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Abstract: This paper considers fault-tolerant control of a class of uncertain switched linear time-delay 
systems and its application to water pollution control. Due to the nature of average dwell-time techniques 
and the representation of actuator faults, this paper has the following features compared with the existing 
methods in the literature: 1) the proposed method is independent from switching polices provided that 
switching is on-the-average slow enough; 2) the proposed controller exponentially stabilizes this class of 
time-delay systems with actuator faults and its nominal systems (i.e., without actuator faults) without 
necessarily changing any structures and/or parameters of the proposed controllers; 3) the proposed 
method treats all actuators in a unified way without necessarily classifying all actuators into faulty 
actuators and healthy ones. Simulation results are provided to illustrate the effectiveness of the proposed 
method. 
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1. INTRODUCTION 
Time delay can be seen in various practical applications such 
as chemical processes, long-distance transmission networks 
and automotive control. When time delay is in presence of a 
dynamic system, it may deteriorate transient performance or 
even leading to instability. When time delay is involved in 
switched systems, i.e., switched time-delay systems, much 
attention has been paid on control of switched systems 
[Wang, et al., 2009; Wang, et al., 2007; Du, et al., 2011; 
Xiang, et al., 2010] and the references therein. Due to the 
inherent nature of switched systems [Zhang & Gao, 2010; 
Zhao & Hill, 2008; Liberzon 2003; Zhao & Dimirovsk, 2004; 
Sun & Ge, 2004; Xie & Wang, 2003; Hu, et al., 1999; 
Yurtseven, et al., 2012; El-Farra, et al., 2005] and the 
complicated features that time delay may bring in, studies on 
switched time-delay systems are still one of important 
research topics in control areas. 

On the other hand, maintenances or repairs in the highly 
automated industrial systems cannot be always achieved 
immediately, for preserving safety and reliability of the 
systems, the possibility of occurrence and presence of 
uncertain faults must be taken into account during the system 
analysis and control design stages to avoid life-threatening 
prices and heavy economic costs caused by faults [Zhang & 
Jiang, 2003; Xiao, et al., 2012; Zhang & Jiang, 2008; Han & 
Yu, 1998; Panagi & Polycarpou, 2011], which makes fault-
tolerant control attract more and more attention [Jin, et al., 
2007; Veillette, 1995; Wang, et al., 1999; Liang, et al., 2000]. 

Reference [Jin, et al., 2007] considered decentralized fault-
tolerant control for a class of interconnected nonlinear 
systems consisting of finite subsystems to achieve desired 
tracking objectives and guarantee stability of the closed-loop 
systems. However, Jin, et al. (2007) only considered bounded 
fault functions which satisfy matching conditions and 
bounded interconnected uncertain structures, but the authors 
did not explicitly consider faults of the actuators which 
transmit control signal into the plant. References [Jin, et al., 
2007; Veillette, 1995; Wang, et al., 1999; Liang, et al., 2000] 
designed fault-tolerant controllers for the nonlinear systems 
with actuator faults to guarantee robust reliable stability of 
the systems. Their common feature is that actuators are 
decomposed into two parts, one of which is susceptible to 
faults, the other part is robust to faults, to compensate for 
actuator faults effectively. But in order to implement the 
controller designs, the two-part decomposition has to be 
known in advance. It is in general difficult to obtain in 
practice due to uncertain and random feature of faults.  

