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Abstract: In this work, a novel relay feedback experiment method is proposed for system
identification by connecting a fractional order integrator in front of a basic relay component.
With this approach, a linear time invariant process model can be estimated at an arbitrary
phase angle in the third or fourth quadrant on the Nyquist curve. Another contribution of this
paper is to present a pseudo frequency response concept to generalize the describing function
method so as to make it compatible with the frequency response operations. The proposed
setup is illustrated through mathematical derivation using the proposed concept. Simulations
are provided to verify the effectiveness.

1. INTRODUCTION

The relay feedback approach is one of the most commonly
used control schemes in the industrial automation. Gener-
ally, it has two uses. One is for auto tuning the controller
parameters and the other is for model identification. Two
detailed surveys on the development of the relay feedbacks
can be found in [1, 2]. More recent advances are available
in [3]. As this practical-to-implement technique receives so
much research attention, more than ten types of its variant
have been created in the past two decades. In this paper,
inspired by fractional order (FO) modeling and control, a
new variant is proposed with unique advantages over other
types of variants.

The fractional order modeling and control is an emerging
and fast growing topic in recent years [5, 6], whose concept
can be briefly stated as to model systems and design
controllers with the use of fractional calculus [7]. By taking
this effort, the modeling and controller design are equipped
with more freedom, which, therefore, can usually provide
superior performance than the traditional integer order
ones under the same condition. The research in this paper
is another exploration in this big trend. In Jeoguk et, al ’s
work [4], a seemingly similar research was carried out in
terms of the block diagram connection. However, the big
differences lies in the profile of control signals because
the FO integrator in [4] is connected behind the relay,
which consequently, generates control signals in the “FO
integral’s” shape instead of the square waveforms directly
generated by relays. From this point of view, the setup
in the present paper is more loyal to the original relay
feedback idea.

For the analysis of relay feedback identification, the de-
scribing function (DF) has been the dominant approach.

It is the main approach for approximating a linear e-
quivalence of the relay nonlinearities. In this paper, the
notion of pseudo frequency response (PFR) is promoted
for the input dependant DF so as to demonstrate its
operation with the actual frequency response of a linear
element. This is feasible because after the approximation
with regards to a particular input, the nonlinearity has
lost. Hence, the DF is essentially a complex number which
can be treated as a gain and phase shift effect on the linear
elements. Under this framework, the derivation of different
types of the relay feedback variants can be generalized
to a universal form. The origin of this idea is inspired
by the pseudo transfer function concepts for some special
scenarios in model identification, [8, 9].

The rest of the paper is organized as follows. First, the DF
method is briefly stated for introducing the PFR concept.
Then, five types of relay feedback identification methods
are reviewed with this PFR concept. Comments are given
on some practical details that are usually ignored in the
literature. Afterwards, the proposed relay feedback setup is
presented with the highlighted advantages and limitations.
Finally, simulations are provided to verify the effectiveness
of this setup. A comparison among different types of relay
variants for a sample test run is summarized.

2. REVIEW OF THE RELAY FEEDBACK
IDENTIFICATION AND ITS VARIANTS

2.1 The pseudo frequency response

The describing function of a memoryless nonlinearity, ψ
is defined to be the ratio of the first harmonic of its
output to that of its input, [10]. An illustrative block
diagram is shown in figure 1. Let vn(t) and un(t) denote
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Fig. 1. The nonlinearity block representation.

the Fourier series of the periodic input v(t), and output
u(t), respectively,

vn(t) = a0v +
∞∑
k=1

[akv cos (kωt) + bkvsin(kωt)], (1)

un(t) = a0u +
∞∑
k=1

[aku cos (kωt) + bkusin(kωt)], (2)

where ak and bk are the triangular form Fourier coeffi-
cients, with the footnote u and v for output and input
respectively. Then, the describing function of ψ is

Ψ =
c1u
c1v

, (3)

where c1u and c1v are the exponential form Fourier coeffi-
cients of the fundamental frequency terms,

c1u =
a1u − jb1u

2
, c1v =

a1v − jb1v
2

.

Conventionally, the DF, by default, takes the assumption
of a sine wave input, when which is not satisfied a re-
derivation of the DF is usually required, [11]. In this
work, the notion of pseudo frequency response G(u(t)) is
used to replace the input dependant DF in approximating
the frequency characteristic of the nonlinear elements,
regardless of whether or not the input is a sine wave.

