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Abstract: The stochastic logical control dynamical system with finite state is considered. After
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Bellman’s equation for the optimal control problem.
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1. INTRODUCTION

In dynamical systems theory so-called logical dynami-
cal system has been widely investigated for the last two
decades in which the state variable is defined in a logic
domain (or Boolean domain) Trumper [2004]. Usually,
the logic domain consist of a finite or an infinite logic
elements. For such kind of systems in which the state
of system might be represented as a logic variable, anal-
ysis and synthesis of the system in a logical dynamical
system framework usually leads to simple logical control
law. So, the logical-based control becomes a hot topic in
control community. Stability and stabilization of logical
dynamics can be found in Akutsu et al. [2007], Li &
Sun [2011]. Regarding the stochastic characteristic, logical
dynamical systems with stochastic properties have been
addressed in several literatures, Doberkat [2011], Zhang
et al. [2011]. Finite or infinite horizon optimal control
problems for stochastic logical (Boolean) systems have
been investigated in Karaman et al. [2008] and Oal &
Datta [2006]. The application of stochastic logical control
have enriched in various fields, including genetic regulatory
networks [Faryabi et al. , 2007] and internal combustion
engines control [Wu & Shen, 2013]. In this paper, the
infinite horizon optimal control problem for the stochastic
logical dynamical system with finite state is considered.
The purpose of this work is to give a succinct matrix
expression of infinite horizon optimal control algorithm for
the stochastic logical dynamical systems, via semi-tensor
product and the increasing dimensional technique.

The rest of this paper is organized as follows. Section
2 is the problem formulation, which introduces some
notations and concepts of infinite horizon optimal control
for stochastic logical dynamical system. In section 3,
after giving a brief survey on semi-tensor product, we
give the matrix expression of the optimization problem

under Markov process description of the stochastic logical
dynamical system. We convert the dynamic programming
algorithm and Bellman’s equation for this infinite horizon
optimal control problem into simple algebraic form, in
section 4. Section 5 is a brief conclusion.

2. PROBLEM FORMULATION

Assume the logic state space consist of finite element,
denoted by S = {x1, x2, · · · , xs}. We also assume the
control space U also consist of finite elements, U =
{u1, u2, · · · , ur}.
The most usage way to represent stochastic dynamics with
control is described by a stationary discrete-time evolution
equation

xk+1 = f(xk, uk, wk), k = 0, 1, 2, · · · , (1)

where wk is the external random disturbance at stage
k. The random disturbances wk, k = 0, 1, 2, · · · , have
identical statistics and are characterized by probabilities
PW (·|xk, uk) defined on the disturbance space D, where
PW (wk|xk, uk) is the probability of occupance of wk, under
the current state xk and control uk. The probability of wk

may depend explicitly on xk and uk but not on values of
prior disturbances wk−1, · · · , w0.

We consider the class of policies (also called control laws)
that consist of a sequence of functions

π = {µ0, µ1, · · · , },
where µk : S → U, k = 0, 1, · · · maps states xk into
controls uk = µk(xk) and in such that µk(xk) ∈ U for
all xk ∈ S. Such policies will be called admissible. If a
admissible policy π = {µ0, µ1, · · · } is given, the stochastic
dynamical system (1) become a closed-loop dynamical
system as follows

xk+1 = f(xk, µk(xk), wk), (2)
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where the control input µk(xk) at time k is implemented
by feedback of current state xk.

Given an initial state x0, and an admissible policy π =
{µ0, µ1, · · · } consider the total expected cost

Jπ(x0) = lim
N→∞

E
wk

k=0,1,···

N−1∑
k=0

αkg(xk, uk), (3)

subject to the system equation constraint (2). Where
g : S×U → R is the per-step cost function and 0 < α < 1
is the discount factor.

We denote by Π the set of all admissible policies π, that
is, the set of all sequences of functions π = {µ0, µ1, · · · }.
The purpose of the infinite horizon optimal control is to
minimize Jπ(x0) for a given x0 over all π ∈ Π. The optimal
cost function J∗ is defined by

J∗(x) = inf
π∈Π

EJπ(x), x ∈ S. (4)

Now, we give a simple example of stochastic Boolean
logical dynamical system with two random disturbances.