However, there are few results on fault-tolerant control of 
switched systems and that of switched time-delay systems 
[Wang, et al., 2009; Wang, et al., 2007; Du, et al., 2011; Jin, 
et al., 2007; Veillette, 1995; Wang, et al., 2009; Du & 
Mhaskar, 2010]. References [Wang, et al., 2007; Jin, et al., 
2007; Wang, et al., 2009] gave sufficient conditions on robust 
fault-tolerant control of a class of nonlinear switched systems 
by decomposing actuators into two parts, in the same way as 
[Veillette, 1995], i.e., one part is robust to actuator faults, and 
the other is susceptible to actuator faults. Thus, the method in 
[Wang, et al., 2007; Jin, et al., 2007; Wang, et al., 2009] has 
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the above-mentioned disadvantages on fault modeling and 
characterization. In addition, structural uncertainties of input 
matrices were not considered for this class of nonlinear 
switched systems in [Wang, et al., 2007; Jin, et al., 2007; 
Wang, et al., 2009]. In [Wang, et al., 2009], by combining 
safe-parking method and reconfiguration-based approach the 
authors proposed two switching strategies to realize fault-
tolerant controls of a class of switched nonlinear systems 
against actuator faults. But when actuator faults occur, the 
two methods both need to determine reparation time for 
faulty actuators, which is not easy to acquire in many real-
world scenarios. Reference [Du & Mhaskar, 2010] 
considered an observer-based fault-tolerant control of a class 
of switched nonlinear system with external disturbances. [Du, 
et al., 2011] developed an active fault-tolerant control for 
switched time-delay systems, but it needs to design an 
observer to detect faults. [Wang, et al., 2009] dealt with the 
problem of robust fault detection for discrete-time switched 
time-delay systems without designing controllers.  

In last decade, average dwell-time switching techniques have 
been becoming one of popular methods to stabilize switched 
systems, due that it is more general and flexible than dwell-
time techniques [Hespanha & Morse, 1999; Allerhand & 
Shaked, 2011; Zhang & Shi, 2009; Zhang, et al., 2011; Persis, 
et al., 2003]. It means that the number of switches in the 
finite interval is bounded and the average time between 
successive switchings is greater than or equal to a constant 
[Zhang & Gao, 2010; Hespanha & Morse, 1999]. Thus, there 
are several important results on applications of average 
dwell-time techniques [Wang, et al., 2009; Wang, et al., 2007; 
Du, et al., 2011; Xiang, et al., 2010; Zhang & Gao, 2010; 
Zhang & Shi, 2009; Zhang, et al., 2011; Du, et al., 2011; 
Wang & Shao, 2010; Yang, et al., 2009]. However, to the 
best of the authors’ knowledge, there are few results on 
applying average dwell-time techniques to fault-tolerant 
control of switched systems [Wang, et al., 2007; Du, et al., 
2011; Xiang, et al., 2010; Wang, et al., 2009, Wang & Shao, 
2010; Yang, et al., 2009; Ma & Yang, 2011]. [Wang, et al., 
2007, Wang, et al., 2009] need decomposing actuators into 
faulty actuators and healthy ones. The common feature in 
[Du, et al., 2011; Xiang, et al., 2010, Wang & Shao, 2010] is 
that they did not consider structural uncertainties of input 
matrices. Reference [Yang, et al., 2009] applied average 
dwell-time method to fault-tolerant control of the switched 
nonlinear system where the nonlinear item is connected to the 
system in a parallel way, which can be directly compensated 
for by control signals. Ma & Yang (2011) proposed an 
adaptive logic-based switching fault-tolerant control method 
for a class of nonlinear uncertain systems against actuator 
faults, and also uses a similar way as [Yang, et al., 2009] to 
deal with the unmodeled dynamics. However, to our best 
knowledge, by using average dwell-time techniques the fault-
tolerant control of the class of switched linear time-delay 
systems (1) without necessarily decomposing actuators into 
faulty actuators and healthy ones has not been investigated 
yet. This motivates us to study this problem. 

This paper deals with the problem of robust fault-tolerant 
control of a class of switched time-delay linear systems with 
structural uncertainties existing in both system matrices and 

input matrices, and proposes a fault-tolerant control method  
for this class of switched systems by using average dwell-
time techniques. The main features and contributions of this 
paper are highlighted as follows: 

 (1) The proposed control design works on both the switched 
time-delay systems with actuator faults and its nominal 
systems (i.e., without actuator faults) without necessarily 
changing any structures and/or parameters of the 
proposed controllers; 

 (2) The proposed method, unlike [Wang, et al., 2007; Jin, et 
al., 2007; Veillette, 1995; Wang, et al., 1999; Liang, et 
al., 2000; Wang, et al., 2009] but in a unified way for 
easy and practical applications, treats all actuators 
without necessarily classifying all actuators into faulty 
actuators and reliable ones;  

 (3) The proposed method is independent from switching 
provided that the average switching time is greater than 
certain dwelling time.   

