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Abstract: This paper presents a novel moving horizon least-squares input estimation method
for linear discrete-time stochastic systems. For systems with completely unknown initial state
and no unstable zeros, some existing work showed that asymptotic input reconstruction is
possible in the absence of noises. However, under the same condition but with stochastic
noises, most existing input estimators, which are designed to optimally deal with noises, fail
to ensure asymptotic unbiasedness. In order to address this limitation for linear discrete-time
stochastic systems, we characterize necessary and sufficient conditions for input observability
and detectability, and propose a moving horizon least-squares input estimator. Based on the
conditions for input observability and detectability, it is proved that our proposed input
estimator gives an asymptotically unbiased estimate and has minimal estimation error variance
over all linear asymptotically unbiased input estimators. Its effectiveness is illustrated by
simulation examples involving aircraft sensor and actuator faults.
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1. INTRODUCTION

Due to its applications in fault diagnosis and fault-tolerant
control, the problem of determining the unknown inputs of
a dynamic system from available input and output (I/O)
data, known as unknown input estimation (UIE), has
received considerable attention during the last decades.

In the context of deterministic systems, the UIE problem
is often referred to as input reconstruction. One main dif-
ficulty is due to the presence of unknown initial state. For
continuous-time linear systems, Basile and Marro (1992)
defined the notion of unknown-state, unknown-input com-
pletely reconstructable system, which was characterized by
necessary and sufficient geometric conditions. A similar
notion, i.e., l-delay input and initial-state observability,
was discussed in Kirtikar et al. (2011) for discrete-time
systems. These results reveal the role of invariant zeros
on input reconstruction: (a) if the system has invariant
zeros, then there exists an initial state such that, for some
nonzero input sequences, the output signal is identically
zero, which makes exact input reconstruction impossible;
(b) if the invariant zeros are all stable, the unobservable
input decays, thus asymptotic input reconstruction is still
possible. These properties of input reconstruction can be
achieved by a joint state-input reconstructor proposed in
Gillijns (2007). All the poles of the proposed reconstructor
can be arbitrarily assigned except those which are equal to
the invariant zeros of the original system. Therefore, when
? The research leading to these results has received funding
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the original system has no unstable zeros, the proposed
reconstructor in Gillijns (2007) is guaranteed to be stable
through pole placement, which ensures asymptotic input
reconstruction. Instead of the joint consideration of state
and input reconstruction as in the above literature, Hou
and Patton (1998) proposed the notion of input observ-
ability and detectability for continuous-time systems, and
showed that state observability and controllability were
not necessary for input reconstruction.

The UIE problem has also been investigated for linear
discrete-time stochastic systems. In this context, the in-
put estimators are designed to optimize certain criteria
dealing with stochastic noises. One class of methods is
the joint state-input estimation approach with assumed
a priori statistics of the initial state, e.g., Gillijns and
Moor (2007a,b); Gillijns (2007). Gillijns and Moor (2007a)
proved that its proposed input estimator achieved mini-
mum variance over all linear unbiased input estimators.
Another class of methods to UIE estimates the unknown
input without estimating the state. By replacing the un-
known initial state with the past I/O data, a constrained
least-squares (LS) approach was proposed in Dong and
Verhaegen (2012) which ensures asymptotically unbiased
estimation for systems with stable inversion.

Basile and Marro (1992) and Gillijns (2007) showed the
possibility of asymptotic input reconstruction when the
considered system has neither unstable zeros nor stochas-
tic noises. Under the same condition but with stochastic
noises, it is intuitive and reasonable to infer that asymp-
totically unbiased input estimation should be possible.
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Unfortunately, the optimal input estimators developed
in the above references fail to meet this expectation for
stochastic systems. Actually, the poles of these optimal
input estimators have no direct relationship to invariant
zeros or other properties of the original systems, and might
even be unstable. As a result, they may not yield an
asymptotically unbiased estimate, even for systems with
no unstable zeros.