Example 2.1. We consider in classical Boolean logical do-
main, that is the logical state space S and control space
U both consist of two elements S = U = {T = 1, F = 0}.
Assume that the disturbance space also consists of two
elements W = {w1 = T,w2 = F}. A stochastic logical
dynamical system is described by the following stationary
evolution equation

xk+1 = f(xk, uk, wk),

in which the logical function f : S×U ×W → S is defined
by

f(x, u, w) = (x ∧ u ∧ w) ∨ [(x → u) ∧ ¬w] . (5)

Here the standard logical operations ¬,∧,∨,→ are nega-
tion, conjunction, disjunction and implication, respective-
ly. The truth table of these operations are as follows Rade
[1998]:

Table 1. Truth table for ¬x, x∧u, x∨u, x → u

x u ¬x x ∧ u x ∨ u x → u

T T F T T T

T F F F T F

F T T F T T

F F T F F T

The conditional probabilities of occupance of disturbance
w given current state and control is given below

PW (w1|x = T, u = T ) = 0.9, PW (w2|x = T, u = T ) = 0.1,
PW (w1|x = T, u = F ) = 0.2, PW (w2|x = T, u = F ) = 0.8,
PW (w1|x = F, u = T ) = 0.4, PW (w2|x = F, u = T ) = 0.6,
PW (w1|x = F, u = F ) = 0.3, PW (w2|x = F, u = F ) = 0.7.

Define the per-step cost function g : S×U → R as follows

g(x = T, u = T ) = 2, g(x = T, u = F ) = 3, (6)

g(x = F, u = T ) = 1, g(x = F, u = F ) = 1.

Remark 2.1. Since the disturbance space just include two
element in above example, the logical function (5) and the
conditional probabilities of disturbance can be enumerated
in a truth table (see Table 2). But in the general case, it
is impossible to uniformly represent the value of logical

function and the conditional probabilities of disturbance
by enumeration.

Table 2. Truth table for logical function (5) and
conditional probabilities Pw for disturbance w.

x u w f Pw

T T T T 0.9

F T T F 0.4

T F T F 0.2

F F T T 0.3

T T F T 0.1

F T F F 0.6

T F F F 0.8

F F F T 0.7

3. MATRIX EXPRESSION OF MODEL

For convenience of description, we first give some nota-
tions:

(i) The set of m× n real matrices is denoted by Mm×n.

(ii) Let M be a matrix. Then Coli(M)(Rowi(M)) denotes
the i−th column (row) of M.

(iii) δis denote the i-column of the identity matrix Is. And
set

∆s := {δis|i = 1, 2, · · · , s}.

(iv) A matrix L ∈ Mm×n is called a logical matrix if its
columns Col(L) ⊂ ∆m. Then any logical matrix L has the
form L = [δi1m, δi2m, · · · , δinm ], and briefly denoted as

L = δm[i1, i2, · · · , in].
The set of m× n logical matrices is denoted by Lm×n.

First, we identify the state space S with ∆s as follows:

xi ∼ δis, i = 1, 2, · · · , s. (7)

Then, each element x ∈ S has its corresponding vector
form (still use x) x ∈ ∆s. Similarly, we identify the control
space U with ∆r as follows:

uj ∼ δjr , j = 1, 2, · · · , r. (8)

3.1 Semi-tensor product of matrix

Semi-tensor product of matrices is a generalization of
conventional matrix product [Cheng et al., 2011]. It has
been successfully used for both continuous time dynamic
systems [Mei et al., 2010] and discrete time logical dynamic
system [Cheng et al., 2012]. We refer to the following books
Cheng et al. [2012] for details.

Definition 3.1. Let M ∈ Mm×n, N ∈ Mp×q. The semi-
tensor product of M and N , denoted as M nN , is defined
by

M nN := (M ⊗ Is/n)(N ⊗ Is/p), (9)

where s = lcm{n, p} is the least common multiple of n
and p; ⊗ is the kronecker product.

Remark 3.1. (i) When n = p, the semi-tensor product and
the conventional matrix product coincide. Hence the semi-
tensor product is a generalization of conventional matrix
product to any two matrices.

(ii) All the properties of conventional matrix product
remain true for this generalization.
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Here, we give some special cases to illustrate the definition
of semi-tensor product.

Example 3.1. (1) Let x = [x1, x2, · · · , xm] ∈ Rm, y =
[y1, y2, · · · , yn] ∈ Rn, Then, the semi-tensor product xn y
is

[x1y1, x2y1, · · · , xmy1, · · · , x1yn, · · · , xmyn] ∈ Rmn.

(2) Let X be a row vector of dimension np , and Y be a
column vector of dimension p . Then we split into p equal-
size blocks as X1, · · · , Xp, which are 1×n rows. Then, the
semi-tensor product xn y is

xn y =

p∑
i=1

Xiyi ∈ Rn.

