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Abstract: The attitude coordinated tracking problem of multiple spacecraft with control input
saturation is studied in this paper. We first construct a decentralized attitude coordinated
tracking algorithm with input saturation, such that spacecraft can track a time-varying desired
trajectory and align their attitudes. We then introduce a novel auxiliary dynamical systems to
present an attitude coordinated tracking algorithm with input saturation and without angular
velocity measurements. Throughout this paper, the information flow between spacecraft is
assumed to be undirected. Finally, design examples are given to show the effectiveness of the
proposed attitude coordinated tracking algorithms.

1. INTRODUCTION

Attitude coordinated tracking of multiple spacecraft has
received significant attention in recent years. In gener-
al, spacecraft attitude kinematics and dynamics can be
modeled by three-parameter representations (e.g., the Eu-
ler angles and modified Rodrigues parameters) and four-
parameter representations (e.g., unit quaternion). Several
works Chung et al. (2009); Meng et al. (2010); Ren (2010);
Zou et al. (2012) have studied the attitude coordinat-
ed control problem for spacecraft with three-parameter
representations. However, three-parameter representations
always exhibit singularity. By using four-parameter repre-
sentations, the attitude coordinated control problem was
investigated in Lawton and Beard (2002); Jin et al. (2008);
Chang et al. (2009) with a constant reference attitude. For
the time-varying reference attitude, the same problem was
presented in Bai et al. (2007); Ren (2007); Wu et al. (2011).

Although many results of multiple spacecraft attitude
coordinated control have been given in detail, it is ob-
served that the existing aforementioned literatures have
carried out coordinated controller design without control
input saturation. In practical attitude control systems, the
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control torques offered by actuators are always limited
Summers et al. (2009); Akella et al. (2005), and the coordi-
nated controller design without input saturation might not
guarantee the stability of the closed-loop system. Recently,
by using the Chebyshev neural network, a distributed atti-
tude coordinated control method was proposed for space-
craft with control input saturation when the time-varying
reference attitude is available to a subset of spacecraft Zou
and Kumar (2012). However, a distributed sliding-mode
observer was introduced for attitude coordinated control
of spacecraft with transmitting their angular accelerations
by using discontinuous signum function. It is known that
the implementation issues of this kind of observers will
increase the cost and complexity in that more sensors and
intensive communication are required. Different from this
point, this paper aims to solve the attitude coordinated
tracking problem for multiple spacecraft with control input
saturation, but without additional cost and complexity.

It is also observed that the attitude coordinated algorithms
in the above literatures are mainly based on the assump-
tion that spacecraft know their own and their neighbors’
angular velocities. In practise, the angular velocity mea-
surements are not always satisfied due to the failure of
mechanical gyroscopes on spacecraft. In Abdessameud and
Tayebi (2009), the coordinated attitude control problem
for a group of spacecraft was investigated, without con-
sidering velocity measurements. However, the coordinated
controller design does not consider control input satura-
tion. As an extension, this paper tries to solve the attitude
coordinated tracking problem for multiple spacecraft with
control input saturation, and remove the requirement for
the angular velocity and the relative angular velocities.

Due to the nonlinear dynamics of spacecraft, the problem
of attitude coordinated control for a group of spacecraft is
more challenging, especially when control input saturation
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is considered. The main work of this paper includes two
aspects:

1) A decentralized attitude coordinated algorithm is pro-
posed with control input magnitude saturation and the re-
quirement of the angular velocity and the relative angular
velocities. The topology of the information flow between
spacecraft is described by an undirected graph, and the
time-varying reference attitude is available to all space-
craft 1 . Different from the main work of Zou and Kumar
(2012), the implementation of the attitude coordinated
controller will not need additional cost and complexity.