The layout of the paper is as follows. Section II presents the 
problem statement. The details about designing the 
controllers of the nonlinear switched systems and its stability 
analysis are presented in Section III. A numerical example is 
given in Section IV. Section V concludes the paper.  
 

2. PROBLEM FORMULATION 
Consider a class of uncertain switched time-delay systems   

          
( ) ( ) ( ) ( ) ( )
( ) ( ), [ ,0),

i i i i i ix t A A x t E x t h B B u
x hθ φ θ θ

= + Δ + − + + Δ
= ∈ −

         (1) 

where nx R∈  are system states, iq
iu R∈ is control input, 

[ ) { }: 0, 1, 2, ,i M m+∞ → = ⋅⋅⋅ is a switching signal, iA , iB  
and iE are known constant matrices, and iAΔ  and iBΔ are 
matrix functions representing structural uncertainties. ( )φ θ is 
a differentiable vector-valued initial function on [−h,0], and 

0h > denotes the state delay. 

We now make the assumptions for system (1) as follows: 

Assumption 1: Assume that ( ),i iA B  is controllable and that 
all the states are available for feedback. 

Assumption 2: Assume that iAΔ  and iBΔ  are the structural 
uncertainties with bounded norms, i.e.,  

          i iA δΔ ≤   and  .i iB ωΔ ≤                                        (2) 

 Then, one can design state feedback controllers as follows: 

                      i iu K x=                                                          (3) 

 where iq r
iK R ×∈ , { }1,2, ,i M m∈ = ⋅⋅⋅  are constant matrices.  

Given that whether a fault occurs on each actuator or not, a 
matrix i

sL is introduced to represent fault situation of the 
actuators of the thi subsystem as follows: 
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                    1 2( , , , )i i i i
s qL diag l l l= ⋅⋅ ⋅                                        (4)   

where if 1i
jl = , 1, 2, , ,j q= actuator j is normal and if i

jl =0 

actuator j  is faulty, and 0i
sL ≠ . Therefore, the closed-loop 

switched nonlinear systems involving uncertain structures 
and actuator faults are given as follows: 

   
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ), [ ,0),

i
i i i i i s ix t A A x t E x t h B B L K x t

x hθ φ θ θ
= + Δ + − + + Δ
= ∈ −

     (5) 

The control objective is then to design feedback gain 
matrices iK ( )i M∈  such that switched time-delay system (5) 
under arbitrary switching policies are globally asymptotically 
stable for all uncertain matrices ,i iA BΔ Δ  and the actuator 
faults. 

3. CONTROLLER DESIGN FOR TIME-
DELAY SYSTEMS 
This section will present the main results on the robust fault-
tolerant control of the switched systems (1) and stability 
analysis of the closed-loop systems (5). 

Before presenting the main theorem, we need the following 
lemma. 

Lemma 1:  For , rx y R∀ ∈ and constant 0ε >  and symmetric 
positive matrix Π , the inequalities as follows hold: 

   1

min ( )

T T T
T T Tx x x x y yx y y x y yε ε

ε ε λ
−Π Π+ ≤ + Π ≤ +

Π
         (6) 

Theorem 1: Given positive constants 0, ,h λ ε . Suppose that 
Assumptions 1 and 2 are satisfied and that there exist 
symmetric positive definite matrices , ,i i iP Q H and iU such 
that the linear matrix inequalities (7) below hold: 

   
02 0i i i
hT

i i i

PE
E P e Qλ−

Π⎡ ⎤
<⎢ ⎥−⎣ ⎦

                                                      (7) 

where 

  ( )

( )

