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Abstract: In this paper a linear dynamical system controlled under the conditions of
disturbances and with control delays is considered. The Euclidean norm of a set of the system
motion deviations at given instants of time from the origin is minimized. A typical case of the
location of the indicated instants of time is studied. Within the game-theoretical approach the
problem of calculating the value of the optimal guaranteed result and constructing a positional
(closed-loop) control law that ensures this result is posed. For this problem, an effective solution
procedure based on the recurrent construction of upper convex hulls of auxiliary program
functions is elaborated. Results of numerical simulations are given.
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1. INTRODUCTION

In this paper a linear dynamical system controlled under
the conditions of disturbances is considered. The goal
of the control is to minimize the Euclidean norm of a
set of the system motion deviations at given instants
of time from the origin. Within the game-theoretical
approach of Krasovskii and Subbotin (1988) (see also
Osipov and Pimenov (1981); Krasovskii (1985); Krasovskii
and Krasovskii (1995)) the problem of calculating the
value of the optimal guaranteed result and constructing a
positional (closed-loop) control law that ensures this result
is posed.

In Gomoyunov and Lukoyanov (2012) this problem was
reduced to the calculation of the game value and the
construction of the minimax strategy in an auxiliary zero-
sum differential game without control delays and with
the terminal cost function. For calculating the game value
the upper convex hulls method (see, e.g., Krasovskii and
Krasovskii (1995)) was applied. For constructing the min-
imax strategy the method of extremal shift to the accom-
panying point (see, e.g., Krasovskii (1985)) was used. As
a result, for the initial problem, a solution procedure was
obtained. It is based on the recurrent construction of upper
convex hulls of auxiliary functions, which are defined on
the domain, whose dimension depends on the number N of
instants of time at which the motion quality is evaluated.
So this dimension can be large even if the dimension of
the state vector of the dynamical system is small. This
dependency narrows the application field of the procedure.
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Theory” (12-P-1-1002) and by the Russian Foundation for Basic
Research (12-01-00290).

In the present paper, a new solution procedure is proposed
for some particular but typical case of the location of
the instants at which the motion quality is evaluated. In
this new procedure the dimension of the domains of the
auxiliary functions being convexified becomes significantly
less and independent of N.

The paper develops the constructions from Lukoyanov
(1998) for the case of systems with control delays (see,
e.g., Banks et al (1971); Osipov and Pimenov (1981)).

2. STATEMENT OF THE PROBLEM

Consider a dynamical system described by the following
differential equation

dx(t)

dt
= A(t)x(t) +B(t)u(t) +Bτ (t)u(t− τ) + C(t)v(t),

t0 ≤ t ≤ ϑ, x ∈ Rn, u ∈ P ⊂ Rr, v ∈ Q ⊂ Rs. (1)

and the initial condition

x(t0) = x0 ∈ Rn,

ut0(·) =
{
ut0(ξ) = u(t0 + ξ), ξ ∈ [−τ, 0)

}
= p0(·) ∈ P.

Here t is the time variable, x is the state vector, u
is the control vector, and v is the vector of unknown
disturbances; t0 and ϑ are respectively the initial and the
terminal instants of time (t0 < ϑ); P and Q are known
compact sets; matrix functions A(t), B(t), Bτ (t) and C(t)
are continuous; τ = const > 0 is the delay value; P is the
set of all Borel measurable functions from [−τ, 0) to P.
Let λ > 0 be such that

∥A(t)x+B(t)u1 +Bτ (t)u2 + C(t)v∥ ≤ (1 + ∥x∥)λ
for all t ∈ [t0, ϑ], x ∈ Rn, u1, u2 ∈ P and v ∈ Q. Here and
below ∥ · ∥ is the Euclidian norm.
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A triple (t, x, p(·)) ∈ [t0, ϑ]×Rn×P is called a position of
system (1). The set K of all possible positions is defined
as follows:

K =
{
(t, x, p(·)) ∈ [t0, ϑ]× Rn × P :

∥x∥ ≤ (1 + ∥x0∥)e(t−t0)λ − 1
}
.