2) To remove the measurements of the angular velocity
and the relative angular velocities, we use the concept
of auxiliary dynamical systems. By introducing one with
input saturation, a velocity-free coordinated controller is
proposed to align their attitudes and to track a time-
varying reference. Here the term velocity-free means with-
out angular velocity and the relative angular velocity mea-
surements. The design method is motivated by the work of
Abdessameud and Tayebi (2009), and this paper extends
the main result of Abdessameud and Tayebi (2009) to the
case of considering control input saturation.

The rest of the paper is organized as follows. Section
2 formulates the attitude coordinated tracking problem.
Section 3 presents the main results on the attitude coor-
dinated tracking problem. Section 4 provides design ex-
amples for verifying the theoretical results. Finally, some
conclusion remarks are given in Section 5.

Before closing this section, some notations will be stated
here. The notation diag{· · · } denotes a block-diagonal ma-
trix. Using col{x1, x2, . . . , xn} to denote a column vector.
Matrices, if their dimensions are not explicitly stated, are
assumed to be compatible for algebraic operations. The
notation P > 0 (≥ 0) means that P is a real symmetric
positive (semi-positive) definite matrix. I and 0 represent,
respectively, the identity matrix and zero matrix.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Dynamics of spacecraft attitude

In this paper, we consider N spacecraft. The attitude
dynamics of the i-th spacecraft Abdessameud and Tayebi
(2009) is{

q̇i =
1

2
E (qi)ωi

Jiω̇i = −s(ωi)Jiωi + τi
, i = 1, 2, . . . , N, (1)

where ωi ∈ R3 and Ji ∈ R3×3 are the angular velocity
and symmetric positive definite inertia matrix of the i-th
spacecraft, respectively, in the body-fixed frame F ib . The
vector τi is the external torque of the i-th spacecraft in

F ib . The unit-quaternion qi =
[
σTi , ηi

]T
is composed of the

real part ηi ∈ R and the vector part σi ∈ R3, and denotes
the orientation between the frame F ib and the frame FI .
Also, The unit-quaternion qi is subject to the following
condition

η2i + σTi σi = 1. (2)

1 whether the time-varying reference attitude must be available to
a subset of spacecraft or to all spacecraft is still open even without
input saturation. (Abdessameud and Tayebi (2009))

Let the vector υ = [υ1, υ2, υ3]
T

, then the notation s(·)
denotes a 3× 3 skew-symmetric matrix, that is,

s(υ) =

[
0 −υ3 υ2
υ3 0 −υ1
−υ2 υ1 0

]
.

For the matrix E (qi), we have

E (qi) =

[
ηiI3 + s(σi)
−σTi

]
.

We define the orthogonal rotation matrix as R (qi), and it
can be obtained as

R (qi) =
(
η2i − σTi σi

)
I3 + 2σiσ

T
i − 2ηis(σi). (3)

Assume that the desired attitude for all spacecraft is

given by qd =
[
σTd , ηd

]T
that denotes the orientation of

the desired frame, represented by Fd, and satisfies the
following dynamics

q̇d =
1

2
E (qd)ωd, (4)

where ωd ∈ R3 represents the velocity of the desired
spacecraft. We assume that the first and second time-
derivatives of ωd are bounded. The difference between
the absolute attitude and the desired attitude of the i-
th spacecraft is considered as the attitude tracking error,

namely q̄i =
[
σ̄Ti , η̄i

]T
, and is given by

·
q̄i =

1

2
E (q̄i) ω̄i, (5)

where ω̄i = ωi−R (q̄i)ωd is the angular velocity error vec-
tor. Considering the same procedure as in Tayebi (2008),
it is known that the error systems for the i-th spacecraft
satisfy

Ji
·
ω̄i = −JiR (q̄i) ω̇d − s(R (q̄i)ωd)JiR (q̄i)ωd + τi. (6)

