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Abstract: This study addresses the classification problem of HEp-2 cell using indirect immunofluores-
cent (IIF) image analysis, which can indicate the presence of autoimmune diseases by searching for
antibodies in the patient serum. Generally, IIF analysis remains a subjective method, which depends too
heavily on the experience and expertise of the physician. Recently, some studies show that it is possible
to identify the cell patterns using IIF by image analysis and machine learning techniques. However, it
still has large gap between automatic recognition and the physical experts’ decision. This paper explores
the discriminative feature extraction of HEp-2 cell images in IIF, and then identifies the patterns of
HEp-2 cell using machine learning techniques. Motivated by the research progress on computer vision
that small local pixel pattern distributions can be highly discriminative, the proposed strategy employs
a parametric probability process to model the local image patches (Textons: micro structure in the cell
image), and extract the higher-order statistics (also called Fisher-Vector) to the model parameters for
the image description. The proposed strategy can adaptively characterize the micro-Texton space of
HEp-2 cell images as the generative probability model, and learn the parameters for better fitting the
training space, which would lead to more discriminant representation for the cell image. The simple
linear support vector machine is combined for cell pattern identification due to its low computational
cost especially for large-scale dataset. Experiments on the released HEp-2 cell dataset of ICIP2013
competition validate that the proposed strategy can achieve much better performance than the popular
used local binary pattern (LBP) image descriptor, and the achieved recognition error rate is even greatly
below the observed intra-laboratory variability.

Keywords: HEp-2 cell, micro-Texton, parametric probability model, mixture model of Gaussian,
high-order statistics.

1. INTRODUCTION

Indirect Immunofluorescence (IIF) is popularly utilized as a
diagnosis tool through image analysis, which can reveal the
presence of the autoimmune diseases by searching for antibod-
ies in the patient serum. IIF applies the human larynx carci-
noma (HEp-2) substrate, which bonds with serum antibodies
forming a molecular complex, and then recognition of the HEp-
2 cell pattern can be used for the identification of antinuclear
autoantibodies (ANA). Due to its effectiveness for diagnosing
autoimmune diseases shown in Conrad et al. (2002), it has
been witnessed that a growing demand of IIF image analysis
in diagnostic tests. However, the practical image analysis of IIF
still remains a subjective method, which not only needs highly
specialized and experienced technician or physician to achieve
acceptable diagnostic results, but also takes great time of the
physician. Furthermore, due to lacking quantitative information
to the physician and varieties of the IIF images under different
illumination conditions and reading system, there exist almost
10% variance for the simple task of positive/negative intensity
recognition , and more than 20% variance for classifying the
staining pattern denoted in Foggia et al. (2013). Motivated by
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this fact, recent research interests have been directed towards
the development of computer-aided-diagnosis (CAD) system
for supporting IIF diagnostic procedure, which mainly focus on
image acquisition by Hiemann et al. (2006), segmentation by
Huang et al. (2008), Perner et al. (2002), fluorescence intensity
classification and staining cell pattern recognition by Soda et al.
(2009), Sack et al. (2003), and Foggia et al. (2010).In this
study, we mainly explore the identification of HEp-2 staining
cell pattern in IIF images using the progressed techniques in
computer vision and machine learning fields. There are several
attempts for automatically recognizing the HEp-2 staining pat-
tern. Perner et al. (2002) proposed to extract the texture and
statistics features for cell image representation, and combined
it with the decision tree model for HEp-2 cell image classifi-
cation, which can achieve about 75% recognition rate. Soda
et al. (2009) investigated a multiple expert system (MES) by
combining an ensemble of classifiers in a fusion way to label
the patterns of single cells. In his work, Wavelet is used to
extract features, and select effective ones from the the extracted
statistics and spectral measurements. However, research in the
field of IIF image analysis is still in its early stages, and the
performance of the HEp-2 staining cell recognition still has
great potential for further improving. In addition, although there
exist several approaches, they have usually been developed and
tested on private datasets under different conditions such as
the image acquisition according to different criteria, different
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staining patterns and so on. Therefore, it is difficult to compare
the effectiveness of different approaches due to their variation
on different datasets.

