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Abstract: Rapidly rising needs for generating electricity with little or no pollution make wind energy 

imperative. Fluctuations in output of wind turbines and their frequent stoppages for maintenance or 

breakdowns, however, limit their penetration into power grids. In this research, pattern recognition 

models are applied to enhance output estimation by improved failure prediction. In addition, a 

collaboration platform is developed with demand and capacity sharing and best Matching Protocols that 

facilitate rationalized collaboration between energy providers to create sustainable distribution networks. 

A simulation of two communities with two farms and 100 members is conducted to measure the impact 

of the collaboration platform. 
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

1. INTRODUCTION 

Wind energy has been gaining more attention recently as an 

environmentally-friendly alternative to traditional fossil fuel 

or nuclear energy. Wind power generates electricity in a 

clean, sustainable, and affordable manner without leaving any 

environmental pollution or wastes. Therefore it will play an 

important role in protecting the environment while keeping 

up with the increasing electricity demands. The performance 

of wind turbines in terms of electricity generation, however, 

depends on numerous environmental, mechanical, and 

electrical parameters, e.g. operational status of wind turbines, 

wind direction, wind speed, weather conditions, etc. As a 

result, wind power output is highly variable and only partially 

controllable (Coughlin and Eto, 2010). 

In spite of the high uncertainties in energy generation and 

distribution, wind resources have been integrated gradually 

into the electric grid as one of the major players. Various 

programs and studies have been established to increase the 

share of renewable resources into the electric grid (Enslin, 

2009; Lund, 2005; Lund and Kempton, 2008). The U.S. 

Department of Energy’s report “20% Wind Energy by 

2030” envisioned that wind power could supply 20% of all 

electricity nationwide (U.S. DoE, 2008). The UK 

Government expects offshore wind energy to be a major 

contributor to its target to generate 15% of UK electricity 

from renewable sources by 2020 (Miguelanez and Lane, 

2010). The high uncertainty in wind power generation, 

however, is the major obstacle in achieving these goals. The 

penetration and integration level of wind energy into the 

electric grid is relatively low due to the uncertainty, and thus 

the majority of the electricity demand is still fulfilled by 

traditional energy sources with well-established infrastructure 

and stable supplies. Part of the fluctuations in daily energy 

output of a wind turbine depends on environmental changes 

such as wind speed and direction. The fluctuating 

characteristic of wind power is often referred to as 

intermittency. It is important to note that intermittency is not 

the same as unpredictability. To the extent that intermittency 

in wind power is driven directly by weather, it is somewhat 

predictable, and could be managed in part through the use of 

near-term wind power forecasts (Matevosyan and Söder, 

2006). 

In addition to wind power’s dependency on weather 

conditions, turbine failures influence the electricity 

generation. The performance and failure rates of wind 

turbines affect the energy output from a wind power system. 

The wind turbines are often inaccessible because they are 

situated on extremely high towers or offshore. A large wind 

turbine outputting, for example 2,400 kW, has a maximum 

height over 100m (Minowa et al., 2012). Therefore predicting 

imminent or potential failures in remote wind turbines before 

they cause severe damages is critical to assure their 

continuous operation and more accurate output estimation. 

Since multiple wind turbines in a wind farm working under 

similar conditions, the correlation between their 

performances could enhance detecting small changes in the 

turbine performance before they cause severe damages 

(Uluyol and Parthasarathy, 2012). Machine learning 

techniques are widely used to detect faults in several areas 

including vibrational signals, control systems, sensor 

validations, etc. (Fernandes et al., 2007; Hush et al., 1997; Xu 

et al., 1999). In this research, wired and wireless sensor 

networks are deployed to collect data from a wind farm, 

which are classified through machine learning methods to 

improve fault detection and diagnosis in the wind farm.  
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There have been a number of studies concerning variability 

reduction in wind farm outputs through prediction of failures 

for wind turbines, yet the uncertainty in energy output from 

wind farms is still challenging. This uncertainty could be 

partly handled by enhanced statistical and machine learning 

methods; however, the uncertainty in a wind farm output is 

also condition-based, which cannot be entirely eliminated in 

spite of being predictable. Moreover, advanced control 

schemes have been developed to increase the efficiency and 

reliability of wind turbines. For instance Song et al. (2000) 

developed a nonlinear and adaptive algorithm to control wind 

turbine speed. Modern collaborative control theory 

algorithms (Nof, 2007) are applied in this research to 

accelerate wind energy penetration in power grids. 