In what follows, we use the graph G = (V, ε,K) to
represent the communication topology between spacecraft,
where N is a finite nonempty set of nodes V = {1, . . . , N}
and edges ε = V × V. The weighted adjacency matrix is
K = [kij ] ∈ RN×N , where kij is the coupling strength of
the directed edge (j, i) satisfying kij 6= 0 if (j, i) is an edge
of G and kij = 0 otherwise. Let Ni = {j ∈ V : (j, i) ∈ ε}
be the set of neighbors of node i in G. For any pair of
vertices (i, j), if kij = kji, the graph is called an undirected

graph. Let di =
∑N
j=1 kij the in-degree of vertex i, and

D = diag {d1, . . . , dN} the in-degree matrix of G. The
Laplacian matrix L = [lij ] of weighted digraph G is
defined by L = D − E. The i-th and j-th spacecraft
are connected by a graph in this paper, if they have
information exchange. We define the relative attitude of

the i-th and j-th spacecraft, namely qij =
[
σTij , ηij

]T
, as

q̇ij =
1

2
E (qij)ωij , (7)

where ωij = ωi − R (qij)ωj is the relative angular veloc-

ity and qij represents the rotation from F jb to F ib . The
following properties are known Abdessameud and Tayebi
(2009):

R (qij) = RT (qji) , σij = −σji = −R (qij)σji. (8)

It can be seen from the above definition that attitude
tracking control is reached when qi coincides with qd for

all i = 1, 2, . . . , N , that is, qi =
[
0T ,±1

]T
and ω̄i = 0 for
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all i = 1, 2, . . . , N . We also need the following definition of
the saturation function.

Definition 1. For a positive scalar ρ, the saturation func-
tion δρ : Rm → Rm satisfies that δρ(x) is decentralized,
that is, δρ(x) = col {δρ(x1), δρ(x2), . . . , δρ(xm)}, where it
is defined x = col {x1, x2, . . . , xm} ∈ Rm and for each
i = 1, 2, . . . ,m, δρ(xi) = sign(xi) min {|xi| , ρ}, where
sign(·) is the signum function.

2.2 Control objectives

In this paper, the main objectives are to design attitude
coordinated tracking control algorithms for a group of
spacecraft described by system (1).

1) OBJ1: Design an attitude coordinated tracking control
algorithm with input saturation, such that each spacecraft
tracks the desired trajectory, and the relative attitude
and angular velocities between the spacecraft converge to
zero, simultaneously, that is, qi(t) → qj(t) → qd(t) and
ωi(t)→ ωj(t)→ ωd(t) for all i, j = 1, 2, . . . , N .

2) OBJ2: Design a velocity-free attitude coordinated track-
ing control algorithm with input saturation, such that each
spacecraft tracks the desired trajectory, and the relative
attitudes and angular velocities between the spacecraft
converge to zero, simultaneously, that is, qi(t) → qj(t) →
qd(t) and ωi(t)→ ωj(t)→ ωd(t) for all i, j = 1, 2, . . . , N .

3. MAIN RESULTS

3.1 Attitude coordinated tracking design for OBJ1

In this section, we consider the first problem (OBJ1)
which consists of a simultaneous attitude tracking and the
allowance of N spacecraft to align their attitudes.

Consider the following control algorithm for the i-th space-
craft, given by

τi = JiR (q̄i) ω̇d + s(R (q̄i)ωd)JiR (q̄i)ωd − cpi σ̄i − c
d
i δρ (ω̄i)

−
N∑
j=1

kpijσij −
N∑
j=1

kdij [δρ (ωij)−R (qij) δρ (ωji)] , (9)

where cpi and cdi are strictly positive attitude tracking
control gains and kpij is the edge (i, j) of an weighted

undirected graph G1 = (V, ε,Kp) to represent the infor-
mation flow of the relative attitude qij while kdij is that of
G2 = (V, ε,Kd) to represent the information flow of the
relative angular velocity ωij .

In what follows, the main result is obtained according to
the above control algorithm (9).