In this paper, we aim to automatically recognize six HEp-2
staining patterns in an open HEp-2 dataset, which is recently
released accompanied with the second HEp-2 cell classification
competition in ICIP2013. The competition of the first HEp-2
cell classification has been taken in ICIP2012, which showed
that the local binary pattern (LBP) and its extended version for
cell image representation can achieve promising classification
performance on HEp-2 cell by Soda et al. (2009). LBP by
He et al. (1990) characterizes each 3×3 local patch (micro-
structure) into a binary series by comparing the surrounding
pixel intensity with the center one, which sets the bit of the
surrounding pixel as 1 if its intensity is lager than the center one,
otherwise 0. Then, we can obtain a 8-bit binary series to form a
0∼255 LBP value for each focused pixel (the center pixel). The
image representation can be extracted as the histogram of the
LBP value in a cell image. However the LBP value only retains
the information if the surrounding pixel intensity is larger than
the center one, and then the quantitative difference between
them is lost due to the binary coding in LBP. Therefore, it
is possible for quite different local structures (patches) to be
represented as the same LBP value, which means the LBP is
very limited to represent the local structure with the fixed rough
quantization of the feature space as binary pattern. In addition,
it is general to represent local binary pattern (local structure)
distributions with histograms and hence are restricted to the use
of low order statistics. In contrast to these previous works, we
propose to adaptively characterize the local structure (micro-
Texton) of HEp-2 cell images as a mixture model of Gaussian
(GMM) and explore the Texton high-order statistics for cell im-
age representation. Within the assumed model, we can achieve
a data driven partition of the Texton space using parametric
mixture models with learned parameters using training data,
to represent the distribution of the local Texton extracted from
an image. The extracted weighted histogram (distribution) of
local descriptor (here micro-Texton), which is popularly used
as image representation for generic image classification, only
includes low-order statistics. In order to represent the image
more efficient, we explore the high-order statistics (also called
Fisher Vector) of the micro-Texton in the learned model, which
are the deviation (gradient) statistics to the mean and variance
parameters of GMM, and also can be called the first and second
statistics. The concatenated vector of the simple histogram and
the deviation statistics in the learned model is used for image
representation. Therefore, the coding of vectors is intrinsically
adapted to the recognition task and the computations involved
remain very simple despite the strengths. With the high-order
coded vector of adaptive Texton space, we simply apply a linear
SVM, instead of the nonlinear one popularly used for classi-
fication to achieve acceptable results, in our experiments for
HEp-2 cell recognition. The flowchart of our proposed strategy
is shown in Fig.1.

2. MEDICAL CONTEXT

Antinuclear autoantibodies (ANA) test generally applies the
HEp-2 substrate and requires to classify both fluorescence in-
tensity and staining pattern, which is a challenging task af-
fecting the reliability of IIF diagnosis. For classifying fluo-
rescent intensity, the guidelines established by the Center for
Disease Control and Prevention in Atlanta, Georgia (CDC) by

Center for Disease Control (1996) suggest scoring it semi-
quantitatively and independently by two physician experts of
IIF. The score ranges from 0 up to 4+ according to the in-
tensity in negative(0), very subdued fluorescence (1+), defined
pattern but diminished fluorescence (2+), less brilliant green
(3+), and brilliant green or maximal fluorescence (4+), which
then are relative to the intensity od a negative and a positive
control.The cell with positive intensity allows the physician
to check the correctness of the preparation process, whereas
the one with negative represents the auto-fluorescence level
of the slide under examination. To reduce the variability of
multiple readings, Rigon et al. (2007) have recently proposed
to classify the fluorescence intensity into three classes, named
negative, intermediate and positive, by statistically analyzing
the variability between several physicians’ fluorescence inten-
sity classification.

