
     

Simplifications of Activated Sludge Model with preservation of its dynamic 

accuracy  
 

C. Cadet* 


* GIPSA-lab, Automatic Control Department, UMR 5216 CNRS-INPG-UJF, 

BP46, 38402 Saint Martin d’Hères Cedex, France  

(Tel: +33-4-76-82-64-12; e-mail: catherine.cadet@gipsa-lab.grenoble-inp.fr). 

Abstract: The complexity of ASM1 model is a major obstacle for their effective use in control and 

monitoring algorithms. In wastewater treatment plants, the effluent is in addition subjected to 

hydrodynamic phenomena which enhance the model complexity. The aim of model reduction is to 

circumvent this problem by eliminating parts of a model that are unimportant for dynamic model accuracy. 

In this study different ways to simplify ASM1 model simulated in BSM1 conditions are presented. The 

method is based on physical considerations that are analyzed separately. The simplifications finally 

provide really important loss of accuracy on compounds of interest, highlighting the lack of relevant 

simplified model. 
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1. INTRODUCTION 

The Activated Sludge Model n°1 (ASM1), established by the 

International Water Association, is destined to promote and 

facilitate the practical methods of designing and operating the 

biological treatment systems for wastewater systems (Henze 

et al., 2000). A Benchmark (Copp, 1999) has been proposed 

by the European program COST 624 for the evaluation of 

control strategies in wastewater treatment plants. The 

Benchmark is based on the most common wastewater 

treatment plant: a continuous flow activated sludge plant 

performing nitrification and pre-nitrification. 

For activated sludge processes, a simulation model is a need 

to avoid numerous tests which lead to operating conditions 

that may be difficult or even impossible to realize. 

Concerning automatic control, a simple model, non- 

representative of all the dynamics of the process, may be 

sufficient (Jeppsson, 1996). However, the more important the 

domain of validity is, the more efficient the control law will 

be. In case of process monitoring, diagnosis or even fault 

tolerant control, process dynamics must be very well known 

and anticipated. In (Hauduc et al., 2009) it is shown that the 

ASM1/BSM1 models are not directly used, but simplified 

before use. 

The complexity of modeling activated sludge processes is of 

two kinds: the biological behavior, for which the state-of-art 

is the ASM1 model, and the hydrodynamic phenomena 

which enhance the model complexity. To obtain a 

manageable model, several approaches may be used: 

systematic method of simplification (i.e. singular perturbation 

method), knowledge on a specific process or building of a 

new model. These methods may be combined, leading to a 

wide variety of simplified models. 

Whatever the model is, its validation involves difficulties that 

are specific to biological processes (Holmberg and Ranta, 

1982). These difficulties may lead to influence some choices 

in the model simplification so as to make this task easier. 

Nevertheless, parametric identification and model validation 

are not addressed in this paper. 

As the choice of reduction type is also influenced by the 

objective of the reduction, no single method is therefore 

superior in all cases. This paper considers each possible 

simplification from the dynamic accuracy point of view. 

2. THE ASM1 MODEL AND THE BENCHMARK BSM1 

The ASM1 model is able to represent the behavior of an 

urban effluent, loaded in nitrogen and carbon compounds. In 

order to estimate the organic pollution to be treated, the 

measurement of Chemical Oxygen Demand (COD) is used, 

though the information is not direct. The organic matter is 

fractioned according to physic-chemical criteria (particulate 

or soluble matter) and biodegradability (Fig. 1). Soluble 

compounds are noted “S” and particulate ones are noted “X”. 

 

Fig.1.Organic matter partitioning in ASM1 state variables 

Nitrogen is equally divided into four state variables: nitrate 

and nitrite nitrogen (SNO), 

4NH  and NH3 nitrogen (SNH), 

soluble (SND) and particulate (XND) biodegradable organic 

nitrogen. These nitrogen compounds are easily characterized 
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by usual chemical analyses. Lastly, the model includes 

dissolved oxygen (SO) and alkalinity (SALK). 