2

min

2
0

min

1 1 1

2

T Ti
i i i i i i i i i n i i q q i i

i i i i

i
i n i i

i

A P PA P H B U B P
U

P Q
H

εε ω
ε ε λ ε

ε δ λ
λ

⎡ ⎤⎛ ⎞
Π = + + + Ι + + Ι + Ι⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

+ Ι + +

 (8) 

Then, 

(1). if the average dwell-time satisfies 

 *
*

ln ,
2( )a a

μτ τ
λ λ

≥ =
−

 *
0 0(0, ), ( , )λ λ λ λ λ∈ ∈                      (9) 

where positive constant 1μ ≥  satisfying 

 ,i jP Pμ≤ ,i jQ Qμ≤ ,i j M∀ ∈                                         (10) 

Then, the closed-loop systems (5) are globally exponentially 
stable under arbitrary switching rules with controller 
gain ,T

i iK B P= − i.e., T
i i iu K x B Px= = − are fault-tolerant 

feedback controllers which stabilize switched systems (1) 
globally and exponentially. 

(2). Norm estimation of states of systems (7) is measured by 

   0

0

( )( ) ,t t
t

bx t e x
a

λ− −≤                                                  (11) 

where 

   minmin ( ),ii M
a Pλ

∈
=  

 and 

    max maxmax ( ) max ( ).i ii M i M
b P h Qλ λ

∈ ∈
= +   

Proof: Define following piecewise Lyapunov candidate 
function for systems (1):   

02 ( )
( ) ( ) ( )( ) ( ) ( )

t s tT T
i t t i t i tt h

V V x x P x e x s Q x s dsλ −

−
= = + ∫           (12)  

where iP and iQ ( i M∈ ) are positive definite matrices and 
satisfying matrix inequalities (7). Then along the trajectory of 
systems (5), the time derivative of ( ),V x z  is  

0

0

2

2 ( )
0

( )( 2

) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 ( ) ( )

i
T T T i T i T

i i i i i i i i i i s i i i i s i i

i T T T T
i i s i i i i i i

hT T

t s t T

t h

V x t A P PA A P P A PBL B P PBL B P

P BL B P x t x t h E Px t x t P E x t h

x t Qx t e x t h Qx t h

e x s Qx s ds

λ

λλ

−

−

−

= + +Δ + Δ − − Δ

− Δ + − + −

+ − − −

− ∫

 (13) 

According to the inequality (6) in Lemma 1, for the 
constant 0ε >  and symmetric positive definite 
matrices iH and iU , also noting Assumption 2, one has 

            

( )

( )

( )

1

min

2

min

1

1

1

T T
i i i i

T T
i i i i i i

T T
i i i i i

i

T
n i i i

i

x A P P A x

x A H A PH P x

x A A PH P x
H

x PH P x
H

ε
ε

ε
λ ε

ε δ
λ ε

−

Δ + Δ

⎛ ⎞≤ Δ Δ +⎜ ⎟
⎝ ⎠
⎛ ⎞

≤ Δ Δ +⎜ ⎟⎜ ⎟
⎝ ⎠
⎛ ⎞

≤ Ι +⎜ ⎟⎜ ⎟
⎝ ⎠

                   (14) 

    

( )
( )

( ) ( )( )

1

min

2

1( )

1

T i T
i i s i i

T i i T T
i i s i s i i i i i i i

T i i T T
i i s s i i i i i i i

i

x PB L B P x

x PB L U L B P PBU B P x

x PB L L B P PBU B P x
U

ε
ε

ε
λ ε

−

−

⎡ ⎤≤ − − +⎢ ⎥⎣ ⎦
⎡ ⎤

≤ − − +⎢ ⎥
⎢ ⎥⎣ ⎦
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( )

( )

min

min

( )( ) 1

1

i i
s sT T T

i i i i i i i i i
i

T T T
i i i i i i i i i

i

L L
x PB B P PBU B P x

U

x PB B P PBU B P x
U

ε
λ ε

ε
λ ε

⎡ ⎤− −
⎢ ⎥≤ +
⎢ ⎥⎣ ⎦
⎡ ⎤

= +⎢ ⎥
⎢ ⎥⎣ ⎦

            (15) 