Wind farms are naturally subject to fluctuations in their 

power generation rates that vary with seasonal, 

environmental, and operational factors. Besides, breakdown 

of wind turbines are inevitable and could affect the 

performance of the wind farm in terms of power generation. 

Thus, a wind farm may encounter two situations regarding its 

promised amount of supply: 1) capacity shortage, 2) excess 

capacity (here capacity refers to the amount of power 

generated over time). The ongoing technological innovations 

and research works being conducted on smart grid areas, such 

as supplier and consumer behaviours in automated fashion, 

are discussed by Gensollen et al. (2013). This paper 

facilitates the use of collaborative control theory (CCT) to 

handle these uncertainties in demand and supply of the wind 

energy.  Assuming the participants in the network are willing 

to share their demand and capacity, this article proposes a 

CCT-based collaboration platform, which supports 

communities to fulfil their electricity demand within the 

network by the collaboration in an effort to create a 

sustainable energy network. In order to facilitate 

collaboration between participants for dynamic demand and 

capacity sharing and matching, the collaboration platform is 

developed based on two CCT-based protocols: 1) Demand 

and Capacity Sharing Protocol (DCSP) and 2) Best Matching 

Protocol (BMP) (Ko and Nof, 2012; Nof, 2007; Velasquez 

and Nof, 2008, 2009; Yoon and Nof, 2010, 2011a, b).   

To summarize, this research aims at 1) reducing uncertainty 

in output estimation by accurate failure prediction; and 2) 

designing collaboration protocols to create and control a 

sustainable wind energy distribution network. This paper is 

organized as follows. Section 2 describes a pattern 

recognition model for failure prediction. Section 3 explains 

the two CCT-based protocols under the collaboration 

platform. A simulation study with two communities is 

illustrated in Section 4. Finally, Section 5 concludes this 

article. 

2. MULTIVARIATE FAILURE PREDICTION MODEL 

Wind turbine failure is one of the major sources of output 

variability in a wind farm. Environmental conditions as well 

as turbines’ mechanical and operational attributes impact the 

performance and reliability of wind turbines. For instance, 

lightning strike to wind turbines is a critical factor for wind 

turbine operation since it can damage blades, which leads to 

lowered capacity and increased cost for repairs. Tavner et al. 

(2010) analysed the data from three different wind farms to 

study environmental conditions’ impacts on wind turbines. 

They applied a cross-correlation technique to study the 

dependency between environmental conditions and power 

outputs. According to their study, the true correlation is 

between failure rate and changes in weather rather than just 

wind speed.  

To attain a more comprehensive model, we have developed a 

pattern recognition model to classify the existence of a failure 

based on multiple variables. The theoretical developments of 

pattern recognition and newer algorithms are collected by  

Theodoridis et al. (2010)   

The variables used in the model are actual rotation speed of 

the blade, actual torque, DC bus power, and wind speed. 

Different failure prediction models can be developed based 

on the size and/or type of renewable energy sources (e.g. 

solar panels) or the failure type desired to be controlled, i.e., 

the input variables of the pattern recognition model might be 

different to predict the failures of a solar panel. The objective 

is to determine whether a wind turbine has a general 

electrical error based on the input variables. The major 

failures we consider in this initial analysis include Gio 

Expansion Module-1 short circuited, Gio Expansion Module-

2 short circuited, and battery failures, which are recorded by 

the controller in the wind turbine installed at Environmental 

Resource Training Center of Southern Illinois University 

Edwardsville. To collect the required data, a wireless sensor 

network has been added to the wind turbine equipped with 

accessible wired sensors. Total 360 observations associated 

with the major electrical failures have been obtained during 

July and August 2013. The collected data are partitioned into 

train/validation/test sets (70%/15%/15%), which are used to 

create and train an artificial neural network (ANN) model for 

pattern recognition for failure detection in the wind turbine. 