The eight reaction rates of the model are: 

- Biomass growth: aerobic growth of heterotrophic biomass 

by oxidation of organic matter (1); anoxic growth of 

heterotrophic biomass by denitrification reaction (2) and 

aerobic growth of autotrophic biomass by nitrification 

reaction (3), 

- Decay of heterotrophic (4) and autotrophic (5) biomasses, 

- Ammonification of soluble organic nitrogen (6),  

- Hydrolysis of particulate organic matter (nitrogenous 7, 

carbonaceous 8). 

The reaction rates () are represented with Monod laws: 

X.    (1) 
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X is the biomass state variable (XBH or XBA), μ is the growth 

rate parameter (d
-1

), μmax is the maximal growth rate 

parameter (d
-1

), Ki is the half-saturation coefficient for the 

considered substrate (gCOD.m
-3

), [substrate] is a substrate state 

variable. The term )S( O expresses the oxygen conditions: 

aerobic or anoxic.  

The model is established by mass balances characterizing the 

evolution of micro-organisms. The reaction rates include 6 

growth rates parameters and 8 half-saturation coefficients: 

The 4 pseudo-stoichiometric coefficients represent the 

conversion rate of compounds. 

 

Fig. 2 BSM1 plant 

This benchmark BSM1 consists of a fully specified model of 

an activated sludge plant. The plant (Fig. 2) consists of a 

bioreactor, virtually separated in 5 fully mixed compartments 

and a secondary settler. The first two compartments are not 

aerated whereas the last three are aerated. The secondary 

settler is modeled as a series of 10 layers (one-dimensional 

model based on Takàcs model (Takàcs et al., 1991). The 

complete description of the plant can be found in (Copp, 

2002). 

All in all, the ASM1 model is composed of 13 state variables, 

8 kinetics and 18 parameters. Taking into account the 

hydrodynamic configuration, ASM1 is used 5 times (one by 

compartment) to obtain the BSM1 model which is the 

biological reactor model. The BSM1 model outputs must be 

gathered into soluble and particular compounds for the 

clarifier model. 

In order to study the dynamic behavior of the process, a data 

base representative of the real plant behavior is proposed: the 

effluent compounds and the input flow are fluctuating 

similarly according to daily fluctuations, weekly ones and 

also weather conditions. Three data files are available: dry, 

rain and storm weather files. 

3. MODEL SIMPLIFICATION 

3.1 Singular perturbation method 

The singular perturbation method is a rigorous method 

maintaining the nonlinear properties, and thus a larger 

validity domain. (Steffens, 1997), (Chachuat, 2001) and 

(Mulas, 2006) have used a systematic tool for partitioning. 

However simplifications must be validated by the user and 

the tool uses the linearized model, which diminishes the 

interest of the method. Referring to quasi-steady-state 

assumption (QSSA) approaches (Weijers, 2000), (Cadet et 

al., 2004) have proposed an approach based on kinetic 

scaling, which lead to a solution which matches already 

known behavior of compounds. 

Drawbacks are that the reduce model remains relatively 

complex and as the hydrodynamics is not taken into account, 

the reduce model ultimately offers few advantages compared 

to original model. Some interesting results should be 

however obtained if the clarifier is included in the model to 

be simplified, and if some more efficient methods for solving 

singular perturbations are used (Kumar and Parul, 2011). 

3.2 Removal of non-reactional state variables 

The thirteen state variables of the ASM1 model are not all 

biologically reactive. Thus alkalinity which is independent 

from other state variables and which is more precisely a 

measurement can be removed. The soluble inert components 

(SI) and the particulate inert components (XI) are not used in 

biological reactions. Furthermore, the state variable XP, 

produced from the decay of biomass, is a biologically stable 

component, that may also be eliminated. These 

simplifications have been often used in literature (Mulas, 

2006) (Chachuat, 2001) and thus remain 9 state variables per 

compartment. 