The released HEp-2 dataset includes the two intensity types of
HEp-2 cells: intermediate and positive, and the purpose of the
research is to recognize the staining pattern given the intensity
types (intermediate or positive). The studying staining patterns
mainly include six classes as the follows:

(1) Homogeneous: characterized by a diffuse staining of the
interphase nuclei and staining of the chromatin of mitotic cells;

(2) Speckled: characterized by a granular nuclear staining of the
interphase cell nuclei, which then consists of fine and coarse
speckled patterns;

(3) Nucleolar: characterized by clustered large granules in the
nucleoli of interphase cells which tend towards homogeneity,
with less than six granules per cell;

(4) Centromere: characterized by several discrete speckles (∼
40-60) distributed throughout the interphase3 nuclei and char-
acteristically found in the condensed nuclear chromatin during
mitosis as a bar of closely associated speckles;

(5)Golgi: also called the Golgi apparatus, is one of the first or-
ganelles to be discovered and observed in detail. It is composed
of stacks of membrane-bound structures known as cisternae;

(6) NuMem: Abbreviated from nuclear membrane, character-
ized as a fluorescent ring around the cell nucleus and are pro-
duced by anti-gp210 and anti-p62 antibodies.

In the released HEp-2 cell dataset, there are more than 10000
images, each with a single cell, which are obtained from 83
training IIF images by cropping the bounding box of the cell.
The detailed information about the different staining patterns is
shown in Table 1, and some example images for all six staining
patterns from the positive intensity type are shown in Fig. 2.
With the provided HEp-2 cell images and their corresponding
patterns, we can extract effective feature for image representa-
tion, and learn a classifier (or a mapping function) between the
extracted features of cell images and the corresponding staining
patterns. With the constructed classifier (the mapping function),
the staining pattern can automatically be predicted given any
HEp-2 cell image. In the classification procedure , how to ex-
tract discriminant feature for cell image representation has a
important effect on the recognition performance. Next, we will
describe the detailed feature extraction strategy for cell image
representation.
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Fig. 1. The proposed adaptive micro-Texton space model for HEp-2 cell image recognition. The up row is the learning procedure
for the model parameters in GMM. The bottom line is to extract image feature based the learned GMM model and to do
HEp-2 staining pattern recognition.

Table 1. The cell image number for different staining patterns and different intensity types.

Homogeneou Speckled Nucleolar Centromere NuMem Golgi
Positive 1087 1457 934 1387 943 347
Intermediate 1407 1374 1664 1364 1265 377

Fig. 2. The example images of six HEp-2 staining patterns from the positive intensity type.

3. THE BASIC MICRO-STRUCTURE SPACE

Recent researches ? showed that it is possible to discriminate
between textures using pixel neighborhoods as small as 3 ×3
pixel region, which demonstrated that despite the global struc-
ture of the textures, very good discrimination could be achieved
by exploiting the distributions of such pixel neighborhoods.
Therefore, exploiting such micro-structures for representing
images in the distributions of local descriptors has gained much
attention and has led to state-of-the-art performances for differ-
ent classification problems in computer vision. The proposed
system by Foggia et al. (2010) and the submitted recognition

system by Foggia et al. (2013) for HEp-2 staining pattern with
better recognition performance also investigated the statistics
of micro-structure (local binary pattern-LBP), and proved that
it is possible to automatically recognize the HEp-2 staining
patterns. However, these methods suffer from several impor-
tant limitations, such as the use of fixed quantization of the
input vector for pruning volumes in the feature space, and the
restricted us e of low order statistics with feature histogram.
In our proposed strategy, we characterize the feature space as
an adaptive parametric probability model in this section, and
extract the high-order statistics of the micro-structures (micro-
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Textons) based on the constructed parametric model in section
4.