As an example, for the typical relay nonlinearity depicted
by the sign function,

u = ψ (v) = sgn(v)H =

{
H, v ≥ 0,

−H, v < 0,
(4)

its PFR to a cosine wave input is:

G(A cos(ωt)) =
4H
2π − 0j
A
2 − 0j

=
4H

πA
, (5)

which is the same with its PFR to a sine wave input.
However, this equality is a coincidence which doesn’t
always hold true for complex nonlinearities such as non-
symmetric ones.

From this generalized point of view, the frequency response
of a linear element can be treated as an input independent
PFR. Next, different kinds of relays are reviewed with this
concept.

2.2 The ideal relay feedback

In 1984, Ȧström and Hägglund introduced the relay feed-
back technique for automatic tuning the PID controllers
by bringing the system to a self-sustained oscillation [12].
This method was then extended by Luyben to identify a
transfer function of a distillation process [13].

Assume the process to be identified can be approximated
by a linear time invariant (LTI) model G(s); then, a

- 
( ) 

-H -A 

Fig. 2. The block diagram of the ideal relay feedback.

schematic of the relay feedback block diagram is drawn
in figure 2. As mentioned in the previous section, the
ideal relay with an amplitude of H has a PFR as:
Gideal(A sin(ωt)) = 4H

πA . Considering the negative unit
feedback, it can push the process to the so called critical
oscillation, i.e. the (−1, 0) point on the Nyquist curve
shown in figure 3,

|Gideal(A sin(ωut))G(jωu)| = 1, (6)

where ωu is the frequency of the process at the oscillation
point which is called the ultimate frequency. Thus, the
process gain at the phase φp = −π is,

|G(jωu)| =
πA

4H
. (7)

Depending on the LTI model structures, corresponding
parameters can be calculated based on this frequency
information. In this paper, first order plus dead time
(FOPDT) model is addressed,

G (s) =
K

Ts+ 1
e−Ls. (8)

The parameters K,L, T can be calculated by the following
formulae,

K = G(0), (9)

T =

√
(KKu)

2 − 1

ωu
, (10)

L =
1

ωu
(−φp − arctan

√
(KKu)

2 − 1), (11)

where Ku = 1
|G(jωu)| is the ultimate gain, and K is the

steady state gain that can be obtained through varieties
of methods, such as reading off from a step test or the ratio
of the integration of output to input, [16]. The equations
for computing other model structures can be referred to
[14, 15].

Ideal Relay

2 channel relay 

Relay with 

an integrator 

Im

Re

Relay with 

hysteresis

Relay with 

time delay

-180

-90

Relay with an 

FO integrator 

Fig. 3. The frequency response points on the Nyquist curve
identified by different types of relay variants.
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2.3 The relay with hysteresis

The ideal relay setup is straightforward and simple to
implement, but a concern lies in the practical response of
the processes with small delay or no delay. In this case, the
frequency response has hardly or even no intersection with
the negative real axis on the Nyquist plot until reaching
very high frequency. Thus, the relay with hysteresis shown
in figure 4(a) is used to assure the appearance of the
sustained oscillation within reasonable frequency ranges
of the industrial processes.

-H 

(a) (b)

Fig. 4. The schematic of the relay with hysteresis. (a) The
nonlinear characteristic; (b) the input and output.

The effect of the hysteresis onto the input signal is like
a delay, as shown in figure 4(b). Hence, by evaluating the
input and output, the PTF of the relay with hysteresis can
be obtained,

Ghyst(A sin(ωt)) =
4H

πA
e−jϕ, (12)

where ϕ = arcsin( ε
A ). Again, considering the negative unit

feedback, it can be seen, in figure 3, that the frequency
response point identified by the relay with hysteresis is
4H
πA∠(−π+ ϕ), at which the gain and phase of the process
are,

|G(jωϕ)| =
πA

4H
and φp = −π + ϕ, (13)

respectively. Note that the hysteresis must satisfy 0 < ε <
A because otherwise, the relay will output a constant zero.
This condition limits the identifiable process phase within
the range of (−π

2 ,−π).
The same set of equations (9∼11) can be used to compute
the parameters by substituting the phase and oscillation
frequency if an FOPDT model is expected.

2.4 The relay with time delay

( ) 

-H -A 

- 
  

Fig. 5. The block diagram of the relay feedback setup with
time delay.