In order to address the above limitation of the existing
UIE methods for linear discrete-time stochastic systems,
this paper proposes a novel moving horizon LS (MHLS)
input estimator. First, necessary and sufficient conditions
for input observability and detectability are developed,
which can be regarded as an extension of the results in
Kirtikar et al. (2011). Then, the MHLS input estimator is
proposed. Its estimation performance is analyzed based on
the conditions for input observability and detectability. For
systems with no transmission zeros, the proposed estima-
tor gives an unbiased input estimate if the horizon length
is no less than the observability index of the considered
system. For systems with only stable zeros, the proposed
estimator achieves asymptotic unbiasedness. In both of
the above cases, it is shown that the MHLS estimator
has minimal variance over the class of all linear asymp-
totically unbiased estimators. Finally, the effectiveness of
the proposed MHLS estimator is illustrated by simulation
examples involving aircraft sensor and actuator faults.

Notations: For a matrix X, its range and null space is
denoted by R (X) and N (X), respectively. X− represents
the left inverse satisfying X−X = I, while X(1) represents
the generalized inverse satisfying XX(1)X = X. The
Moore-Penrose inverse is denoted by X†.

2. PRELIMINARIES AND PROBLEM
FORMULATION

We consider linear discrete-time systems governed by the
following state space model:

x(k + 1) = Ax(k) +Bu(k) + Ef(k) + Fw(k)

y(k) = Cx(k) +Du(k) +Gf(k) + v(k).
(1)

Here x(k) ∈ Rnx , y(k) ∈ Rny , and u(k) ∈ Rnu represent
the state, the measurement, and the known control input
at time instant k, respectively. The stochastic disturbances
are represented by the process noise w(k) ∈ Rnw and
the measurement noise v(k) ∈ Rnv , both of which are
considered to be white zero-mean Gaussian. A,B,C,D are
known real matrices, with bounded norms and appropriate
dimensions. f(k) ∈ Rnf is the unknown input to be
estimated, and we have no a priori knowledge about how
it varies with time.

The following assumptions are made in this paper:

Assumption 1. rank (G) = nf .

Assumption 2. The initial state x(0) is completely un-
known.

For the sake of brevity, Assumption 1 is adopted, which is
common for sensor faults. However, our proposed methods
can be extended to actuator faults as well in a straightfor-
ward manner, as explained latter in Remark 3.

Consider the output equation in a sliding window with a
length of L sampling instants. Define data vectors in this

window as uk,L, yk,L, fk,L, wk,L and vk,L, respectively for
the signals u, y, f , w and v; e.g.,

uk,L =
[
uT (k0) · · · uT (k)

]T
,

where k0 = k − L + 1. For the system model (1), let
OL denote its extended observability matrix with L block
elements, and T?

L be the lower triangular Toeplitz matrix
with L block columns and rows, i.e.,

OL =


C
CA

...
CAL−1

 , Tu
L =


D 0 . . . 0

CB D
. . .

...
...

...
. . . 0

CAL−2B CAL−3B · · · D

 ,
and Tf

L and Tw
L are defined similarly to Tu

L.

With the above definitions, the extended output equation
of the system (1) can be written as

yk,L = OLx (k0) +Tu
L ·uk,L+Tf

L · fk,L+Tw
L ·wk,L+vk,L.

(2)
Then a residual vector can be generated as

rk,L = yk,L −Tu
L · uk,L

= OLx (k0) + Tf
L · fk,L + nk,L

= OLx (k0) + Tf
L,1 · fk−1,L−1 + Tf

L,2 · f(k) + nk,L

=
[
OL Tf

L

]︸ ︷︷ ︸
ΨL

[
x (k0)
fk,L

]
︸ ︷︷ ︸

f̄k,L

+nk,L

=
[
OL Tf

L,1

]
︸ ︷︷ ︸

ΨL,1

[
x (k0)

fk−1,L−1

]
+ Tf

L,2 · f(k) + nk,L,

(3)

where nk,L = Tw
L ·wk,L + vk,L, Tf

L,1 and Tf
L,2 correspond

to the first (L− 1)nf columns and the last nf columns of

Tf
L, respectively.

The objective is to use the generated residual signals rk,L
to estimate the unknown input f(k), and to analyze the
estimation performance.

3. INPUT OBSERVABILITY AND DETECTABILITY

As the basis of MHLS input estimator, this section will
analyze some properties of invariant zeros. First, two
lemmas about invariant zeros are given.

