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Abstract: In this paper we propose a new finite-time state observer for a nonlinear space launch
vehicle with flexible dynamics and uncertain parameters. Indeed, flexible states are required to
ensure nonlinear control objectives of both reference path tracking and bending mode damping.
Our main contribution is to show that it is enough to observe a sublinear uncertain system to
ensure a finite-time convergence of the whole state. For that purpose, a Luenberger observer is
mixed with a parameter and initial state estimator, based on algebraic estimation tools. Closed
loop simulations show the effectiveness of the observer in combination with a backstepping
control design (extended to flexible systems).

Keywords: Hybrid observer, Nonlinear control, Parameter estimation, Flexible mode

NOMENCLATURE

ψ Attitude angle, rad
β Gimbal deflection angle, rad
η Mode shape temporal coordinate
q Pitch rate, rad/s
h Flexible displacement, m
r Flexible rotation, rad
rci Inertial unit flexible rotation, rad
rgy Rategyro flexible rotation, rad
T Thrust, kg.m/s2

L Lift, kg.m/s2

GL Launcher center of mass
CT Gimbal joint
FL Aerodynamic center
IL Launcher body inertia, kg.m2

LT Algebraic distance from GL to CT , m
laero Algebraic distance from FL to GL, m
q̄ Dynamic pressure, Pa
S Reference area of the vehicle, m2

ω Natural frequency of the first bending mode, rad/s
ξ Natural damping of the first bending mode
Rn Frame (GL, xn, yn) linked to the reference trajectory
RL Frame (GL, xL, yL) linked to the launcher

1. INTRODUCTION

The problem of finite-time observation for linear and
nonlinear systems has been widely investigated over the
past decades. Two classes of observers emerge in the
series of methods that achieve finite-time convergence.
The first one, based on the use of delays has deserved a

lot of attention [Menold (2003)],[Engel (2002)]. Recently
in [Karafyllis (2011)], a novel hybrid dead-beat observer
which uses delays has been proposed. The history of
the output is used in order to estimate the state of the
system. Sliding mode observers that contain large study
in the literature make the second class. (see [Shtessel
(2010b)], [Ahmed-Ali (1999)] for instance). More recently,
homogeneous finite-time observers have been developed for
a specific class of nonlinear systems [Perruquetti (2008)].
Most of these approaches make the assumption that the
system structure and parameters are known.

In this paper we propose to design a finite-time observer
for a space launch vehicle which belongs to the class of un-
certain nonlinear systems. Due to mass constraints, space
vehicles tend to have lightweight and flexible structures
with low natural frequencies, distorting sensors measure-
ment and adding stability problems during flight. Re-
searchers have recently investigated this subject in the
field of nonlinear control. Several solutions have been
proposed. Some of them, on the one hand, addressed
the problem of unknown parameters and uncertainties
using direct-adaptive [Fiorentini (2009)], or time varying
controller [Hervas (2012)]. Nevertheless, only rigid states,
(that means measured states), are used in these proposed
methods. On the other hand, using sliding mode state
observer, the authors of [Shtessel (2010a)] reconstruct the
flexible states in order to remove the undesirable dynamics
from the measurements. This approach requires unfor-
tunately a strong knowledge of the mathematical model
of the system, in particular flexible modes parameters.
However, to the best of our knowledge, the design of a
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finite-time observer has not been achieved on uncertain
nonlinear aerospace models.

As far as we are concerned, we recently designed a
Lyapunov-based nonlinear controller, which uses the flex-
ible states, to ensure control objectives of both reference
path tracking and bending mode damping for a class of
nonlinear and flexible system [Duraffourg (2013a)], [Duraf-
fourg (2013b)], [Burlion (2013)]. Assuming that the whole
state is available, this control law has been applied to the
rotational dynamics of a space launch vehicle. [Duraffourg
(2013c)]. Such assumptions do not hold in practical ap-
plications since flexible states are generally not measured.
Consequently we need to reconstruct the flexible states.
Besides, noting that flexible parameters are subject to un-
certainties or variation during flight, this paper proposes to
extend existing theory by proposing an indirect adaptive
hybrid observer that no longer requires system parameter
knowledge. The proposed approach consists in estimating
flexible parameters (natural frequency and damping), and
state initial conditions using algebraic tools [Fliess (2003)].
The first ones improve the accuracy and the robustness of
the observer through indirect adaptive feature. The second
ones are used to regularly update the estimated state and
so guarantee a finite-time convergence.

This paper is organised as follows. Section 2 describes the
space launch vehicle and gives the problem statement.
Section 3 develops a parameter estimator and a state
observer which are then mixed to design a hybrid adaptive
finite-time observer. In section 4, estimated state is used
in a nonlinear control law and a closed-loop simulation is
presented. Finally Section 5 contains our conclusions and
future research directions.