Theorem 1. Consider a group of N spacecraft modeled by
(1) under the control algorithm (9). If

cpi > 2

N∑
j=1

kpij (10)

holds for all i = 1, 2, . . . , N , then, the desired attitude can
be tracked and the relative attitude and angular velocities
between the spacecraft converge to zero asymptotically,
that is, qi(t) → qj(t) → qd(t) and ωi(t) → ωj(t) →

ωd(t) for all i, j = 1, 2, . . . , N . Furthermore, the control
algorithm (9) is bounded as follows:

‖τi‖ ≤ ‖Ji‖
(
ω1 + ω2

2

)
+cpi +cdi ρ+

N∑
j=1

(
kpij + 2ρkdij

)
, (11)

where ω1 and ω2 are the upper bounds of ω̇d(t) and ωd(t),
respectively.

Proof. In view of (6) and (9), the closed-loop angular
velocity error dynamics for the i-th spacecraft is

Ji
·
ω̄i =−cpi σ̄i − c

d
i δρ (ω̄i)−

N∑
j=1

kpijσij

−
N∑
j=1

kdij [δρ (ωij)−R (qij) δρ (ωji)] , (12)

for all i = 1, 2, . . . , N . Consider the following Lyapunov
function

V1 =
1

2

N∑
i=1

ω̄Ti Jiω̄i+2

N∑
i=1

cpi (1− η̄i)+

N∑
i=1

N∑
j=1

kpij (1− ηij) .

Note that V1 is positive definite. Then, in view of (5) and
(7), the time derivation of V1 along the trajectories of the
closed-loop system (12) is

V̇1 =−
N∑
i=1

cdi ω̄
T
i δρ (ω̄i)−

N∑
i=1

N∑
j=1

kpijω̄
T
i σij

+
1

2

N∑
i=1

N∑
j=1

kpijσ
T
ijωij

−
N∑
i=1

N∑
j=1

kdijω̄
T
i [δρ (ωij)−R (qij) δρ (ωji)] ,

where we know that 2(1− η̄i) = σ̄Ti σ̄i+(1− η̄i)2 for q̄i and
qij . Using (8) and the facts that σTjiR (qji) = σTji, σji =

−σij and kpij = kpji for all i, j = 1, 2, . . . , N , it is obtained
that

1

2

N∑
i=1

N∑
j=1

kpijσ
T
ijωij =

1

2

N∑
i=1

N∑
j=1

kpijσ
T
ij (ω̄i −R (qij) ω̄j)

=

N∑
i=1

N∑
j=1

kpijω̄
T
i σij ,

where we have used the facts that ω̄Ti σij and σTijω̄i are
scalars and ωij = ωi−R (qij)ωj . Furthermore, according to
the facts that R (qji) = RT (qij) , k

d
ij = kdji and ωij = ω̄i −

R (qij) ω̄j , we have

N∑
i=1

N∑
j=1

kdijω̄
T
i [δρ (ωij)−R (qij) δρ (ωji)]

=

N∑
i=1

N∑
j=1

kdijω̄
T
i δρ (ωij)−

N∑
i=1

N∑
j=1

kdijω̄
T
i R (qij) δρ (ωji)

=

N∑
i=1

N∑
j=1

kdijω
T
ijδρ (ωij) .
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Consequently, V̇1 can be further simplified as

V̇1 =−
N∑
i=1

cdi ω̄
T
i δρ (ω̄i)−

N∑
i=1

N∑
j=1

kdijω
T
ijδρ (ωij)

≤ 0,

where we have used the fact that δρ (·) is an odd function.
Therefore, we have V1(t) ≤ V1(0). According to the
definitions, we know that ω̄i and ωij are bounded, then, it

is obtained that
·
ω̄i and ω̇ij are bounded. Consequently,

it is easy to verify that V̈1(t) is bounded. According
to Barbalat’s lemma Khalil and Grizzle (2002), we have

limt→∞ V̇1(t) = 0, that is, ω̄i → 0 and ωij → 0 as t→∞.