Lemma 1. With Assumption 1 and ΨL, f̄k,L defined in (3),
there exists a nonnegative integer l such that for all L ≥ l,

rdk,L = ΨL · f̄k,L = 0 (4)

if and only if

f(k0 + i) = −G−CKi
dx(k0), i = 0, 1, · · · , L− 1, (5)

with
Kd , A− EG−C, (6)

and 0 6= x(k0) ∈ S1 ∪ S2, where

KdS1 ⊆ S1, S1 ⊆ N (C) , (7)

KdS2 ⊆ S2, {0} 6= CS2 ⊆ R (G) . (8)

The proof of Lemma 1 follows that of Lemma A.1 in
Kirtikar et al. (2011) with slight modifications, thus it is
omitted for brevity. Lemma 1 shows that the null space
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N (ΦL) corresponds to two subspaces S1 and S2. The
following lemma further reveals that these two subspaces
correspond to two types of invariant zeros.

Lemma 2. Let λ0 and x0 denote an eigenvalue and the
related eigenvector of Kd defined in (6). If x0 ∈ S1 ∪ S2,
λ0 is an invariant zero of (A,E,C,G). Furthermore, with
Assumption 1, when x0 ∈ S1, λ0 is an output decoupling
zero which implies x(k0) 6= 0 and fk,L = 0 in (4); when
x0 ∈ S2, λ0 is a transmission zero which implies x(k0) 6= 0
and fk,L 6= 0 in (4).

Proof. By defining

f0 = −G−Cx0, (9)

we can obtain λ0x0 = Kdx0 = Ax0 + Ef0 from (6). Since
x0 ∈ S1 ∪ S2 imply (I −GG−)Cx0 = 0 according to (7)-
(8), it follows from (9) that Cx0 + Gf0 = GG−Cx0 +
Gf0 = 0. Therefore we have[

A− λ0Inx E
C G

] [
x0

f0

]
= 0

which shows that λ0 is an invariant zero of (A,E,C,G).

Due to Assumption 1, when x0 belongs to S1 defined in
(7), there is f0 = 0, and λ0 is an unobservable mode of
(A,C), i.e. an output decoupling zero; when x0 belongs to
S2 defined in (8), there is f0 6= 0, and λ0 is a transmission
zero (Zhou et al., 1996). 2

Similarly to the concept of input observability and de-
tectability for continuous-time systems in Hou and Pat-
ton (1998), we proceed to define input observability and
detectability for the discrete-time system (1).

Definition 1. Let l be a nonnegative integer. The input
f(k) is observable if there exists L ≥ l such that (4) implies
f(k) = 0, where f(k) corresponds to the last nf rows in
fk,L.

Definition 2. The input f(k) is detectable if (4) implies
f(k)→ 0 for L→∞.

According to Lemma 1 and 2, some intuitive explanations
about the above two definitions are given as below. By
substituting x(k0) = x0 and (9) into (5), we have

f(k0 + i) = λi0f0, i = 0, 1, · · · , L− 1.

This implies that there exist a nonzero initial state x(k0) =
x0 and input sequences

{
λi0f0

}
i=0,1,2,...

such that the de-

terministic residual signal rdk,L defined in (4) is identically

zero. If x0 ∈ S1, the input sequence
{
λi0f0

}
i=0,1,2,...

is

identically zero, thus f(k) is observable. If x0 ∈ S2 and
the transmission zero λ0 lies inside the unit disk, it follows
that λk0f0 → 0 for k → ∞, which means that f(k) is
detectable.

The following results provide necessary and sufficient con-
ditions for input observability and detectability, which will
serve as the foundation of the latter sections.

Theorem 1. With Assumption 1, the following statements
are equivalent:

(i) The input f(k) of the system (1) is observable.
(ii) S2 defined in (8) is empty, or equivalently, (A,E,C,G)

has no transmission zeros.

(iii) R (ΨL,1)
⋂
R
(
Tf
L,2

)
= {0} holds for all L ≥ ν,

where ν is the observability index of (A,C).

Proof. Due to limited space, here we only prove that (ii)
implies (iii). With L = ν, it follows from (5)-(6) that (4)
implies for i = 0, 1, · · · , ν − 1,

rd(k0 + i) = Cx(k0 + i) +Gf(k0 + i)

=
(
Iny
−GG−

)
CKi

dx(k0) = 0.
(10)

Since any CKj
d (j ≥ ν) can be rewritten as CKj

d =∑ν−1
i=0 αiCK

i
d according to the definition of observability

index, we have(
Iny
−GG−

)
CKj

dx(k0) = 0, for j ≥ ν. (11)

Therefore the satisfaction of (4) for L = ν can lead to the
satisfaction of (4) for all L ≥ ν. According to Lemma 1,
this implies that x(k0) belongs to S1 defined in (7) when
S2 is empty as stated in (ii). From Lemma 2, (4) and
x(k0) ∈ S1 indicates that fk,L = 0 for all L ≥ ν, which
proves (iii). 2

Corollary 1. The smallest l which ensures

R (ΨL,1)
⋂
R
(
Tf
L,2

)
= {0}

for all L ≥ l is ν.