It should however be kept in mind that these state variables 

are essential both for the clarifier model and for BSM1 model 

validation, as they provide the link with the COD 

measurements. In particular, situations where COD partition 

is fluctuating are not covered by the BSM1 model. In 

addition, particulate compounds fluctuate with 

hydrodynamics and their dynamical accuracy depends also on 

the clarifier model accuracy. The disadvantage is that the 

clarifier model is based on the assumption that the clarifier is 

in an equilibrated state at each instant. Indeed, the lack of 

clarifier model efficiency is a real bottleneck to the 

dynamical representativeness of the BSM1 model. 
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3.3 Hydrodynamic considerations 

Most literature studies assimilate hydrodynamics to a 

perfectly mixed reactor subjected to prolonged aeration with 

separated decantation as (Chachuat 2001) and (Mulas 2006). 

Others (Vanrolleghem et al., 1999), (Fibrianto et al., 2008) 

and (Gómez-Quintero et al., 2000) use a laboratory pilot 

plant of Sequencing Batch reactor (SBR) type, allowing  

separation between the biological and the hydrodynamic 

phenomena. However, in the case of real activated sludge 

wastewater treatment plants, hydrodynamics can’t be 

dismissed. (Alex et al.,1999) consider that hydrodynamics 

phenomena play a major role in the dynamic accuracy. (Pons 

and Potier, 2004) studied the effect of hydrodynamic increase 

complexity: perfectly mixed reactors in serial, plug flow 

reactor, axial dispersion. They concluded that the Benchmark 

configuration is sufficient to initiate a study, but that the real 

hydrodynamic behavior will have to be more precisely 

evaluated for a real application. 

Conversely, the benchmark serial tanks may be simplified 

into two perfectly mixed reactors: one anoxic reactor and one 

aerobic reactor. Parameter estimation has been conducted, 

and has led to adjust only the transfer coefficient of oxygen. 

To estimate the residual error due to the simplifications, the 

mean of relative error and the root of the mean square error 

have been evaluated. 

The mean of the absolute value of the relative error between 

the state variable vector with the simplified hydrodynamics 

(Z) and the BSM1 model (Z
BSM1

) is: 
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Table 1. Error due to hydrodynamic simplifications 

 Anoxic phase Aerobic phase 

 Er  Er  

SS         (gCOD.m-3) 38.8% 0.8 9.7% 0.1 

XS       (gCOD.m-3) 3.0% 2.6 8.4% 5.02 

XBH    (gCOD.m
-3

) 0.34% 11.8 0.4% 16.1 

XBA    (gCOD.m
-3

) 0.38% 0.66 0.5% 0.91 

SO        (gO2.m
-3) -* 0.01 156% 0.74 

SNO     (gN.m-3) 43.7% 0.37 5.3% 0.45 

SNH    (gN.m-3) 2.75% 0.3 38.8% 0.58 

SND    (gN.m-3) 18.2% 0.17 8.2% 0.07 

XND   (gN.m
-3

) 2.2% 0.13 6.2% 0.27 

* As anoxic phase is very poor in oxygen content, result is 

not significant.  

Table 1 shows that the results are globally good. However, if 

biomasses are the compounds the less affected, some are 

really affected by the simplification: 

- Ss state variable in anoxic phase for carbonaceous, 

- SNO and SND in anoxic phase; SNH in aerobic phase for 

nitrogen compounds, which is coherent with (Pons & 

Potier, 2004), 

- Dissolved oxygen in aerobic phase (SO) 

The state variables SNO, SO and SNH as they are easily 

measured are a usually used as a measurement for either 

estimating unmeasured compounds or use in an automatic 

control loop. Their bad dynamical representativeness is a 

problem to get information on the biological activity of the 

process. Thus, hydrodynamics may be simplified in a first 

approach, but has to be carefully studied in a real treatment 

plant.  

3.4 Linearization of Monod Laws 

Biological rates constitute the nonlinear terms of the ASM1 

model. Linearizing them would lead to a linear model, which 

has been proposed by (Smets et al., 2003). Here, only Monod 

laws linearization are concerned, which is only part of the 

linearization. Nevertheless, as the saturation of rate is then 

lost, such reduction must be very carefully used and the 

validity domain of the model is reduced.  