Let (t∗, x∗, p∗(·)) ∈ K, t∗ < ϑ, and t∗ ∈ (t∗, ϑ] be
given. We assume that admissible control and disturbance
realizations are Borel measurable functions

u[t∗[·]t∗) =
{
u(t) ∈ P, t∗ ≤ t < t∗

}
,

v[t∗[·]t∗) =
{
v(t) ∈ Q, t∗ ≤ t < t∗

}
.

In addition, we put

u(t) = p∗(t− t∗), t∗ − τ ≤ t < t∗.

From the position (t∗, x∗, p∗(·)), such realizations u[t∗[·]t∗)
and v[t∗[·]t∗) uniquely generate the system motion

x[t∗[·]t∗] =
{
x(t) ∈ Rn, t∗ ≤ t ≤ t∗

}
,

that is an absolutely continuous function, which satisfies
the condition x(t∗) = x∗, and, together with the corre-
sponding u(t) and v(t), satisfies equation (1) for almost
all t ∈ [t∗, t

∗]. Note that, for any t ∈ [t∗, t
∗], the inclusion

(t, x(t), ut(·)) ∈ K is valid, where

ut(·) =
{
ut(ξ) = u(t+ ξ), ξ ∈ [−τ, 0)

}
. (2)

Let x[t0[·]ϑ] be the system motion, that has been generated
from the initial position (t0, x0, p0(·)) ∈ K by some
admissible realizations u[t0[·]ϑ) and v[t0[·]ϑ). The quality
of this motion is evaluated by the cost function:

γ =

( N∑
i=1

∥x(ϑi)∥2
)1/2

, (3)

where ϑi = t0 + iτ, i = 1, N, ϑN = ϑ.

The goal of the control is to minimize function (3). Note
that, since disturbance actions are unknown, the worst-
case may occur when disturbances maximize (3).

A control strategy U(·) is an arbitrary function

U(·) =
{
U(t, x, p(·), ε) ∈ P, (t, x, p(·)) ∈ K, ε > 0

}
,

where ε > 0 is the accuracy parameter (see, e.g., Krasov-
skii (1985); Krasovskii and Krasovskii (1995)).

The strategy U(·) acts onto system (1) in the discrete time
scheme on the basis of some partition

∆k =
{
τj : τ1 = t0, τj < τj+1, j = 1, k, τk+1 = ϑ}. (4)

A triple {U(·), ε,∆k} defines a control law, that forms
a piecewise constant control realization according to the
following step-by-step rule:

u(t) = U(τj , x(τj), uτj (·), ε), τj ≤ t < τj+1, j = 1, k,

where uτj (·) is defined according to (2), and

u(τj + ξ) = p0(τj + ξ − t0), t0 − τ ≤ τj + ξ < t0.

By Ω = Ω(U(·), ε,∆k) we denote the set of all triples(
x[t0[·]ϑ], u[t0[·]ϑ), v[t0[·]ϑ)

)
, where

• v[t0[·]ϑ) is an admissible disturbance realization,

• u[t0[·]ϑ) is the control realization formed by the
control law {U(·), ε,∆k},

• x[t0[·]ϑ] is the system motion generated by these
realizations u[t0[·]ϑ) and v[t0[·]ϑ) from the initial
position (t0, x0, p0(·)).

The optimal guaranteed result Γ0 is defined as follows:

Γ0 = inf
U(·)

lim sup
ε↓0

lim
δ↓0

sup
∆k

Γ,

where the last supremum is taken over all partitions ∆k

(4) with the diameter δk = max
j=1,k

(τj+1 − τj) ≤ δ, and

Γ = sup
{
γ :
(
x[t0[·]ϑ], u[t0[·]ϑ), v[t0[·]ϑ)

)
∈ Ω

}
.

The problem under consideration is to find the optimal
guaranteed result and to construct the corresponding
control law that ensures this result.