Next, we firstly introduce the basic local-structure representa-
tion using local binary pattern and the differential vector be-
tween the surrounding pixels and the center one called micro-
Texton, and then adaptively characterize the micro-Texton
space as a parametric probability process using Gaussian mix-
ture model

3.1 Local binary pattern

The local binary pattern operator is an image operator which
transforms an image into an array or image of integer labels
describing small-scale appearance of the image. These labels
or their statistics, most commonly the histogram, are then used
for further image analysis. Given an image I, let’s denote the
ith pixel intensity Ii at (xi, yi) and its surrounding pixel ones
in 3×3 region as Iji (j = 0, 1, · · · , 7), LBP thresholds the
difference between Ii and Iji as 0 or 1 (binary), and the 8
binary numbers are combined as a decimal number for labeling
the ith pixel. Fig. 3 give a specific example for extracting the
LBP value of a focused pixel. The derived binary numbers are
called Local Binary Patterns or LBP codes. Mathematically, the
resulting LBP of the ith pixel at (xi, yi) can be expressed in
decimal form as:

LBP (xi, yi) =
7∑

j=0

T (Iji − Ii)2
j (1)

where the function T(z) is a threshold function, defined as:

T (z) =

{
1 if z ≥ 0
0 if z < 0 (2)

By the definition above, the LBP operator is invariant to the
monotonic gray-scale transformations which preserve the pixel
intensity order in local neighborhoods. The histogram of LBP
labels can be exploited as a texture descriptor. However LBP
code quantizes each different intensity between the surrounding
pixels and the center one, into only two intensity levels 0 or
1, which would be possible to code two very different local
structures into one same LBP value, and two similar local
structures into very different LBP values. Therefore the LBP
is very limited for representing the local structures of images,
and then the LBP histogram of the global image would also has
no enough discriminant for image classification.

3.2 The micro-Texton for local structure representation

The Texton representation for local structures also focuses on
all possible 3×3 patches in an image, i.e. xa = (xc, x1, x2, · · · , x8)
with xc denoting the intensity of the center pixel and the rest
denoting those of its 8-neighbours. In order to remove variance
to monotonic changes in gray levels, we subtract the intensity
of the center pixel from the rest like in LBP, and use the dif-
ferential vector, i.e. x = (x1, x2, · · · , x8) for local structure
representation named as micro-Texton, which would be a 8-
dimensional vector. As introduced in the above subsection, LBP
quantizes each element into two intensity levels, and then the
possible LBP value for combining all 8-element will be in the
range [0,255] in decimation. However, it is too rough to repre-
sent the local structures with only two quantized levels for each

element, and then lost much discriminant information for image
classification. The intuitive way for reducing the reconstruction
error is to increase the quantization intensity levels, such as
uniformly quantization of each elements in Texton vectors into
3, 4 intensity levels, and obtain the possible existed pattern by
combining the quantized level in 8 elements of Texton features.
However, the detailed quantization will exponentially increase
the possible number of the processed local pattern, such 38 =
6561, and 48 = 65536 for 3 and 4 quantization levels for each
element, which results in extremely high-dimensional feature
for image representation. In addition, for the images of a spe-
cific application such as the HEp-2 cell images, some quantized
representative Texton maybe never appear in any cell image,
and at the same time the detail variation in other quantized
features can include much discriminative features. Therefore,
this study proposes to adaptively characterize the micro-Texton
of HEp-2 cell images as a mixture model of Gaussian in Varma
et al. (2003), Dempster et al. (1997) and explore the high-
order Texton statistics for cell image representation. Within the
assumed model, we can achieve a data driven partition of the
Texton space using parametric mixture models, to represent the
distribution of the vectors, and learn the parameters from the
training cell images.