According to the result that
·
ω̄i is bounded, it is easy to

demonstrate that
··
ω̄i is bounded, which shows that

·
ω̄i → 0

as t→∞ by reapplying Barbalat’s lemma. In view of the

closed-loop system (12) and the facts that ω̄i → 0,
·
ω̄i → 0

and ωij → 0 as t→∞, we have

cpi σ̄i +

N∑
j=1

kpijσij = 0, i = 1, 2, . . . , N. (13)

Following the similar procedure as in Lawton and Beard
(2002), and using the fact that ωij = ω̄i − R (qij) ω̄j
for all i, j = 1, 2, . . . , N , we can conclude that if (10)

holds, (13) has a unique solution
[
σ̄T1 , σ̄

T
2 , · · · , σ̄TN

]T
= 0

as a result of the strictly diagonally dominant matrix.
Then we can obtain that σ̄i → σ̄j → 0 as t → ∞.
Finally, we can conclude that qi(t) → qj(t) → qd(t) for

all i, j = 1, 2, . . . , N . Moreover, since ω̄i → 0,
·
ω̄i → 0 and

ωij → 0 as t→∞, we conclude that ωi(t)→ ωj(t)→ ωd(t)
for all i, j = 1, 2, . . . , N . Furthermore, it is known from the
above results that the control algorithm (9) is bounded by
(11). This completes the proof.

Remark 1. Note that the control algorithm (9) is given to
be bounded as (11). Therefore, it is easy to set the desired
bounds on the control torques via an proper choice of the
control gains.

3.2 Velocity-free attitude coordinated tracking design for
OBJ2

In this section, we consider the second problem (OBJ2)
which consists of a simultaneous velocity-free attitude
tracking and the allowance of N spacecraft to align their
attitudes.

To remove the use of measurements of ω̄i and ωij , which
are not always satisfied due to the failure of mechanical
gyroscopes on spacecraft, we use the concept of auxiliary
systems, which is introduced in Tayebi (2008), and propose
the dynamic of i-th auxiliary system as follows:

ṗi =
1

2
E (pi)βi, (14)

where βi ∈ R3 will be designed later. But the difference
between the auxiliary system and the attitude tracking

error for spacecraft i, namely p̄i =
[
θ̄Ti , ε̄i

]T
, is defined as


·
θ̄i =

1

2
δρ
(
ε̄iI3 + s

(
θ̄i
))

Ωi
·
ε̄i = −1

2
δTρ
(
θ̄i
)

Ωi

, (15)

where Ωi = ω̄i−R (p̄i)βi and R (p̄i) is the rotation matrix
respected to ṗi. Let the unit-quaternion auxiliary system
to each pair spacecraft (i, j) be

ṗij =
1

2
E (pij)βij ,

where βij ∈ R3 will be designed later. Also, the relative
attitude error between the i-th and j-th spacecraft, namely

p̄ij =
[
θ̄Tij , ε̄ij

]T
, is defined as
·
θ̄ij =

1

2
δρ
(
ε̄ijI3 + s

(
θ̄ij
))

Ωij
·
ε̄ij = −1

2
δTρ
(
θ̄ij
)

Ωij

, (16)

where Ωij = ωij −R (p̄ij)βij .

Remark 2. The mechanism of auxiliary systems is well
explained in Abdessameud and Tayebi (2009). The differ-
ences are the dynamics of attitude errors between space-
craft and the auxiliary systems (15) and the dynamics of
relative attitude errors between spacecraft (16).

The velocity-free attitude coordinated tracking controller
is proposed as

τi = JiR (q̄i) ω̇d + s(R (q̄i)ωd)JiR (q̄i)ωd − cpi σ̄i − c
d
i δρ
(
θ̄i
)

−
N∑
j=1

kpijσij −
N∑
j=1

kdij
[
δρ
(
θ̄ij
)
−R (qij) δρ

(
θ̄ji
)]
, (17)

where cpi , c
d
i , k

p
ij and kdij are defined as in (9). The result is

stated in the following theorem.