2. PROBLEM STATEMENT

2.1 Launcher mathematical model

CT

ψ

xL

yL

xn

yn

GL

+
T

β

Fig. 1. Schematic model for a flexible launcher

The rotational dynamics of a nonlinear flexible launch
vehicle is extracted from [Duraffourg (2013c)], where
Lagrange’s formalism was developed to get the full-
mathematical model. The equations of motion are given
by:


ψ̇ = q

q̇ = − laero
IL

L(ψ) +
T

IL
(LT r − h)η +

TLT
IL

β

η̈ = −(ω2 − hrT )η − 2ξωη̇ + hTβ

(1)

where ψ and η are real variables and the lift L is a
nonlinear function of the attitude, given by:

L(ψ) = q̄S
(
C1
Lψ − C2

Lψ
2
)

The launch vehicle is equipped with an inertial unit and a
rategyro that give attitude and pitch rate informations. As
the first bending mode distorts the sensors measurement,
the available outputs are:{

y1 = ψ + rciη
y2 = q + rgyη̇

(2)

Measurement corruption terms make the control law de-
sign more difficult.

2.2 Nonlinear control law

A nonlinear control law, denoted Flexible Backstepping,
that achieves the control objectives of both reference path
tracking and bending mode damping has been developed in
[Duraffourg (2013c)]. This controller limits the interaction
of the rigid-dynamics on the transient of the flexible
dynamics, and so, improves the damping of the bending
mode. However, it is based on the deep knowledge of the
flexible states and parameters.

Using the notation y3 = y2 + (rci − rgy)η̇, system (1) can
be reformulated as follow:

ẏ1 = y3

ẏ3 = ḡ(y1, N)y1 +KN +
hT

Cβ
β +O(η2)

η̈ = −ω̄2η − 2ξωη̇ + hTβ

(3)

where:

ω̄2 = ω2 − hrT Cβ =
ILh

LT + ILrcih

ḡ(y1, N) = − laeroq̄S
IL

(
C1
L − C2

Ly1 + 2C2
Lrciη

)
K =

(
laeroq̄SC

1
Lrci

IL
+ T

IL
(LT r − h)− rciω̄2 −2ξωrci

)
N = (η η̇)

T

Then, the following change of coordinates is applied to the
flexible-dynamics:

z = N − Cβ
(
y1
y3

)
(4)

System (3) becomes:
ẏ1 = y3

ẏ3 = ḡ(y1, N)y1 +KN +
hT

Cβ
β +O(η2)

ż = Azz + F̄ (y1, N)y1 +Gy3 +O(η2)

(5)

with:

Az =

(
0 1
−ω̄2 −2ξω

)
−
(

0
Cβ

)
K

G = Az

(
0
Cβ

)
−
(
Cβ
0

)
F̄ (y1, N) = Az

(
Cβ
0

)
−
(

0
Cβ

)
ḡ(y1, N)
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Az being Hurwitz, system (5) belongs to the nonlinear
class of system on which a flexible backstepping controller
can be developed (see [Duraffourg (2013a)], [Duraffourg
(2013b)]). The design of this flexible backstepping control
law requires the whole state. Hence, outputs (y1 and y2)
and the flexible states (η and η̇) are required.

Remark 1. The exact expression of the y3-dynamics is:

ẏ3 = ḡ(y1, η)y1 +KN +
hT

Cβ
β +

laeroq̄SC
2
Lr

2
ci

IL
η2

Inertial flexible rotation rci takes very low values (in the
order of 10−4). Thus the last term can be seen as an error
term and is represented by a O(η2).

3. PARAMETERS AND STATE ESTIMATION

Since the bending mode is not measured and the flexible
parameters are generally distorted, this section proposes
a way to estimate the flexible states and parameters and
so to make the use of this control law possible via output
feedback.

3.1 State observer design with known parameter (ideal
case)

The flexible states η and η̇ must be estimated. They are
described by linear differential equations that result from
system (1). Since the outputs (2) involve both the rigid
states and the flexible ones, the idea is to consider the
augmented state X = [ψ η η̇]T instead of just the required
flexible states. It is important to note that this
system is linear, contrary to the original nonlinear
one (1).