Theorem 2. With Assumptions 1, the following state-
ments are equivalent:

(i) The input f(k) of the system (1) is detectable.
(ii) All transmission zeros of (A,E,C,G) are stable.

(iii) R (ΨL,1)
⋂
R
(
Tf
L,2

)
→ {0} for L→∞.

The proof of Theorem 2 follows that of Theorem 1, thus
it is omitted.

Remark 1. The statement (ii) of both Theorem 1 and 2
shows that the output decoupling zeros, or equivalently,
unobservable states, do not affect input observability and
detectability. In contrast, the joint state-input estimation
approach in Gillijns and Moor (2007a,b); Gillijns (2007);
Kirtikar et al. (2011) explicitly require state observability
or detectability.

4. MOVING HORIZON INPUT ESTIMATION

Let Σn,L denote the covariance matrix of nk,L, and define

r̄k,L = Σ
− 1

2

n,Lrk,L, Ψ̄L = Σ
− 1

2

n,LΨL, Ψ̄L,1 = Σ
− 1

2

n,LΨL,1,

T̄f
L,2 = Σ

− 1
2

n,LTf
L,2, n̄k,L = Σ

− 1
2

n,Lnk,L.
(12)

Then by multiplying both sides of (3) with Σ
− 1

2

n,L, (3) can
be rewritten as

r̄k,L =
[

Ψ̄L,1 T̄f
L,2

]
︸ ︷︷ ︸

Ψ̄L

f̄k,L + n̄k,L.
(13)

The following LS problem is formulated to estimate f(k)
based on (13):

min
ˆ̄fk,L

∥∥∥r̄k,L − Ψ̄L
ˆ̄fk,L

∥∥∥2

2
. (14)

The solution to the optimization problem (14) may be
non-unique, because according to Lemma 1 N

(
Ψ̄L

)
6=

{0} when (A,E,C,G) has output decoupling zeros or
transmission zeros. One solution to (14) is

ˆ̄fk,L =
(
Ψ̄T
LΨ̄L

)(1)
Ψ̄T
L r̄k,L, (15)
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where
(
Ψ̄T
LΨ̄L

)(1)
is the generalized inverse satisfying

Ψ̄T
LΨ̄L

(
Ψ̄T
LΨ̄L

)(1)
Ψ̄T
LΨ̄L = Ψ̄T

LΨ̄L. (16)

Since only the estimate f̂(k), i.e., the last nf entries ofˆ̄fk,L,
is of interest at each time instant, we would like to extract

f̂(k) from the solution (15), and analyze its estimation
performance in the following subsections.

4.1 Unbiasedness

Given I/O data uk,L and yk,L, the most general linear
input estimator for f(k) can be written as

f̆k,L = Mkyk,L + Hkuk,L = WkΣ
− 1

2

n,Lyk,L + Hkuk,L
(17)

with MkΣ
1
2

n,L = Wk. A necessary and sufficient condition

for (17) to be an unbiased (asymptotically unbiased)
estimator for observable (detectable) input f(k), is given
in the following theorem.

Theorem 3. The estimator (17) gives an unbiased estimate
of observable input f(k) with L ≥ ν, or an asymptotically
unbiased estimate of detectable input f(k) with L → ∞,
if and only if both of the following statements hold:

(i) WkΣ
− 1

2

n,LTu
L + Hk = 0;

(ii) Ψ̄LWkΨ̄L = Ψ̄L.