Theorem 2. Consider a group of N spacecraft modeled by
(1) under the control algorithm (17). Let the auxiliary
systems (15) and (16) be, respectively,

βi = Γiθ̄i, βij = Γij θ̄ij , (18)

where we have Γi = ΓTi > 0 and Γij = ΓTij > 0. If the
control gains satisfy

cpi > 2

N∑
j=1

kpij (19)

holds for all i = 1, 2, . . . , N , then, the desired attitude can
be tracked and the relative attitude and angular velocities
between the spacecraft converge to zero asymptotically,
that is, qi(t) → qj(t) → qd(t) and ωi(t) → ωj(t) →
ωd(t) for all i, j = 1, 2, . . . , N . Furthermore, the control
algorithm (17) is bounded as (11)

Proof. In view of (6) and (17), the closed-loop angular
velocity-free error dynamics of the i-th spacecraft is

Ji
·
ω̄i =−cpi σ̄i − c

d
i δρ
(
θ̄i
)
−

N∑
j=1

kpijσij

−
N∑
j=1

kdij
[
δρ
(
θ̄ij
)
−R (qij) δρ

(
θ̄ji
)]
. (20)

for all i = 1, 2, . . . , N . Consider the following Lyapunov
function
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V2 =

N∑
i=1

[
1

2
ω̄Ti Jiω̄i + 2cpi (1− η̄i) + 2cdi (1− ε̄i)

]

+

N∑
i=1

N∑
j=1

[
kpij (1− ηij) + 2kdij (1− ε̄ij)

]
.

Note that V2 is positive definite. Then, the time derivation
of V2 along the trajectories of the closed-loop system (20)
is

V̇2 =

N∑
i=1

ω̄Ti
[
−cpi σ̄i − c

d
i δρ
(
θ̄i
)]
−

N∑
i=1

N∑
j=1

kpijω̄
T
i σij

−
N∑
i=1

N∑
j=1

kdijω̄
T
i

[
δρ
(
θ̄ij
)
−R (qij) δρ

(
θ̄ji
)]

+

N∑
i=1

cpi ω̄
T
i σ̄i +

N∑
i=1

cdi δ
T
ρ

(
θ̄i
)

Ωi

+
1

2

N∑
i=1

N∑
j=1

kpijσ
T
ijωij +

N∑
i=1

N∑
j=1

kdijδ
T
ρ

(
θ̄ij
)

Ωij

=−
N∑
i=1

cdi δ
T
ρ

(
θ̄i
)
R (p̄i)βi +

N∑
i=1

N∑
j=1

kdijδ
T
ρ

(
θ̄ij
)

Ωij

−
N∑
i=1

N∑
j=1

kdijω̄
T
i

[
δρ
(
θ̄ij
)
−R (qij) δρ

(
θ̄ji
)]

=−
N∑
i=1

cdi δ
T
ρ

(
θ̄i
)
R (p̄i)βi −

N∑
i=1

N∑
j=1

kdijδ
T
ρ

(
θ̄ij
)
R (p̄ij)βij ,

where we have used the fact that 1
2

∑N
i=1

∑N
j=1 k

p
ijσ

T
ijωij =∑N

i=1

∑N
j=1 k

p
ijω̄

T
i σij . Then, according to (18) and using

the facts that p̄Ti R (p̄i) = p̄Ti and p̄TijR (p̄ij) = p̄Tij , the
time derivation of V2 can be further simplified as

V̇2 =−
N∑
i=1

cdi δ
T
ρ

(
θ̄i
)
R (p̄i)βi −

N∑
i=1

N∑
j=1

kdijδ
T
ρ

(
θ̄ij
)
R (p̄ij)βij

=−
N∑
i=1

cdi δ
T
ρ

(
θ̄i
)

Γiθ̄i −
N∑
i=1

N∑
j=1

kdijδ
T
ρ

(
θ̄ij
)

Γij θ̄ij

≤ 0,

where we have used the fact that δρ (·) is an odd function.
In view of the similar analysis of Theorem 1, it is easy to
demonstrate that the conclusion of Theorem 2 still holds.