The ANN is composed of three layers with 4 input variables, 

10 hidden layers and one binary output, and trained by scaled 

conjugate gradient back-propagation algorithm. 

The performance plot of the pattern recognition model is 

depicted in Fig. 1. According to the results, the mean squared 

error for the validation data is 0.12962. Thus, the probability 

of false electrical alarm or missed true failures based on the 

selected multiple input variables is 12.96% which is 

considered to be acceptable for the wind turbine data. The 

plot also shows no sign of over-fitting. 

The confusion matrix in Fig. 2 shows how well the model 

clusters the data based on their input variables. Outputs are 

classified as class 1 if they are electrically failed and 

classified as class 2 if they are in normal working status. The 

error for the test data set is 11.1% which is acceptable. 

Therefore it is concluded that the ANN model is effective in 

predicting the failure, but there is still some room to improve. 

The error in prediction and the subsequent uncertainty can be 

handled by 1) improving the prediction model that considers 

additional input factors and different classes of failures; and 

2) reducing the negative impact of uncertainty by 

collaboration, which is described in Section 3. 
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Fig. 1. Performance plot of the pattern recognition model 

 

Fig. 2. Confusion matrix of the pattern recognition model 

3. COLLABORATIVE WIND ENERGY DISTRIBUTION 

NETWORK 

This research is motivated by the stochastic nature of the 

electricity demands, the dynamic changes in power 

generation over time, and the ability to overcome such 

uncertainty through collaboration between energy providers 

to build a sustainable energy distribution network. In this 

network, each energy provider is deemed to be a self-

operative organization who is willing to collaborate with one 

another to achieve higher benefits. For example, when a wind 

farm cannot fulfil a customer order, the demand will be 

shared with other collaborating providers who have excess 

capacity. As a result, the possibly unfulfilled demand can be 

delivered by other farms and the remaining capacity of 

collaborating farms can be utilized, such that mutual benefits 

can be achieved. This collaboration, controlled by a well-

defined Demand and Capacity Sharing Protocol (DCSP; 

Yoon and Nof, 2010, 2011a, 2011b), can encourage the 

energy providers to improve their benefits by selling their 

excessive power outputs and motivate the customers to join 

the sustainable network for getting the renewable energy with 

more economical prices. 

This sustainable energy network is characterized by a 

heterarchical framework, such that a farm does not have total 

control over the other collaborating farms. The collaborating 

farms achieve their goals only through collaborative decision 

making processes that involve information exchange, 

negotiation, and coordination. 

Consider a set of collaborative wind farms F = {f1, f2, ..., fn}, 

where each farm serves its own community C = {c1, c2, …, 

cn}. Each farm will try to serve its community in the first 

place based on its forecasted electricity demand. A 

forecasting model can be developed based on complex 

regression methods coupled with classical time series 

techniques such as the seasonal ARIMA (Cho et al., 2013). 

Suppose that the electricity demand of k-th community on 

day t is forecasted to be dk
t. The corresponding wind farm 

needs to evaluate whether it can serve the whole or a part of 

the community demands on the given day based on the 

farm’s capacity constraints and environmental/operational 

conditions. If the capacity constraint is violated, a portion of 

dk
t cannot be accepted by the farm. By sharing the demands 

and capacities among collaborative wind farms dynamically, 

it would be possible for that portion of the demand to be 

fulfilled by a set of collaborating energy providers, such that 

the mutual benefits can be achieved, i.e., the demand sharing 

farm fulfils its own community demand, and the capacity 

sharing farm receives the additional demand. This 

collaboration will be controlled by the DCSP, which will 

increase the reliability of demand fulfilment in the network 

and motivate communities to participate in the network.  