Proof. Sufficiency: It follows from (2), (13) and the state-
ment (i) that (17) can be rewritten as

f̆k,L = Mkrk,L = Wkr̄k,L. (18)

By multiplying both sides of (18) with Ψ̄L and then taking
mathematical expectation, we have

Ψ̄LE
(
f̆k,L

)
= Ψ̄LWkΨ̄Lf̄k,L. (19)

With the statement (ii), the above equation can be refor-
mulated as

Ψ̄L

(
E
(
f̆k,L

)
− f̄k,L

)
= 0. (20)

According to Theorem 1 and 2, it can be seen from (20)

that (i) E
(
f̂(k)

)
= f(k) with L ≥ ν when the input f(k)

is observable, and (ii) E
(
f̂(k)

)
→ f(k) with L→∞ when

the input f(k) is detectable.

Necessity: By substituting (2) into (17) we have

E
(
f̆k,L

)
= WkΨ̄Lf̄k,L +

(
WkΣ

− 1
2

n,LTu
L + Hk

)
uk,L. (21)

This above equation implies that the statement (i) must
hold in order to yield (asymptotically) unbiased estima-
tion. Without loss of generality, let

WkΨ̄L =
(
Ψ̄T
LΨ̄L

)(1)
Ψ̄T
LΨ̄L + Sk, (22)

then (21) can be rewritten as

Ψ̄L

(
E
(
f̆k,L

)
− f̄k,L

)
= Ψ̄LSk f̄k,L (23)

by multiplying both sides of (21) with Ψ̄L and utilizing

the fact Ψ̄L

(
Ψ̄T
LΨ̄L

)(1)
Ψ̄T
LΨ̄L = Ψ̄L. Since (asymptotic)

unbiasedness implies (20) for arbitrary f̄k,L, it can be
concluded from (23) that Ψ̄LSk = 0. Then, multiplying
both sides of (22) with Ψ̄L leads to the statement (i). 2

Corollary 2. From Theorem 3, it can be concluded that
(15) also gives an unbiased estimate of observable input
f(k) with L ≥ ν, or an asymptotically unbiased estimate
of detectable input f(k) with L→∞.

4.2 Computation

Based on (15), the following theorem gives the explicit

computation form of f̂(k) without calculating other entries

ofˆ̄fk,L, which of course yields an (asymptotically) unbiased
estimate as (15) does.

Theorem 4. The estimate f̂(k) in (15) can be computed
as

f̂(k) =

((
T̄f
L,2

)T

P⊥Ψ,1T̄
f
L,2

)(1) (
T̄f
L,2

)T

P⊥Ψ,1r̄k,L (24)

with

P⊥Ψ,1 = I − Ψ̄L,1

(
Ψ̄T
L,1Ψ̄L,1

)(1)
Ψ̄T
L,1. (25)

Proof. Define Π11 = Ψ̄T
L,1Ψ̄L,1, Π12 = Ψ̄T

L,1T̄
f
L,2 and

Π22 =
(
T̄f
L,2

)T

T̄f
L,2. According to (13), Schur comple-

ments and inverses of block matrices (Kailath et al., 2000),
it is straightforward to verify that(
Ψ̄T
LΨ̄L

)(1)
=

[
I −Π

(1)
11 Π12

0 I

][
Π

(1)
11 0

0 M(1)
11

] [
I 0

−ΠT
12Π

(1)
11 I

]
(26)

M11= Π22 −ΠT
12Π

(1)
11 Π12 (27)

satisfies (16). From (25) and (27) it follows that

M11=
(
T̄f
L,2

)T

P⊥Ψ,1T̄
f
L,2. (28)

Then we obtain (24) by substituting (25) and (26)-(28)
into (15). 2

As defined in (25), P⊥Ψ,1 is actually the orthogonal
projector onto the orthogonal complementary subspace

of R
(
Ψ̄L,1

)
. Then there is

(
T̄f
L,2

)T

P⊥Ψ,1T̄
f
L,2 > 0 if

R (ΨL,1)
⋂
R
(
T̄f
L,2

)
= {0}. Based on this fact, the

generalized inverse in the estimator (24) should be re-
placed by the conventional inverse (which is unique) when
(A,E,C,G) has no transmission zeros according to Theo-
rem 1.

For (A,E,C,G) that has only stable transmission zeros,
the generalized inverse in the estimator (24) is non-unique.
But since the estimator (24) is extracted from the unbiased
estimate (15), the unbiasedness of the estimator (24) is not
affected by the non-unique generalized inverse in (24).