3. SOLUTION PROCEDURE

Put

h(t) = min
{
i = 1, N : ϑi ≥ t

}
, t ∈ [t0, ϑ], (5)

where instants ϑi are taken from cost function (3). By
h(t−0) and h(t+0) we denote the left-hand and the right-
hand limits of the function h(t) at the point t ∈ [t0, ϑ], and
in addition we put h(t0 − 0) = h(t0), h(ϑ+ 0) = h(ϑ).

Let X(t, ξ) be a fundamental solution matrix for the
equation dx(t)/dt = A(t)x(t), such that X(ξ, ξ) = E,
where E is the identity matrix. Define a (2n × r)-matrix
B(t) and a (2n× s)-matrix C(t) by the following rule:

B(t) =

(
X(ϑh(t+0), t)B(t)

X(ϑ, t)
(
B(t) +X(t, t+ τ)Bτ (t+ τ)χ(t)

)) ,
C(t) =

(
X(ϑh(t+0), t)C(t)

X(ϑ, t)C(t)

)
, (6)

where χ(t) = 1 if t < ϑ− τ, and χ(t) = 0 if t ≥ ϑ− τ.

Let ∆k be the partition defined in (4). Here and every-
where below we assume that the partition ∆k contains all
the instants ϑi from the cost function:

ϑi ∈ ∆k, i = 1, N. (7)

For every j = 1, k, denote

∆ψ(τj , g) =

τj+1∫
τj

max
v∈Q

min
u∈P

⟨g,B(t)u+C(t)v⟩ dt, g ∈ R2n,

where ⟨·, ·⟩ stands for the inner product.

Everywhere below the notation g = (l,m) means that
the first n coordinates of the vector g ∈ R2n coincide
with the coordinates of the vector l ∈ Rn, and the next
n coordinates of the vector g ∈ R2n coincide with the
coordinates of the vector m ∈ Rn.

Define sets G(τj ± 0) ⊂ R2n and functions φ(τj ± 0, g),

g ∈ G(τj ± 0), j = 1, k + 1, by the following backward
recurrence relations.

For j = k + 1, put

G(τk+1 + 0) =
{
g = 0

}
,

G(τk+1 − 0) =
{
g = (l,m) ∈ R2n : ∥l∥ ≤ 1, m = 0

}
,

φ(τk+1 ± 0, g) = 0, g ∈ G(τk+1 ± 0).
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For j = 1, k, put

G(τj + 0) = G(τj+1 − 0),

ψ(τj , g) = ∆ψ(τj , g) + φ(τj+1 − 0, g), g ∈ G(τj + 0),

φ(τj + 0, ·) =
{
ψ(τj , ·)

}∗
G(τj+0)

,

where
{
ψ(·)

}∗
G

denotes the upper convex hull of the

function ψ(·) on the set G, i.e. the minimal concave
function that majorizes ψ(·) on G. Further, if τj ̸= ϑh,
where h = h(τj), define

G(τj − 0) = G(τj + 0),

φ(τj − 0, g) = φ(τj + 0, g), g ∈ G(τj − 0),

If τj = ϑh, put

G(τj − 0) =
{
g ∈ R2n : Mh(g) ̸= ∅

}
,

φ(τj − 0, g) = max
(ν,g∗)∈Mh(g)

νφ(τj + 0, g∗), g ∈ G(τj − 0),

where

Mh(g = (l,m)) =
{(
ν, g∗ = (l∗,m∗)

)
∈ [0, 1]×G(τj + 0) :

m = ν
(
m∗ +XT (ϑh+1, ϑ)l∗

)
, ν2 ≤ 1− ∥l∥2

}
.

Here and below the superscript T denotes transposition.

Note that, for any j = 1, k + 1, the sets G(τj ± 0) ⊂ R2n

are convex and compact, the functions φ(τj ± 0, g),
g ∈ G(τj ± 0), are concave, bounded and upper semi-
continuous, and 0 ∈ G(τj ± 0), φ(τj ± 0, 0) ≥ 0.