3.2 Markov process description of stochastic dynamics

Since the logical state space and control space are both
consist of finite logical elements, the stochastic logical
dynamical system with control often conveniently specified
in term of a finite-state Markov process with control. We
denote by pij(δ

l
r) the transition probabilities from state δi

using control u = δlr to the next state δj ,

pij(δ
l
r) = P (xk+1 = δjs|xk = δis, uk = δlr), (10)

for all δis, δ
j
s ∈ S, δlr ∈ U. It was noticed that the transition

probabilities pij(δ
l
r) satisfy

s∑
j=1

pij(δ
l
r) = 1, ∀ i = 1, · · · , s, l = 1, · · · , r.

Then, given a discrete-time evolution system in the form
(1) together with the probability distribution PW {w|xk, uk}
of wk, we can provide an equivalent Markov process de-
scription. The corresponding transition probability is given
by

pij(δ
l
r) = PW (Wij(u)|δis, δlr) (11)

where Wij(δ
l
r) is the set

Wij(δ
l
r) = {w : f(δis, δ

l
r, w) = δjs}.

For the fixed control δkr ∈ U, we denote by P k ∈ Ms×s

the transition probability matrix

P k =


p11(δ

k
r ) · · · p1s(δ

k
r )

p21(δ
k
r ) · · · p2s(δ

k
r )

...
...

...
ps1(δ

k
r ) · · · pss(δ

k
r )

 , k = 1, · · · , r. (12)

For statement ease, we collect the all transition probability
matrices together, and define the matrix P ∈ M(rs)×s by

P =


P 1

P 2

...
P r

 . (13)

Denoting

g(δis, δ
j
r) = gij , i = 1, · · · , s; j = 1, · · · , r,

we define a matrix, called the per-step cost matrix, as

G = (gij) ∈ Ms×r.

So, we have

g(x, u) = xTGu, ∀x ∈ ∆s, u ∈ ∆r, (14)

and the objective function (4) becomes, for any x0 ∈ ∆s

J∗(x0) = inf
π∈Π

lim
N→∞

E

N−1∑
k=0

αkxT
kGµk(xk), (15)

Example 3.2. Now we give the matrix expression of Exam-
ple 2.1. To use matrix expression we identify logical values
as

T ≡ δ12 =

[
1
0

]
, F ≡ δ22 =

[
0
1

]
.

Then according to logical operation (5) and formula (11),
we get that the transition probability matrices correspond-
ing to the controls u = δ12 and u = δ22 are

P 1 = P (δ12) =

(
p11(δ

1
2) p12(δ

1
2)

p21(δ
1
2) p22(δ

1
2)

)
=

(
1 0
0.6 0.4

)
,

P 2 = P (δ22) =

(
p11(δ

2
2) p12(δ

2
2)

p21(δ
2
2) p22(δ

2
2)

)
=

(
0 1
0.7 0.3

)
.

The corresponding state transition diagram is shown in
Fig. 1. Moreover, we have

P =

(
P 1

P 2

)
=

 1 0
0.6 0.4
0 1
0.7 0.3

 . (16)

The matrix expression of the one-step cost function g : S×
U → R is g(x, u) = xTGu with

G =

(
2 3
1 2

)
. (17)

(a) When u = δ12 . (b) When u = δ22 .

Fig. 1. State transition diagram for Example 3.2.

4. MATRIX EXPRESSION OF DYNAMIC
PROGRAMMING

We denote by U the set of all control law µ : S → U, that
is

U = {µ|µ : S → U}.
Since the state space S and control space U are both finite,
it is obviously that the capacity of U is |U| = rs.

Under the logical vector setting, we can see the control
law as a logical operator form ∆s to ∆r. So the following
result is fundamental.

Proposition 4.1. For any µ ∈ U , there exists a unique
logical matrix Φµ ∈ Lr×s, called the structure matrix of
µ, such that in the vector form µ is expressed as

µ(x) = Φµ(x), ∀ x ∈ ∆s. (18)

The optimal cost functional for the one-stage problem that
has stage cost g and terminal cost of J, denoted by TJ(x)
with

TJ(x) = inf
u

E
w
{g(x, u) + J(f(x, u, w))} , x ∈ ∆s. (19)
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Similarly, for any function J on ∆s and any control
function µ : ∆s → ∆r, we denote

TµJ(x) = E
w
{g(x, u) + J(f(x, µ(x), w))} , x ∈ ∆s. (20)

TµJ may be viewed as the cost function associated with
control law µ : ∆s → ∆r for the one stage problem that
has stage cost g and terminal cost J. For all k = 0, 1, 2, · · · ,
we write

(T 0J)(x) = J(x), x ∈ ∆s,

(T kJ)(x) = (T (T k−1J))(x), x ∈ ∆s.
Similarly, T k

µJ is defined by

(T 0Jµ)(x) = J(x), x ∈ ∆s,

(T k
µJ)(x) = (Tµ(T

k−1
µ J))(x), x ∈ ∆s.