4. DESIGN EXAMPLES

In this section, design examples are given to verify the
effectiveness of the proposed controllers. In this simulation,
we consider a scenario where there are four spacecraft. We
consider an undirected graph whose set of edges is given
by ε = {(1, 2) , (1, 3) , (1, 4) , (2, 3)}, where the undirected
graph G1 = (V, ε,Kp) is assumed to be the same as
G2 = (V, ε,Kd). The spacecraft are modeled as rigid
bodies, where the values of spacecraft inertia matrices
are given as Ji = diag {20, 20, 30}. The desired angular

velocity and the initial conditions of the desired attitude
are given as

ωd = [ 0.1 sin(0.1πt) 0.1 sin(0.1πt) 0.1 sin(0.1πt) ]
T
,

qd(0) = [ 0 0 0 1 ]
T
.

We consider two different cases discussed in Section 3.

1) Under the controller (9), let the parameters be ρ =
2, cdi = 60, cpi = 60, kpij = 5, kdij = 5. The initial conditions
of attitude and angular velocity of spacecraft are assigned
as follows.

q(0) = col {q1(0), q2(0), q3(0), q4(0)}

=

 0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

 ,
ω(0) = col {ω1(0), ω2(0), ω3(0), ω4(0)}

=

[ −0.5 0.5 0.1 0.4
0.5 −0.3 0.6 0.4
−0.45 0.1 −0.1 −0.5

]
. (21)

The trajectories of vector parts of spacecraft attitudes are
shown in Fig. 1 - Fig. 3. It is clearly seen that the four
spacecraft converge to the desired attitude.
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Fig. 1. The vector parts of spacecraft attitudes under
Theorem 1, σ1

i , i = 1, 2, 3, 4, d.
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Fig. 2. The vector parts of spacecraft attitudes under
Theorem 1, σ2

i , i = 1, 2, 3, 4, d.
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Fig. 3. The vector parts of spacecraft attitudes under
Theorem 1, σ3

i , i = 1, 2, 3, 4, d.
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2) Under the controller (17), let the parameters be ρ =
0.2, cdi = 60, cpi = 60, kpij = 5, kdij = 5,Γij = Γi = 5I3.
The initial conditions of attitude and angular velocity of
spacecraft are assigned as (21). In Fig. 4 - Fig. 6, we can see
that the four spacecraft reach an agreement and converge
to the same desired attitude.
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Fig. 4. The vector parts of spacecraft attitudes under
Theorem 2, σ1

i , i = 1, 2, 3, 4, d.
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Fig. 5. The vector parts of spacecraft attitudes under
Theorem 2, σ2

i , i = 1, 2, 3, 4, d.
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Fig. 6. The vector parts of spacecraft attitudes under
Theorem 2, σ3

i , i = 1, 2, 3, 4, d.

5. CONCLUSIONS

In this paper, we studied the attitude coordinated tracking
problem of multiple spacecraft with control input sat-
uration. Two decentralized attitude coordinated control
algorithms with input saturation were proposed with and
without angular velocity measurements. Both of the atti-
tude coordinated controllers were proved by the Lyapunov
based method. One important feature of the velocity-free
attitude coordinated tracking algorithm is the introduc-
tion of auxiliary dynamical systems with input saturation.
Design examples were provided to demonstrate the effec-
tiveness of the proposed control algorithms. Future work
includes extending the results to cases when spacecraft
are subject to parametric uncertainty and external distur-
bances.
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