Put

e(τj ± 0, z) = max
g∈G(τj±0)

[
⟨g, z⟩+ φ(τj ± 0, g)

]
,

z ∈ R2n, j = 1, k + 1. (8)

Consider the following vectors w1 = w1(t±0, x, p(·)) ∈ Rn

and w2 = w2(t± 0, x, p(·)) ∈ Rn :

w1 = X(ϑh(t±0), t)x+

ϑh(t±0)∫
t

X(ϑh(t±0), ξ)Bτ (ξ)p(ξ−t−τ)dξ,

w2 = X(ϑ, t)x+

t+τ∫
t

X(ϑ, ξ)Bτ (ξ)χ(ξ − τ)p(ξ − t− τ)dξ.

For (t, x, p(·)) ∈ K, denote

w(t± 0, x, p(·)) =

(
w1(t± 0, x, p(·))
w2(t± 0, x, p(·))

)
∈ R2n. (9)

Let j = 1, k, (τj , x, p(·)) ∈ K and ε > 0. Put

zuj (x, p(·), ε) = w(τj + 0, x, p(·))−
mu

j

√
ε+ (τj − t0)ε√
1 + ∥mu

j ∥2
,

where

mu
j ∈ argmax

m∈G(τj+0)

[
⟨m,w(τj + 0, x, p(·))⟩

+ φ(τj + 0,m)−
√(

ε+ (τj − t0)ε
)(
1 + ∥m∥2

)]
.

Consider the following control strategy U∆k
(·). For t =

τj ∈ ∆k, this strategy is defined by the extremal shift to
the accompanying point zuj (·):

U∆k
(τj , x, p(·), ε) ∈ argmin

u∈P
⟨suj ,B(τj)u⟩,

(τj , x, p(·)) ∈ K, j = 1, k, (10)

where

suj = suj (x, p(·), ε) = w(τj + 0, x, p(·))− zuj (x, p(·), ε).
For t ̸= τj ∈ ∆k, the strategy U∆k

(·) is defined arbitrarily.

Theorem 1. For any number ξ > 0, there exists a number
δ > 0 such that, for any partition ∆k (4), (7) with the
diameter δk ≤ δ, the following inequality holds

|Γ0 − e(τ1 − 0, w(τ1 − 0, x0, p0(·)))| ≤ ξ.

Theorem 2. For any number ζ > 0, there exist a number
ε∗ > 0 and a function δ(ε) > 0, ε ∈ (0, ε∗], such that, for
any value ε ∈ (0, ε∗], and any partition ∆k (4), (7) with
the diameter δk ≤ δ(ε), the control law {U∆k

(·), ε,∆k}
ensures the inequality

γ ≤ Γ0 + ζ

for any admissible disturbance realization v[t0[·]ϑ).

The proofs of Theorems 1 and 2 are given in Section 7.
In the next three sections we consider some auxiliary
constructions.

4. AUXILIARY z-MODEL

Consider an auxiliary z-model described by the following
differential equation

dz(t)

dt
= B(t)u∗(t) +C(t)v∗(t),

t0 ≤ t ≤ ϑ, z ∈ R2n, u∗ ∈ P, v∗ ∈ Q, (11)

where z is the state vector, u∗ is the control vector, v∗
is the disturbance vector, matrix functions B(t) and C(t)
are defined in (6).

Let numbers λw > 0 and λz > 0 be such that

∥w(t± 0, x, p(·))∥ ≤ λw, (t, x, p(·)) ∈ K,

∥B(t)u∗ +C(t)v∗∥ ≤ λz, (t, u∗, v∗) ∈ [t0, ϑ]× P ×Q.

A pair (t, z) is called a position of z-model. The set Kz of
all possible positions is defined as follows

Kz =
{
(t, z) ∈ [t0, ϑ]× R2n : ∥z∥ ≤ λw + 1 + (t− t0)λz

}
.

Let (t∗, z∗) ∈ Kz, t∗ < ϑ, and t∗ ∈ (t∗, ϑ] be given.
Admissible control and disturbance realizations are Borel
measurable functions

u∗[t∗[·]t∗) =
{
u∗(t) ∈ P, t∗ ≤ t < t∗

}
,

v∗[t∗[·]t∗) =
{
v∗(t) ∈ Q, t∗ ≤ t < t∗

}
.