( )
( )

2

2

( ) ( )

1 ( )( )

1 ( )( )

1

T i T i T
i i s i i i i s i i

T i T i T
i i s i i i i s i i

T T i i T
i i i i i i s s i i

T i i T
i i s s i i i i

T T
i i i i i i

x PB L B P P B L B P x

x PB L B P P B L B P x

x P B B P PB L L B P x

x PP L L PB B P x

x PP PB B P x

ε
ε

εω
ε

εω
ε

− Δ − Δ

= − Δ + Δ −

⎡ ⎤≤ Δ Δ + − −⎢ ⎥⎣ ⎦
⎡ ⎤≤ + − −⎢ ⎥⎣ ⎦
⎛ ⎞= +⎜ ⎟
⎝ ⎠

                 (16) 

Using (14)-(16) and (7), one has      

( )

( )

2

min

2

min

( ) 1[ (

1 1( ) )

] ( ) ( )

( ) ( )

T
T Ti

i i i i i i n

T
i i q q i i

i

T
n i i

i

T T
i i

d x Px
x A P P A P H L

dt

B U B P
U

x x t PE x t h
H

x t h E Px t

εω
ε

ε
ε λ ε
ε δ

λ

≤ + + +

+ + Ι + Ι

+ Ι + −

+ −

           (17) 

Thus, 

   
0

0

2

( ) 2

( ) ( )
0

( ) ( )

i i
T

i i i
hT

i i i

V t V

PEx t x t
E P e Qx t h x t hλ

λ

−

+

Π⎡ ⎤⎛ ⎞ ⎛ ⎞
≤ ≤⎜ ⎟ ⎜ ⎟⎢ ⎥−− −⎝ ⎠ ⎝ ⎠⎣ ⎦

              (18) 

where the second inequality relation holds from (7).         

Using (10) and (12), one obtains  

   ( ) ( ), , ,i jV t V t i j M i jμ≤ ∀ ∈ <                                 (19)  

From (18), one obtains 

     02i iV Vλ≤ −                                                                     (20) 

For any given 0t > , let 
00 1 2 ( , )ik N t tt t t t t< < < < = denote 

the time instants at which switching occurs over the operating 
interval 0( , ).t t  Thus, taking integration of both sides of (20) 
and utilizing (19) yield 

     

0

0 1

11

0 2

22

0 3

33

0 0

0 0

2 ( )
( )

2 ( )
( )

2 ( ) 2
( )

2 ( ) 3
( )

2 ( ) ln
( )

( ) ( ) ( )

( )

( )

( )

( )

k

kk

k

kk

k

kk

k

kk

t t
t i t ti t

t t
ti t

t t
ti t

t t
ti t

t t k
i t t

V x V x e V x

e V x

e V x

e V x

e V x

λ

λ

λ

λ

λ μ

μ

μ

μ

μ

−

−
−

−−

−
−

−−

−
−

−−

− −

− −

− −

− −

− − +

= ≤

≤

≤

≤

≤ ≤

                            (21) 

From (19) and (21), one has 

      

* 0
0

0 0

*
0

0 0

0

0 0

2 ( ) ln

( )

12( ln )( )
2

( )

2 ( )
( )

( ) ( )

( )

 ( )

a

a

t t
t t

t i t t

t t

i t t

t t
i t t

V x e V x

e V x

e V x

λ μ
τ

λ μ
τ

λ

−
− − +

− − −

− −

≤

≤

≤

                                 (22) 

(10) and (12) then lead to  

      2 2( ) ( )t ta x t V x b x≤ ≤                                             (23)   

From (22) and (23), one has 

      0
2 22 ( )

0
1( ) ( ) ( )t t

t
bx t V x e x t

a a
λ− −≤ ≤  

Therefore, we have the conclusion (11). 