3.3 The adaptive Space space modeled by mixture Gaussian

Let’s denote the micro-Texton space samples as X = [x1,x2,
· · · ,xT ], with xi ∈ R3 and T being sample number, which are
randomly selected from training images. Assuming the micro-
Texton space samples have the probability distribution like a
mixture model of Gaussian (GMM), we can formulate as

P (X/λ) =
K∑

k=1

wkN(X/µk,Σk) (3)

Where λ are the parameters for formulating the probability
function, in the Gaussian mixture model with K-components,
denoted λ = {wk, µk,Σk, k = 1, ...,K}. wk, µk,Σk are the
mixture weight, mean vector and covariance matrix of Gaussian
k, respectively.

Given the training Texton space samples, we can adaptively
learn the prior parameters λ = {wk, µk,Σk, k = 1, ...,K} of
GMM using Expectation maximization (EM) strategy Demp-
ster et al. (1997), which includes expectation and maximization
steps. By the EM method, we can achieve the parameters λ =
{wk, µk,Σk, k = 1, ...,K} in GMM for fitting the training
Texton samples. Figure 6(b) shows a simple fitted model to
the Texton space using GMM. It is obvious that the learned
parameter GMM can better model the Texton space samples
than the uniformed quantized Texton shown in Fig. 6(a).

4. FISHER VECTOR IN ADAPTIVE TEXTON MODEL

As we introduced in Sec. 2, we model the Texton space
of cell images as GMM, and learn the adaptive parameters
λ = wk, µk,Σk, k = 1, ...,K of a generative probability model
P (X/λ) =

∑K
k=1 wkN(X/µk,Σk) using the randomly se-

lected Texton samples from all types of cell images. Each
Gaussian represents a representative Texton word of the Texton
prototypes (vocabulary): wk encodes the relative frequency of
Texton word k, µk the mean of the Texton word and Σk the
variation around the mean. Given Texton samples X = {xt, t =
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Fig. 3. An example of the basic LBP operator.

1, · · · , T} of any HEp-2 cell images, we will try to modified the
generative model learned from training cell images to better fit
them, which means to extract the gradient of generative model
to the parameter λ = wk, µk,Σk, k = 1, ...,K. For convenient
computation, we assumes that the weights are subject to the
constraint:

K∑

k=1

wk = 1 (4)

and with D-dimensional Texton space, we assume the covari-
ance matrix is diagonal, denoted as σk = diag(Σk).

Given any Texton sample xt in the dataset X of a cell image, the
occupancy probability to the kth Gaussian can be formulated
as:

γt(k) =
wkP (k/xt,λ)∑K
k=1 wkP (k/xt,λ)

(5)

In order to avoid enforcing explicitly the constraints in Eq.
(5), we take a new relative parameter αk to adopt soft-max
formalism for defining wk Then

wk =
exp(αk)∑K
j=1 exp(αj)

(6)

After re-parametrization using αk, the straightforward deduc-
ing of the gradient to the parameter λ = αk, µk,Σk, k = 1, ...,K
can be formulated as:

∂P (X|λ)
∂αk

=
T∑

t=1

[γt(k)− wk], (7)

∂P (X|λ)
∂µd

k

=
T∑

t=1

γt(k)[
xd
t − µd

k

(σd
k)

2
], (8)

∂P (X|λ)
∂σd

k

=
T∑

t=1

γt(k)[
(xd

t − µd
k)

2

(σd
k)

3
− 1

σd
k

], (9)

where the superscript d denotes the dth dimension of the input
vector xt, and αk, µk,Σk reflects the weight, mean and vari-
ance of the kth component in the learned model. By introducing
the gradient to the mean and variance of the learned model, it
is prospected to be more discriminant for image representation.
The final feature for image representation is just the concatena-
tion of the partial derivative with respect to all the parameters,
which also can be called Fisher vector.