In the operating domain of BSM1, most of the Monod 

variations are in the saturation part over the linear one. Only 

Monod law for SS state variable is linear both in anoxic and 

aerobic phases. A line of linear regression has been estimated 

for each Monod law on the basis of dry, rain and storm 

weather files. The correlation coefficients (R) are shown in 

table 2. 

Table 2. Linear correlation coefficient for Monod laws 

 R (anoxic) R (aerobic) 

SS 0.98 0.99 

SNO 0.85 0.95 

SNH 0.93 0.85 

XS/XBH 0.97 0.97 

The linear regression is validated if the correlation coefficient 

is greater than 3/2=0.87, which happen for laws related to 

SS, SNH and XS/XBH in anoxic phase, and SS, SNO, XS/XBH  in 

aerobic phase. 

However, these simplifications must be really carefully used, 

checking the compliance with the domain validity of the 

domain. As this domain may be expressed in terms of 

constraints on state variables, the advantage of linearizing is 

reduced. 

3.5 Separation into aerobic and anoxic models 

The separation into two models (one for anoxic phase and the 

other for aerobic phase) is to simplify competitive reactions 

by selecting those favored by the operating conditions. 

The first simplification is on biomass growth reactions: due 

to oxygen starvation in anoxic phase, growth reactions of 

biomasses (1 and 3) are slowed down, whereas in aerobic 

conditions, heterotrophic biomass growth rate (2) will be 

close to zero. 
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Combined with hydrodynamics simplification into two 

compartments, the simplified model shows significant 

deviations from the BSM1 model, particularly in the anoxic 

phase. Assuming that the large error on the dissolved oxygen 

is spreading errors on other state variables, a zero value is 

imposed to the dissolved oxygen concentration in anoxic 

phase. 

Table 3 shows that the reduced model deviates the most for 

the readily biodegradable substrate (SS) in both phases, 

nitrate and nitrite nitrogen (SNO) in anoxic phase, 


4
NH  and 

NH3 nitrogen (SNH) in aerobic phase. 

Table 3. Error due to hydrodynamic simplifications and 

simplified biological reactions (SO = 0gO2.m
-3

 anoxic) 

 Anoxic phase Aerobic phase 

 Er  Er  

SS         (gCOD.m-3) 39% 0.83 27.7 0.35 

XS       (gCOD.m-3) 3.1% 2.63 8.7 5.1 

XBH    (gCOD.m-3) 0.3% 12 0.4% 16.1 

XBA    (gCOD.m-3) 0.4% 0.65 0.5% 0.9 

SO        (gO2.m
-3) 60.4% 0.0002 117% 0.57 

SNO     (gN.m-3) 63.1% 0.57 15% 0.86 

SNH    (gN.m-3) 5% 0.47 51.6% 0.86 

SND    (gN.m-3) 18.5% 0.17 8% 0.07 

XND   (gN.m-3) 2.4% 0.14 6.5% 0.28 

In order to improve the simplified model accuracy, it is 

proposed to measure dissolved oxygen in aerobic phase, 

which is a usual and simple measurement. Results on Table 4 

show that though a significant improvement for nitrate and 

nitrite nitrogen (SNO), some degradation occurs for other 

compounds.  

Table 4. Error due to hydrodynamic simplifications and 

simplified biological reactions (SO = 0gO2.m
-3

 anoxic), SO 

aerobic measured) 

 Anoxic phase Aerobic phase 

 Er  Er  

SS         (gCOD.m-3) 55.2% 1.2 62.7% 0.83 

XS       (gCOD.m-3) 9.1% 9.2 16.5% 10.5 

XBH    (gCOD.m
-3

) 0.35% 12.4 0.4% 16.5 

XBA    (gCOD.m
-3

) 0.5% 0.76 0.7% 1.2 

SO        (gO2.m
-3) - - - - 

SNO     (gN.m-3) 27% 0.67 15% 1.3 

SNH    (gN.m-3) 23.2% 2.4 150% 4.1 

SND    (gN.m-3) 12.6% 0.12 8.4 0.07 

XND   (gN.m
-3

) 8% 0.56 14% 0.64 

As dissolved oxygen is regulated so as to insure aerobic 

conditions, this state variable can be eliminated from the 

model. The term )S( O  on Monod laws is then approximate 

to 1. This approximation is perfect for anoxic conditions 

(SO=0) but in the aerobic case, this means that SO 

concentration has to be significantly greater than KOH=0.2 to 

obtain a good approximation. 