Let CAk
t be the capacity of the wind farm that belongs to 

community k on day t, and dk
t be the forecasted demand of 

the same community. The shared capacity (SCk
t) and shared 

demand (SDk
t) of community k on day t can be calculated as: 

      if  

0                  otherwise

  
 


t t t t

t k k k k

k

CA d CA d
SC   (1) 

      if 

0                  otherwise

  
 


t t t t

t k k k k

k

d CA CA d
SD  (2) 

 

The DCSP can be defined as follows: 

1) Start at period T. Periods can be daily or weekly, 

depending on the possibility in terms of available 

resources (for forecasting, for example) and the 

anticipated precision in decisions. 

2) At the beginning of each period, define sets A and B 

based on 1) output forecasts, 2) turbine breakdown 

forecasts, and 3) demand rates associated with each wind 

farm. 

3) The information on Sets A and B are shared with all 

wind farms in the corresponding coalition. 

4) Wind farms in Set A receive orders, evaluate, and based 

on their available capacity either 1) accept the order, or 
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Demand Sharing Protocol

Forecast daily demand Forecast daily demand Forecast daily Supply Forecast daily Supply 

Evaluate the Demand

Send demand sharing proposal

                         Best Matching Protocol                         Best Matching Protocol

Send capacity-demand matching 

results

Update the distribution network

Wait for the next forecast

                                      

                                                            

  Capacity Sharing Protocol

Wait for the demand sharing 

proposal

Receive capacity-demand matching 

results

Update the distribution network

Accept the Demand

Evaluate capacity sharing 

proposals

Evaluate the capacity to propose

Receive demand sharing proposal

Wait for the BMP result

Forecast daily demand Forecast daily demand Forecast daily Supply Forecast daily Supply 

2) generate and send a demand sharing proposal to the 

Set B wind farms in their coalition and wait for their 

capacity sharing proposals. 

5) Wind farms in Set B receive different proposals (if any) 

from Set A, evaluate the capacities that they can promise 

to each proposal, prepare their capacity sharing proposals 

and send them back to the wind farms in Set A. 

6) Wind farms in Set A receive the capacity sharing 

proposals and accordingly either 1) reject the order, or 2) 

accept the order and send the allocation results to 

corresponding wind farms in Set B.  

7) Wind farms in Set B receive the allocation results and 

accept the shared demand. 

 

Fig. 3 illustrates the overall collaboration process based on 

DCSP and BMP. Due to technical limitations, a portion of the 

generated electricity will be wasted during the transmission. 

This waste of energy is an increasing function of the length 

of transmission line, from the source to the sink nodes. This 

phenomenon could have an effect on the efficiency of DCSP. 

In other words, having an order, related to a specific wind 

farm, satisfied by some wind turbines in another wind farm 

may be inefficient in practice due to the pair wise distances. 

A Best Matching Protocol (BMP) is proposed to bridge the 

aforementioned gap through dynamic matching of the source 

and sink nodes, in the 4th step in the DCSP (Velasquez and 

Nof, 2008, 2009). Having the waste of energy as another 

decision criterion, there may exist some cases in reality in 

which some wind farms in Set B (i.e., with excess capacity) 

prefer to leave a part of their corresponding orders to be 

satisfied by some other wind farms in Set B or even Set A. In 

other words, it may be worthwhile (in terms of the waste 

rate/pair wise distance) that a given farm, despite having 

enough capacity to fulfil its own orders, would be better off 

leaving a part of those orders to be satisfied by a second wind 

farm, thus having enough capacity to fulfil an order related to 

a third wind farm. In this setting, all wind farms may belong 

to both Sets A and B, and the BMP will match the best (a  

A, b  B) based on certain criteria, e.g., distance. The BMP, 

which is indeed an optimization problem dealing with the 

overall waste in the network of wind farms, must be 

implemented in conjunction with the DCSP. More details are 

provided in Jahanpour and Ko (2013). 

4. SIMULATION 

A simulation study including two wind farms and 100 

residential members (shown in Fig. 4) is developed to 

evaluate the effect of the proposed DCSP. Both energy 

outputs and community demands are stochastic. The same 

data set mentioned in Section 2 is used to develop a statistical 

model for outputs required for this study. According to 

goodness-of-fit results, the following Weibull distribution 

best describes the energy output: 

1

( ) 1.0132, 17.719




 
 

 

  
 
  

   
 

x

f x e   (6) 

The energy demand for a residential area depends on many 

factors, such as household income, weather condition, 

temperature, family size, etc. Average summer residential 

Fig. 3. DCSP and BMP for the collaboration platform (Yoon and Nof, 2010, 2011a, 2011b 
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Fig. 4. A sustainable energy distribution network with two wind farms, two communities, and 100 members 

electricity usage, however, tends not to vary significantly. 

