact cell decomposition are com-
plete. Given the robot’s initial and goal representations,
these approaches can compute a collision-free path if one
exists; otherwise they report path non-existence. However,
these methods are known to have a high theoretical com-
plexity and are very difficult to implement. Thus their
practical application have been limited to simple planar
robots, convex polytopes or some other special shapes.

Incompleteness Algorithm A is incomplete, if it is not
guaranteed to find a solution even when one exists.
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One widely used approach for navigation problem is the
naive potential field. It is known that this approach has
the problem of falling into local minima which may cause
it to terminate without finding a path when one exists.
Thus this algorithm is incomplete. Algorithms that use a
uniform grid or lattice to discretely sample a continuous
solution space are also incomplete. There are two ways
in which the algorithm may fail. First, it may overlook a
solution that falls between lattice points. Second, it may
terminate before considering a longer solution that lies on
the lattice.

Some algorithms satisfy only the first condition for com-
pleteness: it is guaranteed to find a solution when one
exists. Such algorithms will not overlook potential solu-
tions; yet they are not necessarily complete. As suggested
by John Reif, we use the term “exact” to describe such
algorithms.

Exactness Algorithm A is exact, if it is guaranteed to
find a solution when there exists one.

Approximate cell decomposition is exact. At each iteration
the space is further divided in search of a collision-free path
from start to goal. If a path exists, this algorithm will
eventually find it. However, if a path does not exist, the
algorithm may continue searching with finer and finer de-
compositions and will not terminate. For practical use, we
terminate the decomposition at a prespecified resolution or
when the number of subdivisions is sufficiently high. Thus,
according to Latombe, we define resolution completeness
as follows.

Resolution Completeness Algorithm A is resolution
complete, if it is guaranteed to find a solution when a
solution exists at that resolution.

However, resolution complete algorithms still suffer from
the problem of heavy computational burden. For the
general case of motion planning problem, a breakthrough
was achieved with the development of sampling-based
motion planners. These methods are easy to implement
and can easily be applied to general robots with high
D.O.Fs. The increased performance of these algorithms
comes at the cost of relinquishing completeness. Those
algorithms can only guarantee probabilistic completeness.

Probabilistically Complete Algorithm A is probabilis-
tically complete for any robustly feasible path planning
problem (Rfree, ζ

o, ζG), if

lim
n→∞ infP({∃ ζg ∈ V ALG

n

⋂
ζG

s.t. ζo is connected to ζg in GALG
n }) = 1. (4)

Algorithm A is probabilistically complete for a robustly
feasible path planning problem, if the limit

lim
n→∞ P({∃ ζg ∈ V ALG

n

⋂
ζG

s.t. ζo is connected to ζg in GALG
n }) = 1. (5)

On the other hand, the same limit is equal to zero if the
problem is not robustly feasible.

In the definition, GALG
n is the graph constructed by the

random roadmaps, and V ALG
n is the set of vertexes on

GALG
n .

3.2 Optimal Planning Algorithm

Based on the approximation of continuous space, different
algorithms return solutions of different levels of optimality
guarantee. The solution returned by complete algorithms
like visibility graph are optimal. The exact algorithm
as approximate cell decomposition can only guarantee
optimality under the resolution. And algorithms like grid-
A* and grid-D* can only guarantee optimality on the
graph. Solution returned by PRM is optimal on the graph
constructed by the random roadmap. While algorithm like
RRT is non optimal.

In [11], Karaman proposed the definition of asymptotic
optimality, that describes algorithm’s ability to return
solutions whose cost converge to the global optimum.

Asymptotic Optimality Algorithm A is asymptotically
optimal if, for any path planning problem (Rfree, ζ

o, ζG)
and cost function c : Σ → R

∗ that admit a robustly
optimal solution with finite cost c∗,

P({ lim
n→∞supY A

n = c∗}) = 1.

Note that, Y A
n is the extend random variable correspond-

ing to the cost of the minimum-cost solution included in
the graph returned by A at the end of iteration n.

The proposed algorithms are analyzed for asymptotic
optimality. It is proven that the PRM*, RRG and RRT*
algorithms, as well as their k-neaerest versions, are all
asymptotically optimal.

3.3 Algorithm Summary

Table 1 is a brief summary of the commonly used algo-
rithms in motion planning.

The problem of determining whether task is feasible is
closely related to the completeness of planning algorithm.
For the purpose of planning in representation space, the
intuitive choice would be complete algorithms. However,
complete algorithms all suffered from expensive compu-
tational burden and poor scalability of dimension. The
sampling based approach provide a solution for planning
in representation space. These algorithms like RRT and
PRM can be efficient even in high dimensional space and
are faster compared to the complete algorithms.

The increased performance is at the cost of sacrificing
completeness. Only probabilistic completeness is guaran-
teed for sampling based approach. While the probability
of failure to find an existing solution converges to zero
exponentially as the number of samples increasing. In
practical application, we can set the number of iteration to
be considerably high. Therefore, if the algorithm return no
path, it is reasonable to declare that the task is infeasible
with a high probability.