Any function J on ∆s, as well as the functions TJ and
TµJ may be represented by the s−dimensional vectors

J =

 J(δ1s)
...

J(δss)

 , TµJ =

 TµJ(δ
1
s)

...
TµJ(δ

s
s)

 (21)

TJ =

 TJ(δ1s)
...

TJ(δss)

 =


inf
µ

{
TµJ(δ

1
s)
}

...
inf
µ

{TµJ(δ
s
s)}

 (22)

For a control law µ, we denote by Pµ the transition
probability matrix

Pµ =

 p11(µ(δ1)) · · · p1s(µ(δ1))
...

...
...

ps1(µ(δn)) · · · pss(µ(δn))

 , (23)

by gµ the cost vector

gµ =
(
g(δ1s , µ(δ

1
s)), · · · , g(δss , µ(δss))

)T
.

Proposition 4.2. For any control law µ : S → U , define
the matrix Mµ ∈ Ms×(sr) as

Mµ =


(δ1s)

T n (µ(δ1s))
T

(δ2s)
T n (µ(δ2s))

T

...
(δss)

T n (µ(δss))
T

 . (24)

Then the transition probability matrix Pµ associated with
stationary policy µ can be calculated by

Pµ = MµP. (25)

Proof. It is enough to prove that, for any i = 1, · · · , s
Rowi (MµP) = Rowi (Pµ) . (26)

We assume that µ(δis) = δjr . Then,

Rowi (MµP) = (δis)
T n (µ(δis))

TP
= (δis)

T n (δjr)
TP

= (δis)
T
(
(δjr)

T ⊗ Is
)
P

= δ(j−1)s+i
sr P = Row(j−1)s+i (P)

=Rowi

(
P j
)
.

On the other hand, if µ(δis) = δjr , by definition of Pµ, we
get, for all i = 1, · · · , s

Rowi (Pµ) = Rowi

(
P j
)
.

Thus we prove that (26).

Definition 4.1. We define a hyperplane Ds+1 of Rs+1 as

Ds+1 = {(x0, x1, · · · , xs) ∈ Rs+1 : x0 = 1}.
We define an increasing dimension operator ·̂ : Rs → Rs+1,
as Ĵ = (1, JT )T , for all J ∈ Rs. And, for any function J
on ∆s, we define

QĴ = inf
µ

QµĴ , with Qµ =

(
1 0
gµ Pµ

)
. (27)

According to the definition of Qµ, we immediately obtain

Proposition 4.3. For any function J on ∆s, we have

T̂µJ = QµĴ and T̂ J = QĴ (28)

Proof. For given policy µ : S → U, according to the
definition of operator Qµ, we get

QµĴ =

(
1 0
gµ Pµ

)(
1
J

)
=

(
1

gµ + PµJ

)

=


1

TµJ(δ
1
s)

...
TµJ(δ

s
s)

 =

(
1

TµJ

)
= T̂µJ.

Similarly, one can prove that T̂ J = QĴ.

Now we give the algebraic expression of QĴ .

Theorem 4.1. For any function J on ∆s, QĴ can be
calculated by following formula

QĴ =



1
min

j=1,··· ,r
{(δ1s)TGδjr + (δ1s)

T n (δjr)
TPJ}

min
j=1,··· ,r

{(δ2s)TGδjr + (δ2s)
T n (δjr)

TPJ}
...

min
j=1,··· ,r

{(δss)TGδjr + (δss)
T n (δjr)

TPJ}


, (29)

and the one-step optimal control policy µ∗ : S → U for
QĴ is

µ∗(x) = argmin
j∈{1,··· ,r}

{xGδjr + xT n (δjr)
TPJ}, (30)

for any x ∈ S.