Similar to the relay with hysteresis, the relay with time
delay presented in [17] has the same effect of inserting a
certain phase shift between the input and output, and it
makes no difference whether the delay is placed in front of

or behind the relay. The PFR for this type of relay when
input is a sine wave is,

Gdelay(A sin(ωt)) =
4H

πA
e−jl, (14)

where l > 0 is the artificially inserted time delay as shown
in figure 5. This PFR is the same with equation (12) except
that the delayed time is irrelevant to the amplitude of the
input. Without this limitation, the time delay can provide
a wider range of phase shift than the hysteresis. Hence, the
gain and phase of the process at the identified frequency
point are,

|G(jωl)| =
πA

4H
and φp = −π + l. (15)

2.5 The relay with an integrator
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Fig. 6. The block diagram and the signal transform of the
relay with an integrator in the front.

The relay feedback with an integrator is another way to
identify a process at a frequency response point other than
the critical oscillation on the Nyquist curve [18]. When the
integrator is connected in front of the relay, the PFR can
be obtained by multiplying the frequency response of the
integrator with the PFR of the ideal relay, as shown in
figure 6,

Gint(A sin(ωt)) =
1

jω
Gideal(−

A

ω
cos(ωt))

=−4H

πA
j. (16)

Graphically, it appends an additional π
2 phase lag to the

process output. Hence, the phase of the process at the
identified frequency response point is φp = −π

2 , which is
also illustrated in figure 3.

As another variant to this method, the integrator connect-
ed behind the relay can be found in [19]. Theoretically,
by connecting a differentiator, a point on the positive
imaginary axis in figure 3 can be identified, mentioned in
[20]. However, this is not widely used in practice.

2.6 The two channel relay feedback

The two channel (TC) relay feedback introduced by Waller
et. al in 1997 suggests a parallel connection of the ideal
relay and the relay with an integrator, [20]. In the similar
manner of manipulating transfer functions, the PFR of
the TC relay can be obtained by adding up the PFR of
the ideal relay in equation (5) and that of the relay with
integrator in equation (16),
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The TC relay

Fig. 7. The block diagram of the TC relay controlled
process.

GTC(A sin(ωt)) =Gideal(A sin(ωt)) +Gint(A sin(ωt))

=
4Hp

πA
− 4Hi

πA
j. (17)

where Hp and Hi are the amplitude of the ideal relay and
the integral relay respectively, as shown in figure 7. This
can be verified by evaluating the Fourier series of the input
and output of the overall setup in the dashed lined box.

Continued with equation (17), the gain and phase of the
process identified by the TC relay feedback are,

|G(jωTC)|=
πA

4
√
H2

p +H2
i

, (18)

φp =−π + arctan(
Hi

Hp
). (19)

It is easy to see that by varying Hp and Hi, the frequency
response point to be identified can be arbitrarily selected
within the third quadrant, yet, only in the third quadrant
because arctan(Hi

Hp
) ∈ (0, π2 ).

A drawback of the TC relay is that when Hp = Hi,
it cannot be used to identify processes with little time
delay, because the output of the two channels will cancel
each other instead of bringing the system to oscillation, as
demonstrated in figure 8. That means it cannot identify
lots of processes at the phase of −3

4π in practice.

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1
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The proportional relay ouput
The integral relay ouput

(a) The two channels
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The combined ouput of the two channels
The process ouput

(b) The outputs

Fig. 8. A demonstration of the TC relay output cancela-
tion.

Besides the aforementioned setups, there are other variants
of the basic relay feedbacks, such as the biased relay
[21] and the parasitic relay [22] which identifies multiple
frequency response points in a single relay test. The
derivation of PFRs are not enumerated here.

3. THE PROPOSED RELAY FEEDBACK

In the proposed relay feedback setup, a fractional order
integrator is connected in front of the relay, as shown in

figure 9, to provide a competitive adjustable phase shift
range to the processes.

1
 

   

( ) 
2

 

( )
 

1
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( )
 

2
 

   

-H 

Fig. 9. The block diagram and signal transform of the relay
with an FO integrator.

In this context, the fractional order integral follows the
Riemann-Liouville (R-L) definition in [7], and the block in
figure 9 is the Laplace transform of the R-L FO integral
operator,

L[Iαf(t)] = 1

sα
F (s), (20)

where α ∈ R+. For practical reasons such as stability
concerns [28], α is set in (0, 2).