Working with this augmented state gives the possibility to
design a linear observer, by focusing on:{

Ẋ = AX +Byy2 +Bββ
y1 = CX

(6)

where y2 acts as an input and:

A =

0 0 −rgy
0 0 1
0 −ω̄2 −2ξω

 By =

(
1
0
0

)
Bβ =

(
0
0
hT

)
C = (1 rci 0)

Observability conditions holds for the pair (A, C) and the

estimated state X̂ = [ψ̂ η̂ ˆ̇η]T is given by the classical
Luenberger observer:

˙̂
X = AX̂ +Byy2 +Bββ + L(y1 − CX̂) (7)

where L ∈ R3×1 is chosen such that A− LC is stable.

3.2 Parameters estimation

Bending mode natural damping and pulsation are gen-
erally subject to uncertainties and variations during the
flight. Besides, since our flight control law intends to at-
tenuate the oscillations of the bending mode, that is, to
add damping, it is important to know these parameters
accurately.

Moreover the accuracy and convergence time of the state
observer can be improved by a better knowledge of the
state initial conditions.

In this way we choose to estimate the following parameters:

θ =

θ1θ2θ3
θ4

 =

 −2ξω
−ω̄2

y3(0)
ẏ3(0)− ẏ2(0) + 2ξωy3(0)

 (8)

The first two parameters (θ1 and θ2) give the natural
damping and pulsation of the bending mode. The flexible
state initial conditions depend on the four parameters θ.

η(0) =
1

θ2

(
θ4 + θ1y2(0)

rci − rgy
− hTβ(0)

)
η̇(0) =

θ3 − y2(0)

rci − rgy

rci being small, we use the first initial output to approxi-
mate the state initial condition ψ(0):

ψ(0) = y1(0)− rciη(0) ' y1(0) (9)

The flexible state initial conditions must be estimated
through the outputs and their time derivatives. Noting

that η̇ =
ẏ1 − y2
rci − rgy

, it comes the following equation that

links the outputs and their time derivatives to the input
derivative, and consists in the basic equation of the pa-
rameter estimation:

y
(3)
1 = θ2(ẏ1−y2)+θ1(ÿ1− ẏ2)+hT (rci−rgy)β̇+ ÿ2 (10)

An algebraic methodology for parameter identification is
described in [Fliess (2003)] . This approach was used here
to estimate θ. The main steps are presented here:

(1) Take the Laplace transformation of (10) to reveal the
four parameters to be estimated. It comes:

θ1
[
−s2Y1+s

(
Y2+y1(0)s

)
−y2(0)

]
+θ2

[
−sY1+Y2+y1(0)

]
− sθ3 − θ4 = hT (rci − rgy)

[
sB − β(0)

]
− s3Y1 + s2

[
Y2 + y1(0)

]
− sy2(0) (11)

where s represents the Laplace variable and Yi (resp. B) is
the Laplace transformation of signal yi (i ∈ {1, 2}) (resp.
β).

(2) Take derivatives with respect to s, (three times) to
get as equations as unknown parameters.

(3) Multiply by s−3 both sides to avoid time derivations.
(4) Come back to time domain using inverse transforma-

tions.
(5) Define time dependent matrices P ∈ R4×4 and Q ∈

R4×1 such that:

P (t)θ = Q(t) (12)

Assumption 2. Persistence of excitation condition: ∃ τ > 0
such that:

∀ u ≥ τ,
∫ τ

u−τ
P (s)TP (s)ds > 0 (13)

Under Assumption 2, θ is finally given by:

θ =

∫ τ
u−τ P (s)TQ(s)ds∫ τ
u−τ P (s)TP (s)ds

(14)

Since τ is unknown, we compute estimated parameters θ̂
and then Â and X̂0 at discrete time instants τk where
{τk}+∞k=0 is a partition of R+, using:
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θ̂(τk) =

∫ τk
0
P (s)TQ(s)ds∫ τk

0
P (s)TP (s)ds

(15)

Â(τk) = Âk =

0 0 −rgy
0 0 1

0 θ̂2(τk) θ̂1(τk)

 (16)

X̂0(τk) =


y1(0)

1

θ̂2(τk)

(
θ̂4(τk) + θ̂1(τk)y2(0)

rci − rgy
− hTβ(0)

)
θ̂3(τk)− y2(0)

rci − rgy


(17)

Remark 3. It is important to note that Â and X̂0 are not
completely described by estimated parameters. Parame-
ters rgy, rci, h and T are supposed to be known. This may
be assumed for flexible displacements and rotations since
they take low values, and cannot vary significantly during
the flight.

Figure 2 shows in blue (resp. in red) the evolution of the

flexible estimated parameters (θ̂1, θ̂2) and state initial

conditions X̂0 =
(
ψ̂(0), η̂(0), ˆ̇η(0)

)
when the sensors give

ideal (resp. noisy) measurements. The red curve was
obtained applying a zero-mean periodic noise on signals
y1 and y2.