Table 5 highlights that nitrate and nitrite nitrogen (SNO) and 


4
NH  and NH3 nitrogen (SNH) are the less adequately 

represented compounds. Nevertheless, other compounds are 

estimated with a good accuracy, and are even more precise 

than using dissolved oxygen measurement. 

Table 5. Error due to hydrodynamic simplifications and 

simplified biological reactions without SO ( )S( O =1) 

 Anoxic phase Aerobic phase 

 Er  Er  

SS         (gCOD.m-3) 32.4% 0.73 5.9% 0.08 

XS       (gCOD.m-3) 3.8% 5.3 5.1% 3.9 

XBH    (gCOD.m-3) 0.39% 13.4 0.46% 16.8 

XBA    (gCOD.m-3) 0.5% 0.86 0.74% 1.2 

SNO     (gN.m-3) 210% 1.83 46.4% 3.74 

SNH    (gN.m-3) 12.7% 1.74 58.7% 2.8 

SND    (gN.m-3) 22.2% 0.22 8.4% 0.07 

XND   (gN.m-3) 3.7% 0.37 4.14% 0.26 

3.6 Global variables 

The previous simplifications have led to a 18 state variables 

model. This number is much greater than the possibilities of 

actual measurements. However, it appears that the 

degradation stages (hydrolysis) of organic carbon and organic 

nitrogen are developed in the ASM1 model, but are not to be 

used for monitoring and control of the activated process. 

Moreover, these reactions are complex and not well known, 

resulting in a significant source of error. 

First of all, the state variables XS and SS may be gathered into 

a single state variable, noted XSS so that: 

XSS = XS + SS (4) 

Thus the hydrolysis reaction of the slowly biodegradable 

organic matter which is complex and which kinetic has three 

parameters would be hidden. Calculated for each of the five 

compartments, the Ss/XSs mean ratio is less than 3.5% even 

for the storm weather file, which shows that the readily 

biodegrable substrate (Ss) is less important than the slowly 

biodegrable substrate (Xs). However, the relative error is 

more important in anoxic tanks (37% and 25% respectively), 

showing an important variability of the ratio, than in aerobic 

tanks (8%, 6% and 6%). 

These results may be interpreted by using QSSA 

approximation: the growth kinetics of biomasses (ρ1 and ρ2) 

corresponding to Ss assimilation are faster than carbon 

hydrolysis (ρ7). Thus, Ss is assimilated by biomasses as soon 

as formed. 

Furthermore, the state variables representing nitrogen 

compounds may also be gathered into one state variable:  

SN = XND + SND + SNH (5) 
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The concentration of nitrates and nitrites nitrogen SNO can’t 

be dismissed so as to distinguish the reactions of nitrification 

and denitrification. With the state variable SN (5), the 

hydrolysis of organic nitrogen (ρ8) and ammonification (ρ6), 

which are very complex reactions, are hidden. On average, 

most present compounds are particulate organic nitrogen 

(XND) and ammonia nitrogen (SNH) in equal share. However, 

the variability of these proportions is very important, causing 

large errors with respect to ASM1.  

4. SIMULATION EXAMPLE 

4.1 Model equations 

Simplification assumptions are recalled: 

- Hydrodynamic configuration with two perfectly mixed 

reactors, one anoxic and another aerobic, 

-  Anoxic model with biological reactions ρ2, ρ4 and ρ5, 

-  Aerobic model with biological reactions ρ1, ρ3, ρ4 and ρ5, 

- Non-reactional state variables removal (SI, XI, XP), 

-  No oxygen as state variable (SO), 

-  Global state variables XSS and SN (ρ6, ρ7, ρ8 dismissed). 

Fig. 3 represents the configuration of the reduced model, with 

the two reactors, the inputs, the outputs and the inner 

recycled loop. The input ZR recycled from the clarifier is the 

same as for the non-reduced model. 
 