3.1 The PFR of the relay with an FO integrator

The FO integrator is a linear element, its PFR is just its
frequency response,

1

(jω)
α =

1

ωα
e−

π
2 αj . (21)

Following the previously elaborated PFR concept, the
PFR of the entire setup including the relay is,

GFOint(A sin(jω)) =
1

(jω)
αGideal

(
A

ωα
sin

(
ωt− π

2
α
))

=
1

(jω)
α
4Hωα

πA
=

4H

πA

1

(j)
α . (22)

Alternatively, this can be derived in the following pro-
cedure, as illustrated in figure 9. Assume the input e(t)
to this relay setup has a sinusoidal first harmonic. After
the FO integrator, the output is shifted in a phase angle
corresponding to the fractional order α,

v(t) =
A

ωα
sin

(
ωt− π

2
α
)
, (23)

According to the properties of the Fourier series of FO
operators, the Fourier series of an FO integrated function
equals to the FO integration of the Fourier series of the
function, [23],

F {Iαx (t)} = IαF {x (t)} . (24)

Thus, the Fourier coefficient of the first harmonic of the
signal after the FO integrator, v(t), is

c1v =
1

(jω)
α
A

2j
=

A

2ωα
e−

π
2 (1+α)j . (25)
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When v(t) passes through the ideal relay, it becomes a
shifted square wave expressed as,

u(t) =
−H , 0 < t <

T

4
α and − T

4
α+ kT < t <

T

4
α+ kT ,

H ,
T

4
α+ kT < t <

3T

4
α+ kT,

where T is the oscillation period and k = 0, 1, 2, . . .
The Fourier coefficient of its first harmonic is,

c1u =
−4H

π sin
(
π
2α

)
− j 4Hπ cos

(
π
2α

)
2

=
2H

π
e−

π
2 (1+α)j . (26)

To obtain the PFR of the overall setup, c1u is divided by
c1e ,

GFOint(A sin(jω)) =
c1u
c1e

=
2H
π e−

π
2 (1+α)j

A
2j

=
4H

πA
e−

π
2 αj =

4H

πA

1

(j)
α , (27)

which matches the result in equation (22) perfectly. Thus,
the gain and phase of the process identified by the relay
with an FO integrator are,

|G(jωFO)| =
πA

4H
and φp = −π +

π

2
α. (28)

3.2 Identifying LTI model parameters

When such a relay setup is connected to a process in a
negative unit feedback loop, the frequency response of
the process at the investigated point can be obtained.
Then, the FOPDT model parameters T and L can be,
again, calculated from the equations (10 ∼ 11), with the
corresponding ω and φp substituted.

3.3 The advantages and limitations

The major advantages of the proposed relay feedback
setup over other variants are listed below:

(1) The relay with an FO integrator provides a wider
selectable phase range for the process to be identi-
fied. So, for processes of slow dynamics such as the
temperature control in chemical or bio engineering,
it is more meaningful and realistic to approximate a
model based on the frequency response that is close
to a nominal operational point.

(2) Although the relay with time delay provides a even
larger range of the identifiable process phase, it
worths a notice that the pure delay results in a zero
output at the beginning. By contrast, the FO inte-
grator behaves rather a phase shift effect instead of a
pure delay, as illustrated in figure 10. Hence, a quarter
of the oscillation period can be saved for identifying
ultra-slow processes.

(3) The shifted phase of the FO integrator can be pre-
determined. This is unlike using the relay with hys-
teresis, where there is no way to do so without priori
knowledge of the process output. The reason lies in
the dependency of the shifted phase on the amplitude
of the process output, as shown by equation (12).
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1
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Time [sec]

 

 
The relay ouput
The process output
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1.5
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The relay ouput
The process output
The FO integrator output

Fig. 10. Comparison of the initial response. Left: with
delay behind; Right: with FO integrator.

On the other hand, the relay with an FO integrator cannot
get rid of the common limitations suffered by other relay
feedback variants in that it is essentially an approach based
on the following assumptions:

(1) The output of the process has a first harmonic close
to the sine wave;

(2) The higher order harmonics of the process output
need to be small enough to be neglected.

Un-satisfaction either of the above conditions will result in
big identification error. For example, a first order process
usually outputs a triangle shape waveform under the relay
test, and an identification error ranging from −18% ∼ 27%
can be expected [25, 26, 27]. Large measurement noise will
also affect the identification.