Proof. According to definition of operator Q and equa-
tion (20), we get

QĴ = T̂ J =

(
1
TJ

)

=



1
inf
u∈U

E
w

{
g(δ1s , u) + J(f(δ1s , u, w))

}
inf
u∈U

E
w

{
g(δ2s , u) + J(f(δ2s , u, w))

}
...

inf
u∈U

E
w
{g(δss , u) + J(f(δss , u, w))}


.

We also notice that, for any i = 1, 2, · · · , s,
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inf
u∈U

E
w

{
g(δss , u) + J(f(δis, u, w))

}
= inf

δjr∈U
E
w

{
g(δss , δ

j
r) + J(f(δss , δ

j
r , w))

}
= inf

j=1,··· ,r

{
g(δss , δ

j
r) +

s∑
k=1

pik(δ
j
r)J(δ

k
s )

}
= min

j=1,··· ,r
{(δ1s)TGδjr + (δ1s)

T n (δjr)
TPJ},

by the definition of matrix P and semi-tensor product. So,
we finish the proof of Theorem 4.2.

Lemma 4.1. For any control law µ : S → U, λ = 1 is a
simple eigenvalue of Qµ.

Proof. See the Appendix.

Proposition 4.4. For any control law µ : S → U, Qµ :
Ds+1 → Ds+1 admits a unique fixed point, that is there
exists a unique point Jµ ∈ Rn such that

Qµ

(
1
Jµ

)
=

(
1
Jµ

)
. (31)

Proof. See the Appendix.

Proposition 4.5. For any control law µ : ∆s → ∆r, for any
vector J ∈ Rs, the operator Qµ : Ds+1 → Ds+1 and the
corresponding cost vector Jµ ∈ Rs of µ satisfy

lim
N→∞

QN
µ Ĵ = Ĵµ. (32)

Proof. We notice that

Qµ(Ĵ−Ĵµ) =

(
1 0
gµ αPµ

)[
0

Ĵ − Ĵµ

]
=

[
0

αPµ(Ĵ − Ĵµ)

]
,

Hence, by iteration, for any N,

QN
µ (Ĵ − Ĵµ) =QN−1

µ Qµ(Ĵ − Ĵµ) = QN−1
µ

[
0

αPµ(Ĵ − Ĵµ)

]
=

[
0

αNPN
µ (Ĵ − Ĵµ)

]
.

Since 0 < α < 1, we get

lim
N→∞

∥QN
µ (Ĵ − Ĵµ)∥ ≤ lim

N→∞
αN∥Pµ∥∥J − Jµ∥ = 0.

So, according to Proposition 4.4,

lim
N→∞

QN
µ Ĵ = lim

N→∞
QN

µ Ĵµ = Ĵµ. (33)

Finally, we give the matrix expression of dynamic pro-
gramming for the stochastic logical optimal control prob-
lem.

Theorem 4.2. (Value iteration approximation) For any
function J : ∆s → R, the optimal cost vector J∗ =(
J∗(δ1s), J

∗(δ2s), · · · , J∗(δ2s)
)T

satisfies

Ĵ∗ = lim
N→∞

QN Ĵ , (34)

and

∥Ĵ∗ −QN Ĵ∥ ≤ αk

(
M1

1− α
+M2

)
, (35)

where QN Ĵ = Q(QN−1Ĵ), M1 = maxi,j gij and M2 =
maxδis∈∆s

J(δis).

Example 4.1. Continue Example 3.2. If given a terminal
cost function J : ∆2 → R as

J(δi2) = [3 1]δi2, i = 1, 2, (36)

then, according to Theorem 4.2, we can calculate

inf
u∈∆2

{δ12Gu+ (δ12)
T n uTPJ}

= min

{
δ12Gδ12 + (δ12)

T n (δ12)
TPJ,

δ12Gδ22 + (δ12)
T n (δ22)

TPJ

}
= min {g11 + (1, 0, 0, 0)PJ, g12 + (0, 0, 1, 0)PJ}
= min {3.8, 5.7} = 3.8,

that means

µ∗
0(δ

1
2) = δ12 , J∗

0 (δ
1
2) = 3.8.

Similarly we also get

µ∗
0(δ

2
2) = δ12 , J∗

0 (δ
1
2) = 3.16,

Hence

QĴ =

(
1
3.8
3.16

)
. (37)

Continuing this process, we obtain that

µ∗
99(δ

1
2) = δ22 , J∗

99(δ
1
2) = 18.3112,

µ∗
99(δ

2
2) = δ12 , J∗

99(δ
1
2) = 7.0125.