Remark: Note that (7) is nonlinear matrix inequalities. One 
cannot solve it with available solver. For solving this issue,  
pre- and post-multiplying both sides of matrix inequalities (7) 
by 1

i iP−Γ = , (7) needs to be carried out and 
following LMIs are generated 

      
02 0i i i
h

i i i i i

E T
E T e T Q Tλ−

Ξ⎡ ⎤
<⎢ ⎥−⎣ ⎦

                                             (24) 

where 

( )

( )

2

min

2
0

min

1 1 1

2 ,

T Ti
i i i i i i i i n i i q q i

i i i i

i
i i i i i i i

i

T A AT H B U B
U

TT T T Q T
H

εε ω
ε ε λ ε

ε δ λ
λ

⎡ ⎤⎛ ⎞
Ξ = + + + Ι + + Ι + Ι⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

+ + +

 

Defining i i i iT Q T Y=  and applying Schur Complement 
Lemma, (3.19) is transformed into          

  

( )

0

0
2

2

min

2
* 0 0

* *

T
i i i i i i i i i i

h
i

i
i

i

T A AT Y T E T T
e Y

I
H

λ

λ

ε δ
λ

−

⎡ ⎤
⎢ ⎥+ + + + + Γ⎢ ⎥
⎢ ⎥− <
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦
where 

( )
2

min

1 1 1 Ti
i i i i n i i q q i

i i i i

H B U B
U

εε ω
ε ε λ ε
⎡ ⎤⎛ ⎞

Γ = + Ι + + Ι + Ι⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
                

 

4. A NUMERICAL EXAMPLE 
In this section, the proposed method will be applied to the 
following numerical example with model structure as given 
in Eq. (1) to show the effectiveness of the proposed method. 
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 1

4 2 0
0 4 0
0.4 1 4

A
− −⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥− −⎣ ⎦

，           1

1 0
0.5 0.5
0.5 1

B
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

， 

2

2 2 0
0 2.5 0
0.4 1 2

A
− −⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥− −⎣ ⎦

，     2

1 0
0.6 0.5
0.6 0.9

B
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

          (25) 

1

0.1 0.002 0
0.002 0.1 0 ,

0 0 0.1
H

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 1

3 0
,

0 3
U ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 1 0 0
0 1sL ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

       

2

0.2 0.002 0
0.002 0.2 0

0 0 0.2
H

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

， 2

3 0
0 3

U ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

， 2 1 0
0 0sL ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

1

1 0 0
0 1 0
0 0 1

E
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

，           2

0.2 0 0
0 0.2 0
0 0 0.2

E
−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

， 

( ) [ 100,120, 80] , [ ,0)Tx hθ θ= − − ∈ − , 0.2h = , 1 2 1.2ε ε= = ,  
1 2 5δ δ= = , 1 2 0.5ω ω= = ,， 0 1.25λ = and 1.1μ = 。 

It is easy to verify that Assumptions 1-2 are satisfied by (25). 
Let ( ) [ 100,120, 80] , [ ,0)Tx hθ θ= − − ∈ − . Solving Riccati 
equation (9) with the parameters given above gives positive 
definite matrix solutions as shown below: 

1

0.0138 0.0372 0.0051
0.0372 0.1319 0.0171
0.0051 0.0171 0.0083

P
− −⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

, 2

0.0164 0.0367 0.0035
0.0367 0.1346 0.0121
0.0035 0.0121 0.0095

P
− −⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

1

0.0063 0.0192 0.0021
0.0192 0.0777 0.0083
0.0021 0.0083 0.0035

Q
− −⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

, 2

0.0095 0.0167 0.0005
0.0167 0.0942 0.0007
0.0005 0.0007 0.0050

Q
− −⎡ ⎤

⎢ ⎥= − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

. 