4. SIMULATION EXAMPLE

Consider the first element in the transfer function matrix
of the Wood-Berry process [24],

G (s) =
12.8

16.7s+ 1
e−s. (29)

Six types of relay feedbacks are simulated to obtain the
frequency response information of the process individually.
A sample plot of a test run is shown in figure 11. The
identified model parameters are listed in table I, where
A and To are the amplitude and period of the oscillation,
respectively, and the err(%) = 1−T̃ /T is the identification
error for T . (Note: only the error for T is listed because A
usually can be determined accurately, and L is computed
based on T.) It can be seen that with the specified relay
parameters, the TC relay gives the smallest identification
error while the relay with an integrator performs worst.

Table I. The frequency response information

φp A To T̃ err(%) L

Ideal −180◦ 0.743 3.900 13.604 18.54 1.00

Hyst −104.4◦ 1.121 6.360 13.561 18.80 1.23

Delay −122.7◦ 1.444 7.580 13.561 18.79 0.79

Int −90◦ 4.909 26.51 13.358 20.01 1.29

TC −116.5◦ 3.995 11.40 16.451 1.49 1.04

FO int −108◦ 2.929 15.55 13.548 18.88 1.22

By adjusting the fractional order α from 0.1 to 1.9 with
a set size of 0.2, a comprehensive sweep of the process
frequency response in the third and fourth quadrant can
be performed. The detailed values are listed in table
II. Unfortunately, due to cumulated numerical errors,
the parameter estimation when α > 1.3 fails to work

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2014



0 50 100
−1

0

1

Ideal relay, H=1

0 50 100

−1

0

1

With Hysteresis, ε=±0.5

0 50 100

−1

0

1

With time delay, l=1

0 50 100
−5

0

5

With integrator

0 50 100
−4
−2

0
2
4

TC relay, H
i
=2, H

p
=1

Time [sec]
0 50 100

−2

0

2

With FO integrator, α=0.8

Time [sec]

Fig. 11. A sample plot of the test run with 6 types of relay
variants.

because the FO integrator is implemented by discretized
approximation in the bandwidth of 0.01 and 100. In this
case, a better FO computational tool is to be used.

Table II. The frequency information with α changing

α φp A To T̃ err(%) L

0.1 −171◦ 0.857 4.440 13.42 19.66 1.04

0.3 −153◦ 1.120 5.860 13.54 18.92 1.09

0.5 −135◦ 1.541 8.080 13.54 18.91 1.13

0.7 −117◦ 2.245 11.84 13.55 18.87 1.15

0.9 −99◦ 3.735 20.08 13.57 18.73 1.24

1.1 −81◦ 6.726 39.00 14.70 17.96 1.67

1.3 −63◦ 10.22 73.04 14.44 13.48 2.39

1.5 −45◦ 12.16 122.2 17.36 3.98 1.09

1.7 −27◦ 12.77 228.9 28.87 -72.85 -7.24

1.9 −18◦ 12.80 530.4 66.53 -298.4 -43.08

5. CONCLUSION

In this paper, different types of relay feedback identifi-
cation methods are reviewed with the pseudo frequency
response concept. Comments are given on some usually
ignored aspects when implementing these methods. A re-
lay with an FO integrator is presented through theoretical
derivation and simulation, with the advantages of provid-
ing wider phase range for the identified processes, etc.
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[5] Y. Q. Chen, I. Petráš, and D. Xue, “Fractional order control - a
tutorial”, In Proc. of the American Control Conference (ACC),
June 2009, St. Louis, MO. pp. 1397-1411.

[6] I. Podlubny, “Fractional-order models: a new stage in modeling
and control”. In Proc. of the IFAC Conference on System
Structure and Control, July 8-10, 1998, Nantes, France, vol.2,
pp. 231-235.

[7] I. Podlubny, Fractional differential equations, Vol. 198 of Math-
ematics in Sci. and Eng., Academic Press, New York, 1999.

[8] A. J. Brzezinski, S. L. Kukreja, J. Ni and D. S. Bernstein, “Iden-
tification of Sensor-Only MIMO Pseudo Transfer Functions”, In
Proc. of the 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC), 2011.

[9] J. P. Schwartz, H. H. Sawin and T. A. Hatton, “Frequen-
cy response analysis of nonsuperimposable systems using a
pseudo transfer function: application to system with coverage-
dependent adsorption”, Chem. Eng. Sci., Vol. 41, No. 3. pp.
495-510. 1986.

[10] D. P. Atherton, Nonlinear Control Engineering, Chapman &
Hall, Ltd. London, UK, 1982.

[11] G. J. Thaler and M. P. Pastel, Analysis and design of nonlinear
feedback control systems, McGraw-Hill, Inc, New York, 1962.
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