4.3 Optimality

According to (13) and (25), the estimation error covariance
matrix of the estimator (24) is

cov
(
f̂(k)− f(k)

)
=M(1)

11 M11M
(1)
11 =M†11 (29)

with M11 given in (28). Note that the second equation in
(29) shows that the estimation error covariance matrix is

unique although the generalized inverse M(1)
11 is non-unique.
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Theorem 5. The (asymptotically) unbiased estimator (24)
has minimal variance over the class of all linear (asymp-
totically) unbiased estimators characterized in Theorem 3.

Proof. According to Theorem 3, the class of all linear
(asymptotically) unbiased estimators for f(k) can be ex-
pressed as

f̆(k) = W2,kr̄k,L, (30)

where W2,k corresponds to the last nf rows of Wk in (18).
Then it can be seen that Theorem 5 is proved if we can
show that

cov
(
f̆(k)− f(k)

)
− cov

(
f̂(k)− f(k)

)
=W2,kW

T
2,k− M(1)

11 M11M
(1)
11

(31)

is positive semidefinite.

With the statement (ii) in Theorem 3, we have

P⊥Ψ,1Ψ̄LWkΨ̄L = P⊥Ψ,1Ψ̄L

which can be further reduced to

M11 W2,kΨ̄L,1 = 0, (32)

M11 W2,kT̄
f
L,2 =M11 . (33)

through matrix manipulations. Note that Ψ̄L, P⊥Ψ,1 and

M11 are defined in (13), (25) and (27), respectively. From
(32) it follows that

M11 W2,kP
⊥
Ψ,1 =M11 W2,k, (34)

then we have

W2,k =M(1)
11 M11 W2,kP

⊥
Ψ,1. (35)

Again based on (33) and (34), there is

M11 W2,kP
⊥
Ψ,1T̄

f
L,2 =M11 W2,kT̄

f
L,2 =M11 . (36)

By substituting (35) and (36) into (31), we have

cov
(
f̆(k)− f(k)

)
− cov

(
f̂(k)− f(k)

)
= M(1)

11 M11 W2,kP
⊥
Ψ,1W

T
2,k M11M

(1)
11 − M(1)

11 M11M
(1)
11 M11M

(1)
11

= M(1)
11 M11 Ξk M11M

(1)
11

(37)
with

Ξk =W2,kP
⊥
Ψ,1W

T
2,k

−W2,kP
⊥
Ψ,1T̄

f
L,2 M(1)

11

(
T̄f
L,2

)T

P⊥Ψ,1W
T
2,k.

(38)

According to Schur complement lemma (Kailath et al.,
2000), Ξk in (38) is the Schur complement of the positive
semidefinite matrix (Tf

L,2

)T

P⊥Ψ,1T
f
L,2

(
T̄f
L,2

)T

P⊥Ψ,1W
T
2,k

W2,kP
⊥
Ψ,1T̄

f
L,2 W2,kP

⊥
Ψ,1W

T
2,k

 ≥ 0

with regards to its (2, 2) block matrix, thus we can con-
clude Ξk ≥ 0 which finally proves Theorem 5 according to
(37). 2

4.4 Summary of the proposed MHLS algorithm

Algorithm 1. MHLS input estimator for systems (1) with
no unstable transmission zeros

Step 1. Calculate the transmission zeros of (A,E,C,G).
If (A,E,C,G) has no transmission zeros, choose the

horizon length L to be equal to the observability index ν.
If the transmission zeros are all stable, choose sufficient-
ly long horizon to enforce sufficiently small estimation
bias.

Step 2. Compute the covariance matrix Σn,L of nk,L =
Tw
L ·wk,L+vk,L, and generate the residual signal r̄k,L =

ȳk,L − T̄u
L · uk,L according to (3) and (12).

Step 3. Compute the input estimate f̂(k) according to
(24) and (25), where the generalized inverses are re-
placed with Moore-Penrose inverse.

Remark 2. According to Theorem 3 and 5, the properties
of unbiasedness and minimum variance are not affected
by the non-unique generalized inverses used to compute
(24) and (25). In Step 3 of the above algorithm, we select
Moore-Penrose inverse as a special generalized inverse.