Remark 4. With noisy measurements, estimated parame-
ter ˆ̇η(0) is biased and the estimation error ˜̇η = η̇(0)− ˆ̇η(0)
is quite important (about 1.5). This problem is detailed in
section 3.3.
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Fig. 2. Estimated parameters

3.3 Robustness improvement of the observer with respect
to noisy measurements

An estimation bias appears in simulation on estimated
parameter ˆ̇η(0) when measurements are noisy (solid red
curve on the last plot of figure 1). It is given by:

˜̇η(0) = η̇(0)− ˆ̇η(0) =
θ3 − θ̂3
rci − rgy

(18)

This bias term is due to the low values of rci − rgy which

accentuates the (low) difference between θ3 and θ̂3. This

section proposes a way to identify this estimation bias ˜̇η(0)

and thus to correct X̂0(τk).

From system (6), it comes:

y1(t) = CX(t) = CeAtX0(t) (19)

+ C

∫ t

0

eA(t−u)
[
Byy2(u) +Bββ(u)

]
du

Similarly with the estimated state:

X̂(t) = eÂktX̂0(t) +

∫ t

0

eÂk(t−u)
[
Byy2(u) +Bββ(u)

]
du

(20)

Under persistence of excitation condition, algebraic pa-
rameter estimation still converges in finite-time. Thus,
there exists k∗ > 0 such that for all k ≥ k∗

Âk = A and X̂0 =
(
ψ(0) η(0) η̇(0)− ˜̇η(0)

)T
(21)

This last equation underlines the fact that only estimated
initial condition η̇ is biased.

Then,

∀t > tk∗ y1(t)− CX̂(t) = CeAte3 ˜̇η(0) (22)

with e3 = (0 0 1)
T

. That can be written as:∫ t

0

(CeAue3)2du ˜̇η(0) =

∫ t

0

CeAue3

[
y1(u)− CX̂(u)

]
du

(23)

Supposing that
∫ t
0
(CeAue3)2du 6= 0, estimation error is

given by:

˜̇η(0) =

∫ t
0
CeAue3

[
y1(u)− CX̂(u)

]
du∫ t

0
(CeAue3)2du

(24)

This term is added on the last simulation. The result is
represented by the dashed red line on figure 1.

3.4 Adaptive Finite-time observer

Mixing the results of the last subsections, it is now possible
to design an observer when the parameters are unknown.

Estimated parameters and initial conditions are used to

improve the accuracy of the observer. In particular, θ̂1
and θ̂2 are used in the design such that the observer no
longer depends on the natural damping and pulsation of
the bending mode, that are subject to variations.

Proposition 5. Under Assumption 2, the following hybrid
observer converges in finite-time.

∀t ∈ [τk, τk+1[
˙̂
X = ÂkX̂ +Byy2 +Bββ + L(y1 − CX̂)

when t = τk
X̂(τk) = eÂkτkX̂0(τk)

+
∫ τk
0
eÂk(τk−u)

[
Byy2(u) +Bββ(u)

]
du

(25)

At each τk, the state is updated and the dynamics (Âk) as
well.
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Proof. Using the notations X̃ = X − X̂ and Ã = A− Â,
it comes:

˙̃X = AX − ÂX̂ − LCX̃ = (A− LC)X̃ − ÃX̂ (26)

Because of the persistence of excitation condition, alge-
braic parameter estimation converges in finite-time. Thus,
there exists k∗ such that τk∗ > τ > 0 and

∀ k > k∗, θ̂(τk) = θ (27)

Consequently ∀ k > k∗, Âk = A and the estimation error
satisfies:

∀ t ≥ τ∗k ,
˙̃X = (A− LC)X̃ (28)

A− LC being Hurwitz, the estimation error X̃ converges
asymptotically to zero.

Besides, the estimated state X̂(t) is updated on X̂(τk) at
each τk verifying τk > τk∗ .

∀t ≥ τ∗k , X̂0(t) = X0(t) ie X̂(τk) = X(τk) (29)

Estimation error is then given by:

∀t ≥ τ∗k , X̃(t) = X̃(τk)e(A−LC)(t−τk) = 0 (30)

Finally the estimation error vanishes in finite-time. �

Figure 3 compares this finite-time observer that updates
the state from the knowledge of the initial condition (IC)
(in blue) with the same Luenberger observer without any
update of the estimated state (in green). In the two cases,
the observer parameter L is the same. Moreover, initial
conditions of the classical Luenberger observer have been
chosen very close to the estimated parameters, so that
the comparison is fair. This figure shows how the observer
convergence time is improved. The dramatic slope on the
blue curve corresponds to the moment where the estimated
state is updated.