Then, according to T
i i iu K x B Px= = − ( 1,2)i = the controller 

can be designed. Taking * 1λ = and 0.97λ = , one has 
*

*

ln 1.59
2( )a

μτ
λ λ

= =
−

. Take * 2a aτ τ≤ =  and choose the 

following switching rule: 

     
1, 0,3.8,8.8,15
2, 2,6,11,18

k

k

t
i

t
=⎧

= ⎨ =⎩
 

to carry out the simulation studies for system (25). 

 As Fig. 1 shows, the state feedback control law guarantees 
that systems (25) under arbitrary switching rules are still 
asymptotically stable when the second actuator of the first 
subsystem and the first actuator of the second subsystem 
have faults, as indicated by 1

sL  and 2
sL . Fig. 1 is the time 

history of the states, where the stars represent switching 
points. Fig. 2 and Fig. 3 represent switching sequences of 
controller gains and switching signal, respectively. From the 
figures, the effectiveness of the proposed control method is 
verified. 
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Fig.1 System state responses 
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Fig.2 Switching sequences of gain matrices 
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Fig.3 Switching signal                 

5. CONCLUSIONS 
This paper studies robust fault-tolerant control of a class of 
uncertain switched linear time-delay systems. By designing 
feedback control law and using the average dwelling time 
techniques, a sufficient condition is given on globally 
asymptotical stabilization of the switched nonlinear systems 
against actuator faults under arbitrarily switching signals 
provided switching is on-the-average slow enough.  

REFERENCES 
Wang, D., Wang, W., and Shi, P. (2009). Robust fault 
detection for switched linear systems with state delays, IEEE 
Transactions on Systems, Man, and Cybernetics—Part B: 
Cybernetics, 39(3), 800-805.   

Wang, R., Dimirovski, G.M., and Zhao, J. (2007). Switching 
based robust exponential stabilization of linear delay systems 
with faulty actuators, Proceedings of European Control 
Conference, 673-679. 

Du, D.S., Jiang, B., and Shi, P. (2011). Active fault-tolerant 
control for switched systems with time delay, Int. Journal of 
Adaptive Control & Signal Processing, 24, 466-480. 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

11677



 
 

     

 

Xiang, Z.R., Wang, R.H., and Chen, Q.W. (2010). Fault 
tolerant control of switched nonlinear systems with time 
delay under asynchronous switching, International Journal of 
Applied Mathematics and Computer Science, 20(3), 497-506. 

Zhang, L.X. and Gao, H.J. (2010). Asynchronously switched 
control of switched linear systems with average dwell time,  
Automatica, 46, 953-958. 

Zhao, J. and Hill, D.J. (2008). Dissipativity theory for 
switched systems, IEEE Trans. on Automatic Control, 
36(11), 1228-1240. 

Liberzon, D. (2003). Switching in Systems and Control, 
Springer-Verlag, New York. 

Zhao, J. and Dimirovsk, G.M. (2004). Quadratic stability of a 
class of switched nonlinear systems, IEEE Trans. on 
Automatic Control, 49, 574-578. 

Sun, Z.D. and Ge, S.S. (2004). Switched Linear Systems-
Control and Design, Springer-Verlag, New York. 

Xie, G.M. and Wang, L. (2003). Controllability and 
stabilizability of switched linear systems, Systems & Control 
Letters, 48, 135-155. 

Zhang, Y.M. and Jiang, J. (2003). Fault tolerant control 
system design with explicit consideration of performance 
degradation, IEEE Trans. on Aerospace & Electronic 
Systems, 39(3), 838-848. 

Xiao, B., Hu, Q., and Zhang, Y.M. (2012). Adaptive sliding 
mode fault tolerant attitude tracking control for flexible 
spacecraft under actuator saturation, IEEE Trans. on Control 
Systems Technology, 20(6), 1605-1612.  

Zhang, Y.M. and Jiang, J. (2008). Bibliographical review on 
reconfigurable fault-tolerant control systems, Annual Reviews 
in Control, 32(2), 229-252.  

Han, Q.L. and Yu, J.S. (1998). A new feedback design 
method for uncertain continuous-time systems possessing 
integrity,  Acta Automatica Sinica, 24, 768-775. 