Remark 3. Note that Section 3 and 4 focus on sensor faults
as stated in Assumption 1. For actuator faults, there would
be G = 0, and we assume rank

(
CAτ−1E

)
= nf where τ

is the relative degree of the dynamics from actuator faults
to system outputs (Dong and Verhaegen, 2012). In this
case, rk−L+τ,τ in (3) has no information about fk,L, hence
only rk,L−τ is used in input estimation. Based on this, all
discussions in Section 3 and 4 can be directly extended
by replacing the two matrices C and G with CAτ and
CAτ−1E, respectively.

5. SIMULATION STUDIES

Consider the linearized continuous-time VTOL (vertical
takeoff and landing) aircraft model used in Dong and
Verhaegen (2012). The model has four states, namely
horizontal velocity, vertical velocity, pitch rate, and pitch
angle. The two inputs are collective pitch control and
longitudinal cyclic pitch control, both of which are driven
by the second order linear actuator

21.3501s+ 162.3867

s2 + 17.9994s+ 162.3867
.

With a sampling rate of 0.5 seconds, the discrete-time
model (1) is obtained, with D = 0 and F = I4. The
process and measurement noise, w(k), v(k), are zero mean
white, respectively with a covariance of Qw = 0.04 · I4 and
Qv = 0.01 · I2.

Two fault scenarios are considered:

(i) Sensor fault: E = 0, G = [ 1 0 0 0
0 1 0 0 ]

T
, and the fault

signals are

f(k) =

{
[0, 0]

T
, k ≤ 500

[0.01 (k − 500) , 1]
T
, 500 < k ≤ 1000.

(39)
(ii) Actuator fault: E = B, G = 0, and the fault signals

are the same as (39).

In the above fault scenarios, our proposed MHLS input
estimator will be compared with the methods of Dong
and Verhaegen (2012) and Gillijns and Moor (2007a,b).
Note that although the motivation of Dong and Verhaegen
(2012) is data-driven design of fault estimation filter, here
we use the equations (24)-(25) in Dong and Verhaegen
(2012) as a model-based fault estimation filter.

In the sensor fault scenario, the dynamics from unknown
fault signals to the system outputs, i.e., (A,E,C,G),
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Fig. 1. Results of MHLS input estimator (L = 15) and the
estimators in Dong and Verhaegen (2012) and Gillijns
and Moor (2007b)

has no transmission zeros. This means the sensor fault
signals are observable according to Theorem 1. Note that
the fault estimation filter in Dong and Verhaegen (2012)
would be unstable if it is directly applied to the open-
loop plant in this case. To solve this problem, Dong
and Verhaegen (2012) suggests to use a controller Cu
such that the plant is stabilized and the sensor faults
are in the kernel of Cu. Then the closed-loop system
model is utilized to design the fault estimation filter. The
other two input estimators are based on the open-loop
plant model. The simulation results are shown in Fig.
1 with emphasis on a time window of 400 samples for
better illustration. There exist oscillations in the estimates
of the fault estimation filter in Dong and Verhaegen
(2012). The method of Gillijns and Moor (2007b) suffers
from instability in certain time intervals. The estimation
performance of our MHLS estimator with different horizon
L is shown in Fig. 2, and compared against that of the fault
estimation filter in Dong and Verhaegen (2012). It can be
seen that the MHLS estimator gives smaller bias, and its
error variance decreases with increased horizon length.

In the actuator fault scenario, the relative degree of the
dynamics from actuator faults to outputs is τ = 2. Accord-
ing to Remark 3 and Theorem 2, since

(
A,E,CA2, CAE

)
has only two stable transmission zeros, the actuator fault
signal is detectable. The method of Gillijns and Moor
(2007a,b) is not used in this scenario because it is limited
to systems with relative degree τ = 0 or 1. The simulation
results in Fig. 1 and 2 show that the MHLS estimator gives
smaller bias and error variance than the fault estimation
filter in Dong and Verhaegen (2012).

6. CONCLUSIONS

This paper proposes a novel MHLS input estimation
method for linear discrete-time stochastic systems. Based
on necessary and sufficient conditions for input observabil-
ity and detectability, it is shown that our MHLS estimator
gives an unbiased estimate for observable unknown input,
and an asymptotically unbiased estimate for detectable
unknown input. Furthermore, the MHLS estimator has
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Fig. 2. Bias and estimation error variance of MHLS input
estimator and the estimator in Dong and Verhaegen
(2012)

minimal variance over the class of all linear asymptotical-
ly unbiased estimators. Its effectiveness is illustrated by
aircraft sensor and actuator fault examples.
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