One problem with traditional sampling based approach
is the poor quality of returned solution. While in many
cases, one may be interested in solution paths of minimum
cost. A breakthrough was achieved with the development
of PRM* and RRT in [11]. The asymptotic optimality
of these algorithms makes them good choice for motion
planning in representation space.
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Table 1. Algorithm Summary

Algorithm Complete Optimal Good D.O.F. Scalability Efficient Updates Non-Holonomic
Navigation Function no yes no no no

Grid-A* no grid no no no
Grid-D* no grid no yes no

Visibility Graph yes yes no no no
RRT probabilistic no yes semi yes
PRM probabilistic graph yes no semi
RRT* probabilistic asymptotic yes semi yes
PRM* probabilistic asymptotic yes no semi

4. CONVERSION OF INFEASIBLE TASK

In this section, we investigate the problem of how to
change an infeasible task so that the modified task can
be performed with task objectives met. Two specific tasks
are presented and the general framework of task oriented
motion planning is used to find out what to do if the task
is infeasible.

4.1 First Scenario

In the first simulation, seven robots are required to reach
a target position while maintaining a formation as in
Fig.4.2. For navigation task, position and orientation of
the robot system are essential information. We choose the
representation vector as ζ = (x, y, θ), in which x and y are
coordinates of the origin of FRF and θ is the orientation
of FRF. From which position of all 6 other robots can be
calculated using the 2D transformation matrix.

To address the motion planning problem in representa-
tion space, we use the RRT* algorithm. After 100,000
iterations, RRT* reports no path exists, therefore we say
that task is infeasible. We choose to modify the formation
shape constraint, as the formation shape requirement is
more flexible. We reconstruct the representation model by
adding the formation shape variable φ as a representation
variable. φ is defined as half of the angle of the link
that connect robot 4 and robot 7 and that connect robot
4 and robot 1. The representation vector then becomes
ζ = (x, y, θ, φ). RRT* figures out the path. Therefore,
task is feasible now in this new representation space. The
process of task realization is shown in Fig. 2(a).

4.2 Second Scenario

This second scenario investigate the navigation of a rect-
angular formation which encloses 27 robots inside the
formation boundary. The width sw = 6m, and the length
sh = 7.5m. Robots that act as formation feature points
maintain the formation boundary so that there is enough
room for the number of robots in the formation. Formation
reference frame is as in Fig.2(b).

In this simulation, the grey box at the left part of ware-
house is movable. Let representation be ζ = (x, y, θ). After
100,000 iterations, RRT* report no feasible path found, so
the task is infeasible. To navigate to the target position,
we first attempt to remove the box that blocks the narrow
passage. So we use disp to represent the displacement of
box and make it one of the representation variables. We set
disp ∈ [−1, 9] and reconstruct the representation model

(a)

(b)

Fig. 2. (a)Formation of the first scenario. (b)Formation of
the second scenario

as ζ = (x, y, θ, disp). However, the task is still infeasible
in the new representation space. What we do next is
to take the formation shape constraint into considera-
tion. Therefore we reconstruct the representation model as
ζ = (x, y, θ, disp, sw, sh). In which, sw and sh is the width
and height of the rectangle maintained by the formation
feature points. What is to be noticed is that formation
shape must satisfy certain constraints. To ensure there is
enough room for each individual robots, sw and sh must
satisfy

(� sw

δmin
� + 1)(� sh

δmin
� + 1) ≥ 27. (6)

To maintain the complete information graph, sw and sh

must satisfy
max{sw, sh} ≤ 10. (7)
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Fig. 3. Simulation result of first scenario

Fig. 4. Simulation result of second scenario

However, RRT* returns no feasible path in this new rep-
resentation space. What is limiting the formation shape
is the maximum distance for communication. If the com-
munication module of robots is capable of communicating
at larger distance, then the task is maybe feasible. To get
an idea of the range of communication to make the task
feasible, we add communication range com as one of the
representation variable and reconstruct the representation
model as ζ = (x, y, θ, disp, sw, sh, com). Therefore, the
communication constraint become

max{sw, sh} ≤ com. (8)

Task is finally feasible in this representation space. Fig.4
is the task realization in the warehouse. Two numbers in
the picture indicate whether the constraints of formation
size and communication are violated, 0 for not violated
and 1 for violated. To navigate the formation to the target
position in the warehouse, robot communication module
should be able to communicate at a maximum distance of
13.46m.

5. CONCLUSIONS

The concept of representation space is introduced to ana-
lyze the multi-robot formation task. Representation space
of the task is built to characterize all the task related
attributes with a hierarchical approach.Collision avoid-
ance and formation constraints can be guaranteed. More-
over, feasibility of task can be evaluated in representation
space. If the task is infeasible, robot system and/or task
requirements must be modified to make it feasible. We
present two scenarios to illustrate the process of turning
an infeasible task into a feasible one. Ongoing work is
investigating a variety of more complicated extensions to
the basic formation navigation problem, including multiple
non-unit obstacle costs and optimizing both path costs and
constraint removal costs.
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