µ∗
100(δ

1
2) = δ22 , J∗

100(δ
1
2) = 18.31127,

µ∗
100(δ

2
2) = δ12 , J∗

100(δ
1
2) = 17.0126.

Fig. 2 shows the dynamical programming approximation
result with stage N from 1 to 100.
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Fig. 2. Dynamical programming approximation result of
Example 4.1.

Theorem 4.3. I. (Bellman’s Equation) The optimal cost
function J∗ satisfies

Ĵ∗ = QĴ∗ (38)

II. (Necessary and Sufficient Condition for Optimality) A
stationary policy µ is optimal if and only if

QĴµ = QµĴµ (39)

Example 4.2. Continue Example 3.2 and Example 4.1.
Since s = r = 2, there are 4 control laws µ1, µ2, µ3, µ4 in
U , and the corresponding structure matrix of these control
laws are denoted as

Φµ1 = δ2[1, 1], Φµ2 = δ2[1, 2], Φµ3 = δ2[2, 1], Φµ4 = δ2[2, 2],

respectively. Then, based on Proposition 4.4, we get
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Jµ1 =

[
20

18.4375

]
, Jµ2 =

[
20
20

]
,

Jµ3 =

[
18.3117
17.013

]
, Jµ4 =

[
24.4785
23.865

]
,

It is clear that the optimal control law is µ3, that is

µ3(δ
1
2) = δ2[2, 1]δ

1
2 = δ22 and µ3(δ

2
2) = δ2[2, 1]δ

2
2 = δ12 ,

and the corresponding optimal cost functions are

J∗(δ12) = 18.3117, J∗(δ22) = 17.013,

which is coincide with the dynamical programming ap-
proximation result given by Example 4.1.

5. CONCLUSION

This paper considered the infinite horizon optimal control
problem of stochastic logical control dynamical system
with finite state. The infinite horizon optimization prob-
lem was formulated in algebraic form, after giving two
equivalent descriptions of the stochastic logical control
dynamical system. Based on semi-tensor product of matri-
ces and increasing dimensional technique, we established
the matrix expression of dynamic programming for the
optimal control problem. Some examples were presented
to illustrate the theoretical results.

6. APPDEDIX

Proof of Lemma 4.1 Obvious λ = 1 is an eigenvalue of
Qµ, since

det (Is+1 −Qµ) = det

(
0 0

−gµ Is − αPµ

)
= 0. (40)

Moreover, we can prove that

dim (R(Is+1 −Qµ)) = n. (41)

Since α < 1 and
∑s

j=1 Pµ(µ) = 1, for all j = 1, · · · , s, we
get the matrix

Is − αPµ (42)

is inverse. So for any y ∈ Rs, we take

x = (Is − αPµ)
−1(y + gµ), (43)

then

(Is+1 −Qµ)

(
0
x

)
=

(
0
y

)
, (44)

that means, for all y ∈ Rs,(
0
y

)
∈ R(Is+1 −Qµ) (45)

Hence, dim (R(Is+1 −Qµ)) = n. Finally, according to the
rank-nullity (dimension) theorem, we get

dim(Ker(Is+1 −Qµ)) = (s+ 1)− dim (R(Is+1 −Qµ))

= 1.

Therefore, λ = 1 is a simple eigenvalue of Qµ and the proof
of Lemma 4.1 is completed.

Proof of Proposition 4.4 Let ξµ is the eigenvector of
matrix Qµ corresponding to the eigenvalue λ = 1 with
∥ξµ∥ = 1. Since λ = 1 is a simple eigenvalue of Qµ, by
Lemma 4.1, we know that ξµ is unique. Set

ξµ =

(
ξ0µ
ηµ

)
with ηµ =

(
ξ1µ, · · · , ξsµ

)T
,

where ξn−1
µ is the n-th component of the eigenvector ξµ,

respectively, n = 1, 2, · · · , s+ 1.

We claim that ξ0µ ̸= 0. By contradiction, suppose ξ0µ = 0.
Then, by

0 = (Is+1 −Qµ)ξµ =

(
0 0

−g(µ) Is − αFµ

)(
0
ηµ

)
=

(
0

(Is − αFµ)ηµ

)
,

and the matrix Is − αFµ is inverse, we obtain ηµ = 0.
That means ξµ = ((ξ0µ)

T , (ηµ)
T )T = 0, this is contrary

to ∥ξµ∥ = 1, So ξ0µ ̸= 0. Finally, let Jµ = 1
ξ0µ
, then Jµ is

unique and satisfies the equation (31). We finish the proof
of Proposition 4.4.
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