From the position (t∗, z∗) such realizations uniquely gen-
erate the motion

z[t∗[·]t∗] =
{
z(t) ∈ R2n, t∗ ≤ t ≤ t∗

}
,

that is an absolutely continuous function, which satisfies
the condition z(t∗) = z∗ and, together with u∗(t) and v∗(t),
satisfies equation (11) for almost all t ∈ [t∗, t

∗]. Note that,
for any t ∈ [t∗, t

∗], the inclusion (t, z(t)) ∈ Kz is valid.
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Lemma 1. For any number ε > 0, there exists a number
δ > 0, such that the following holds. Let

• ∆k be partition (4), (7) with the diameter δk ≤ δ;

• j = 1, k, (τj , x∗, p∗(·)) ∈ K, (τj , z∗) ∈ Kz and
s∗ = w(τj + 0, x∗, p∗(·))− z∗;

• x[τj [·]τj+1] be a motion of system (1) generated
from the position (τj , x∗, p∗(·)) by some admissible
disturbance realization v[τj [·]τj+1) and a constant
control realization

u[τj [·]τj+1) =
{
u(t) = ue, τj ≤ t < τj+1

}
,

where
ue ∈ argmin

u∈P
⟨s∗,B(τj)u⟩; (12)

• z[τj [·]τj+1] be a motion of z-model (11) generated
from the position (τj , z∗) by some admissible control
realization u∗[τj [·]τj+1) and a constant disturbance
realization

v∗[τj [·]τj+1) =
{
v∗(t) = ve∗, τj ≤ t < τj+1

}
,

where
ve∗ ∈ argmax

v∗∈Q
⟨s∗,C(τj)v∗⟩. (13)

Then the following inequality is valid

∥w(τj+1 − 0, x(τj+1), uτj+1(·))− z(τj+1)∥2

≤ ∥s∗∥2 + (τj+1 − τj)ε. (14)

Here uτj+1(·) is defined according to (2) and

u(τj+1 + ξ) = p∗(τj+1 + ξ − τj), τj − τ ≤ τj+1 + ξ < τj .

Proof. We follow the scheme of the proof of Lemma 25.1
in Krasovskii (1985) (see also Section 2.3 in Krasovskii and
Subbotin (1988)). Denote

s(t) = w(t+ 0, x(t), ut(·))− z(t),

∆u(t) = ue − u∗(t), ∆v(t) = v(t)− ve∗.

From (9), for almost all t ∈ (τj , τj+1), we have

d∥s(t)∥2/dt = 2⟨s(t),B(t)∆u(t) +C(t)∆v(t)⟩.
Due to continuity properties of s(t) and B(t), C(t) there
exists such a function η(δ), η(δ) → 0 when δ → 0, that the
following estimation is valid

⟨s(t),B(t)∆u(t) +C(t)∆v(t)⟩
≤ ⟨s∗,B(τj)∆u(t) +C(τj)∆v(t)⟩+ η(δ),

whatever positions (t, x(t), ut(·)) ∈ K and (t, z(t)) ∈ Kz,
τj ≤ t < τj+1 ≤ τj + δ. Using (12) and (13) we obtain

⟨s∗,B(τj)∆u(t) +C(τj)∆v(t)⟩ ≤ 0.

Hence, for almost all t ∈ (τj , τj+1),

d∥s(t)∥2/dt ≤ 2η(δ).

Integrating this inequality, by (9) we get

∥w(τj+1 − 0, x(τj+1), uτj+1(·))− z(τj+1)∥2

≤ ∥s∗∥2 + 2(τj+1 − τj)η(δ).

Thus, inequality (14) is fulfilled if we choose δ > 0 such
that η(δ) ≤ ε/2.

5. PROPERTIES OF THE VALUES e(τj ± 0, ·).

Let ∆k be partition (4), (7) and values e(τj ± 0, ·), j =

1, k + 1, be defined by (8) on the basis of this partition.