4. CLOSED-LOOP SIMULATION

Finite-time observer was designed in open-loop. In this
section, the loop is closed and estimated flexible states
and parameters are directly used in the controller.

As explained in Section 2.2, a flexible backstepping control
law can be designed for system (5). It is extracted from

[Duraffourg (2013c)], [Duraffourg (2013b)] and involved
the following Lyapunov function:

V =
cf1
2
y21 +

cf2
2
ZTPzZ +

cf3
2
ỹ23 (31)

where cfi are positive constants (i ∈ {1, 2, 3}), Pz ∈ R2×2

is the positive and symmetric matrix that verifies:

ATz Pz + PzAz = −2Qz (32)

with Qz a positive and symmetric matrix of R2×2, and

Az =

(
0 1
θ2 θ1

)
−
(

0
Cβ

)
K

K =

(
laeroq̄SC

1
Lrci

IL
+ T

IL
(LT r − h) + rciθ2 rciθ1

)
Z = z −Gy1, G = Az

(
0
Cβ

)
−
(
Cβ
0

)
F̄ (y1, N) = Az

(
Cβ
0

)
−
(

0
Cβ

)
ḡ(y1, N) ỹ3 = y3 − y3cmd

y3cmd
= − 1

cf1

(
λy1y1 + cf2F (y1, N)TPzZ

)
F (y1, N) = AzG+ F̄ (y1, N)

Choosing the control law as follow:

βf(y1, y3, N) =
Cβ
hT

[
ẏ3cmd

− ḡ(y1, N)y1 −KN

− 1

cf3
(cf1y1 + λy3 ỹ3)

]
λy1 > 0 λy3 > 0 (33)

Lyapunov function time derivative is given by:

V̇ = −λy1y21 − c
f
2Z

TQzZ − λy3 ỹ23 (34)

This nominal control law is then blended with the adaptive
observer, using estimated flexible states N̂ =

(
η̂ ˆ̇η
)
. The

tested control law is thus βf(y1, y3, N̂), reminding that
flexible states converge in finite time.

This output-feedback flexible backstepping control law is
compared with a classical backstepping one, applied on the
sole rigid dynamics:

βc =
Il
TLT

[
q̇cmd +

Laero

IL
L(ψ)− 1

cc2
(cc1ψ − λq q̃)

]
(35)

where
q̃ = q − qcmd qcmd = −λψψ (36)

and cc1, cc2, λψ, λq are positive constants. The classical
backstepping law also consists of an output-feedback con-
troller, assuming that state ψ (resp. q) approximately
corresponds to output y1 (resp. y2). This approximation
makes sense thanks to the low values of the sensors flexible
rotations rci and rgy in equation (2). Simulation is realised
in this way.

It is worth noting that both flexible (33) and classical
(35) backstepping laws converge asymptotically when the
flexible mode is collocated.

Figure 4 presents a simulation result of the state temporal
evolution with the two different backstepping laws. Gains
have been tuned so that the time delay response is the
same. Initial conditions are also the same. Regardless of
the control law, attitude ψ has nearly the same behaviour.
As expected, the difference appears on the flexible states:
the bending mode oscillations are better damped by the
flexible backstepping controller.
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However it is worth noting that peaks appear at the begin-
ning of the simulation (on the blue curve and particularly
on q and η̇). This phenomenon is caused by state initial
condition estimation and estimated state update. Indeed,
at time equals to 0.2 s state initial conditions are obtained
and estimated state is thus updated at that time. Once this
process has been done, states get a smooth behaviour. The
complete proof of the stability of the closed-loop will be
addressed in the future.

Finally, although we have not given a formal proof, simula-
tions have been performed with noisy measurements. More
precisely, a zero-mean periodic noise has been applied on
the outputs. In this case, as illustrated in red on figure
4 for the closed loop system, our finite-time convergent
estimation algorithm well performs.

5. CONCLUSION

An adaptive finite-time observer has been designed in this
paper. Based on a linear state observer and a parame-
ter estimator, it identifies the unmeasured flexible states,
without requiring parameter knowledge. Flexible states
are then used to realise an output-feedback controller
via flexible backstepping control law. Methodology and
simulation results have been developed on the rotational
dynamics of a space launch vehicle with only one flexible
mode. Although this first flexible mode is the most relevant
to consider in the design, more flexible modes will be
considered in the future. In this study, flexible parameters
(natural pulsation and damping) are estimated and then
used in the control law. Uncertainties also affect other
parameters such as aerodynamic coefficients. Theses un-
certainties will be considered in our future work. Finally we
will focus on the stability proof of the closed-loop system.
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