After obtaining the gradients, we normalize them using Fisher
information matrix and give the final statistics as:

ǦX
αk

=
1

√
wk

T∑

t=1

[γt(k)− wk], (10)

ǦX
µd
k
=

1
√
wk

T∑

t=1

γt(k)[
xd
t − µd

k

σd
k

], (11)

ǦX
σd
k
=

1
√
wk

T∑

t=1

γt(k)
1√
2
[
(xd

t − µd
k)

2

(σd
k)

2
− 1], (12)

The final Fisher vector is the concatenation of the gradient
ǦX

α , ǦX
µd
k

and ǦX
σd
k

for all d = 1, 2, · · · , D dimension of
input feature (Texton) vector and k = 1, 2, · · · ,K Gaussian
components, and then is of dimension (2D + 1)K.

With the Fisher vector for an image representation, we can use a
linear classifier such as a linear support vector machine (SVM),
for acceptable recognition performance.

5. EXPERIMENTS

With the two types of intensity (Intermediate and Positive)
HEp-2 cell images, we validate the recognition performance
using our proposed strategy and the conventional local binary
pattern (LBP). In the released HEp-2 cell database, each pattern
has different available numbers of the cell images as shown in
Table 1. It can be seen that the ’Golgi’ pattern has much less
available cell images than other patterns. Thus, in our experi-
ment, we randomly select 600 cell images from the 5 patterns
excluding ’Golgi’ and 300 ones from ’Golgi’ as training, and
the remainder are as testing for both ’Positive’ and ’Interme-
diate’ intensity types, and do classification using linear SVM.
The above procedure repeats 20 times, and the final results are
the average recognition performance of the 20 runs, which cal-
culates the percentages of properly classified cell images for all
test samples. The compared recognition rates for both ’Positive’
and ’Intermediate’ intensity types are shown in Table 2 using
the LBP histogram, an extended version of LBP by ? (denoted
as RICLBP), which showed promising results on HEp-2 cell
pattern recognition, and our proposed strategy. It is obvious
that our proposed strategy can achieve much better performance
compared with LBP-based descriptors, which have been proven
to achieve promising performance in ?. The detailed infor-
mation (confusion matrix) with the proposed Fisher vector for
classifying different HEp-2 patterns is shown in Fig. 4(a) for
’Positive’ intensity type, and Fig 4(b) for ’Intermediate’ one.
From Fig. 4, it also prove that the recognition rates for the 5
HEp-2 cell patterns excluding ’Golgi’ can achieve more than
95% performance for ’Positive’, and more than 75% perfor-
mance for ’Intermediate’ type.
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(a) For ’Positive’ type
(b) For ’Intermediate’ type.

Fig. 4. The confusion matrix for classifying different HEp-2 cell pattern in the ’Positive’ and ’Intermediate’ type dataset.
(a)Confusion matrix for ’Positive’ intensity type; (b)Confusion matrix for ’Intermediate’ intensity type.

Table 2. The compared recognition rates for both
’Positive’ and ’Intermediate’ intensity types using
the LBP histogram (denoted as LBP) and our pro-
posed Fisher vector of micro-Texton (denoted as

Ours).

LBP RICLBP ours
Positive 78.22 89.13 93.89
Intermediate 60.249 72.39 79.89

6. CONCLUSION

This study proposed to automatically classify HEp-2 staining
cell using indirect immunofluorescent (IIF) image analysis,
which can indicate the presence of autoimmune diseases by
searching for antibodies in the patient serum. This study rep-
resents the local structure directly as the differential vector of
the surrounding pixels to the center one called as micro-Texton,
and model it as a parametric probability process with GMM.
The proposed strategy can adaptively characterize the micro-
Texton space of HEp-2 cell images, and learn the parameters
for fitting the training space better, which would lead to a more
discriminat representation for the cell image. Furthermore, we
extract the Fisher vector according to the model parameters,
which would be more discriminant for image representation and
can be combined with a linear classifier (such as a linear SVM).
Experiments on the released HEp-2 cell dataset of ICIP2013
competition validate that the proposed strategy can achieve
much better performance than the popular used local binary
pattern (LBP) image descriptor, and the achieved recognition
error rate is even greatly below the observed intra-laboratory
variability.
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