Panagi, P. and Polycarpou, M.M. (2011). Decentralized fault 
tolerant control of a class of interconnected nonlinear 
systems,  IEEE Trans. on  Automatic Control, 56, 178-184. 

Jin, G., Wang, R., and Zhao, J. (2007). Robust fault-tolerant 
control for a class of switched nonlinear systems in lower 
triangular form, Asian Journal of Control, 9(1), 68-72. 

Veillette, J.R. (1995). Reliable linear-quadratic state-
feedback control,  Automatica, 31, 137-143. 

Wang, Z.D.,  Huang, B.,  and Unbehauen, H. (1999). Robust 
reliable control for a class of uncertain nonlinear state-
delayed systems,  Automatica, 35, 955−963. 

Liang, Y.W.,  Liaw, D.C.,  and Lee, T.C. (2000). Reliable 
control of nonlinear systems, IEEE Trans. on Automatic 
Control, 45,706-710. 

Wang, R.,  Zhao, J., Dimirovski, G.M., and Liu, G.P. (2009). 
Output feedback control for uncertain linear systems with 
faulty actuators based on a switching method, International 
Journal of Robust and Nonlinear Control, 19, 1295-1312. 

Du, M. and Mhaskar, P. (2010). Uniting safe-parking and 
reconfiguration-based approaches for fault-tolerant control of 
switched nonlinear systems, 2010 American Control 
Conference, 2829-2834. 

Hespanha, J.P. and Morse, A.S. (1999). Stability of switched 
systems with average dwell time, Proceedings of the 38th 
Conference on Decision & Control, 2655-2660.  

Allerhand, L.I. and Shaked, U. (2011). Robust stability and 
stabilization of linear switched systems with dwell time, 
IEEE Trans. on Automatic Control, 56(2), 381-386. 

Zhang, L.X. and Shi, P. (2009). Stability, L2 gain and 
asynchronous H-infinity control of discrete-time switched 
systems with average dwell time, IEEE Trans. on Automatic 
Control, 54(9), 2193-2200. 

Zhang, L.X., Cui, N.G., Liu, M., and Zhao, Y. (2011). 
Asynchronous filtering of discrete-time switched linear 
systems with average dwell time, IEEE Trans. on Circuits 
and Systems-I, 58(5), 1109-1118. 

Du, D.S., Jiang, B., and Shi, P. (2011). Fault identification 
for nonlinear switched systems: average dwell time approach, 
Proceedings of the 30th Chinese Control Conference.  

Wang, L.M. and Shao, C. (2010). Exponential stabilization 
for time-varying delay system with actuator faults: an 
average dwell time method, International Journal of Systems 
Science, 41(4), 435-445.  

Yang, H., Jiang, B., and Cocquempot, V. (2009). A fault 
tolerant control framework for periodic switched non-linear 
systems, International Journal of Control, 82, 117-129.  

Ma H.J. and Yang, G.H. (2011). Adaptive logic-based 
switching fault-tolerant controller design for nonlinear 
uncertain systems, International Journal of Robust and 
Nonlinear Control, 21, 404-428. 

Persis, C.D., Santis, R.D., and Morse, A.S. (2003). Switched 
nonlinear systems with state-dependent dwell-time, Systems 
& Control Letters, 50, 291-302. 

Hu, B., Xu, X.P., Michel, A.N., and Antsaklis, P.J. (1999). 
Stability analysis for a class of nonlinear switched systems, 
Proceedings of the 38th IEEE Conference on Decision and 
Control, USA, 4374-4379. 

Yurtseven, E., Heemels, W.P.M.H., and Camlibel, M.K. 
(2012). Disturbance decoupling of switched linear systems, 
Systems & Control Letters, 61, 69-78. 

El-Farra, N.H., Mhaskar, P., and Christofides, P.D. (2005). 
Output feedback control of switched nonlinear systems using 
multiple Lyapunov functions, Systems & Control Letters, 
54(12), 1163-1182. 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

11678