Influent 

Z0, Q0 

Sludge recycled 

 from clarifier 

ZR, QR 

O2 O2 O2 

aerobic area 

Inner recirculation  QA, Zaero 

anoxic area 

Effluent 

Q, Zaero Q, Zanox 

 
Fig. 3. Configuration of the reduced model 

The five state variables, noted in a Zk vector are (k is anox 

or aero): 

Zk = [XSS XBH XBA SNO SN] (6) 

Equations for the anoxic area are : 

 anox

anox
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Zr

V
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
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].).([ 0  (8) 

With Vk the volume of each unit, Q represents the volume 

flow rates, r the vector of the observed conversion rates 

which are given in the tables 6 and 7. Subscripts are: 0 for 

biological treatment input, R for recycled loop from the 

clarifier, A for the inner loop from the reactor output. 

4.2 Model validation 

To adapt the model to the new state variables XSS and SN, the 

coefficients KXS, KN and H were identified by minimizing a 

least-squares criterion (Levenberg-Marquardt algorithm). Thus 

KXS is about 50 times KS, KN ten times KNH and H remains 

approximately at the same value. The model is validated on the 

storm data file (Fig. 4), which has not been used for parameter 

identification.  

Table 6. Simplified biological model in anoxic phase 

Reaction  XSS XBH XBA SNO SN Kinetic 
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Table 7. Simplified biological model in aerobic phase 

Reaction  XSS XBH XBA SNO SN Kinetic 
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Fig.4. Validation of the simplified model with storm data 
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The behavior of the state variables is very close to the 

reference model, even during the period of disruption due to 

storm event between the 4th and 5th day. The shape as well as 

the amplitude of the curves is very well preserved. However, 

the curve of SNO is not satisfactory, due to the approximation 

on dissolved oxygen.  

These observations are enhanced by information provided by 

the standard errors of each state variable (Table 8). State 

variables XBH and XBA well as XSS and SN state have little 

difference with the reference model. It is clearly visible that 

the average relative error of SNO is important in the anoxic and 

aerobic zones. This error seems to be due to poor modeling of 

the dynamics of this variable and can be the result of the 

concatenation of SN. The average differences in each of the 

state variables are however reasonable. 

Table 8. Errors for the simplified model 

 Anoxic phase Aerobic phase 

 Er  Er  

XSS       (gCOD.m-3) 15% 14 18.4% 12 

XBH    (gCOD.m-3) 0.46% 13 0.46% 17.5 

XBA    (gCOD.m-3) 0.8% 1.3 1.3% 2 

SNO     (gN.m-3) 70% 2.3 36% 4.4 

SN    (gN.m-3) 12% 2 20% 2.2 

Finally, this simplification can be used to predict the evolution 

of the global nitrogen (SN) or carbon pollution (XSS), and the 

evolution of biomasses. It can’t be use however to predict the 

nitrate-nitrite (SNO). 

5. CONCLUSION 

The objective was to study the consequences of model 

simplification on dynamical representativeness of the ASM1 

model simulated in BSM1 conditions. Each simplification has 

been carefully considered. Compounds biologically inert are 

needed for model validation and COD measurement 

interpretation. Their accuracy is linked with hydrodynamic 

modeling and clarifier model. Hydrodynamic phenomena 

simplification may induce important losses of dynamical 

precision, especially for compounds that may usually be used 

for control and monitoring purposes (SNO, SNH, SO). Nitrogen 

compounds and their related biological reactions are much 

more difficult to simplify than carbon compounds. 

Unexpectedly, the accuracy of the simplified model is better if 

the dissolved oxygen concentration is removed from the state 

variables and the kinetic expressions. Finally, each 

simplification should be chosen keeping in mind the influence 

of the reduction, and checking the compliance with the 

purpose. Nevertheless, the question to obtain a relevant 

simplified model remains open, and exploration of 

hydrodynamics phenomena and models of clarifier would 

enable to build new models actually representative of the 

dynamical accuracy of the activated sludge treatment plants 

and are the actual challenges. 
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