According to the 5-year power usage in the U.S. during 2008 

to 2012 (U.S. Energy Information Administration, 2013), the 

average electricity usage follows a normal distribution with 

mean of 3323.6 and standard deviation of 148.34. These 

models are used to simulate the energy network. 

Both wind farms are assumed to own 60 wind turbines. Since 

there are only two wind farms operating in this study, BMP is 

not required to pair communities with farms. If a wind farm 

cannot fulfil all its community’s demand on a given day, the 

other farm will share its surplus electricity, if any exists, to 

fulfil the demand. A Monte-Carlo simulation is conducted for 

90 days with Matlab. It is assumed that failure of wind 

turbines in a farm is already reflected in the model and there 

is a strong correlation between them; however, the correlation 

across the farms is assumed to be zero. The simulation runs 

100 times and the average electricity output before and after 

DCSP is illustrated inError! Reference source not found. 

Fig. 5. The solid lines in Fig. 5 illustrate the percentage of 

fulfilled demand before applying DCSP and dashed line 

indicate after DCSP. According to the results, DCSP 

significantly improves the demand fulfilment rates and also 

decreases the variability. Table 1 contains descriptive 

statistics of the experimental results. According to the results, 

each wind farm would be able to fulfil approximately 85% of 

its corresponding community’s energy demands without 

collaboration. Applying DCSP not only increases the 

demands fulfilled by the farms, but also decreases the level of 

uncertainty by reducing the variability in demand fulfilment 

as indicated by standard deviation. 

Table 1. Demand fulfilment rates with and without DCSP 

 
Before DCSP After DCSP  

Comm. 1 Comm. 2 Comm. 1 Comm. 2 

Mean 84.03 83.47 93.64 93.55 

StDev. 2.78 3.41 2.06 2.24 

 

Fig. 5. Demand fulfilment rates with and without DCSP 

5. CONCLUSIONS 

This article addresses a major challenge in creating a 

sustainable and reliable wind energy distribution network 

without substantial dependence on traditional resources. The 

uncertainty in power generation has been a huge obstacle in 

introducing the cost-effective renewable energy. The major 

sources of variability in output forecasting include 

uncertainty in the environmental conditions and predicting 

turbine failures. In this article, a pattern recognition method 

is applied to diagnose and predict the turbine failures based 

on multiple factors. The results have shown that the pattern 

recognition model is helpful in diagnosing the major 

electrical failures of the wind turbine. In the future, the model 

will be enhanced by exploring a broader range of factors and 

including more classes of electrical and mechanical failure. In 

addition, the correlation between wind turbines located in the 

same farm will be studied to improve the accuracy of 

prediction. 

Although fluctuations in the energy output of a wind farm 

could be reduced, it is impossible to completely remove 

them. Two CCT-based protocols are developed in this 

research to reduce the negative impact of the uncertainty by 
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collaboration and to create a sustainable distribution network. 

The simulation results of a network with two communities 

and 100 members show that collaboration protocols improves 

the efficiency of the network through increasing the 

probability of demand fulfilment and decreasing the 

variability of the number of fulfilled demands. By reducing 

the uncertainty and enhancing collaboration, it is expected 

wind energy will be more cost-effective and the distribution 

network will be more sustainable, which will increase the 

level of integration of renewable energy into the electricity 

grid. In the future, CCT-based protocols, including BMP, will 

be studied more in depth for dynamic coalition formation in 

the sustainable network.  

In the future, this study will extend the scope to failure 

prediction models for other types of failure modes and 

renewable energy sources such as solar panels. A 

community-based network of hybrid renewable energy can 

enhance smart grid development and improve the 

sustainability of power generation processes while reducing 

dependence on fossil fuel and nuclear energy.  
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