The following Lemma establishes the u-stability property
(see, e.g., Krasovskii and Krasovskii (1995); Lukoyanov
(1998)) of these values with respect to z-model (11).

Lemma 2. Let j = 1, k, (τj , z∗) ∈ Kz and v∗ ∈ Q. Then,
for the disturbance realization

v∗[τj [·]τj+1) =
{
v∗(t) = v∗, τj ≤ t < τj+1

}
,

there exists an admissible control realization u∗[τj [·]τj+1)
such that, for the motion z[τj [·]τj+1] of z-model generated
by these realizations from the position (τj , z∗), the follow-
ing inequality holds

e(τj + 0, z∗) ≥ e(τj+1 − 0, z(τj+1)).

The proof of this Lemma is similar to the proof of the
u-stability property in Lukoyanov (1998).

To prove Theorems 1 and 2 we also need the next result.

Lemma 3. Let j = 1, k and h = h(τj) be defined by (5). If
τj ̸= ϑh, then, for any z ∈ R2n,

e(τj − 0, z) = e(τj + 0, z), (15)

If τj ̸= ϑh, then, for any x ∈ Rn and p(·) ∈ P,
e2(τj − 0, w−

j ) = ∥x∥2 + e2(τj + 0, w+
j ). (16)

Here the vectors w±
j = w(τj±0, x, p(·)) are defined by (9).

This Lemma is proved similarly to Lemma 1 in Lukoyanov
(1998).

6. PROPERTIES OF THE STRATEGY U∆k
(·)

Consider the strategy U∆k
(·) defined by (10).

Lemma 4. For any number ζ > 0, there exist a number
ε∗ > 0 and a function δ(ε) > 0, ε ∈ (0, ε∗], such that, for
any value ε ∈ (0, ε∗], and any partition ∆k (4), (7) with
the diameter δk ≤ δ(ε), the control law {U∆k

(·), ε,∆k}
ensures the inequality

γ ≤ e(τ1 − 0, w(τ1 − 0, x0, p0(·))) + ζ (17)

for any admissible disturbance realization v[t0[·]ϑ).

Proof. Let a number L > 0 be such that, for any j =
1, k + 1 and any z1, z2 ∈ R2n,

|e(τj − 0, z1)− e(τj − 0, z2)| ≤ L∥z1 − z2∥, (18)

and L do not depend on the partition ∆k.

Choose ε∗ > 0 such that√
ε∗ + ε∗(ϑ− t0) ≤ min{1, ζ/(N(L+ 1))}, (19)

where N is the number of instants ϑi from cost function
(3). For every ε ∈ (0, ε∗], take δ = δ(ε) > 0 from Lemma 1.
Let us show that such ε∗ and δ(ε) satisfy this Lemma.

Let x[t0[·]ϑ] be a motion of system (1) generated from
the initial position (t0, x0, p0(·)) by the control law
{U∆k

(·), ε,∆k} in a pair with some admissible disturbance
realization v[t0[·]ϑ). Let u[t0[·]ϑ) be the corresponding con-
trol realization, and u(t) = p0(t− t0) when t0−τ ≤ t < t0.
Denote

w±
j =w(τj ± 0, x(τj), uτj (·)), j = 1, k + 1,

zuj = zuj (x(τj), uτj (·), ε),

αj =−
√
ε+ (τj − t0)ε√

1 + ∥mu
j (x(τj), uτj (·), ε)∥2

, j = 1, k.
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Note that, for any j = 1, k, we have (τj , z
u
j ) ∈ Kz, and

(see, e.g., Kornev (2012))

(zuj , αj) ∈ argmin
[
e(τj + 0, z) + α

]
, (20)

where minimum is taken over all pairs (z, α) such that

∥w+
j − z∥2 + α2 ≤ ε+ (τj − t0)ε. (21)

Fix j = 1, k, denote s∗ = w+
j − zuj , and choose ve∗ ∈ Q by

(13). For the constant disturbance realization

v∗[τj [·]τj+1) =
{
v∗(t) = ve∗, τj ≤ t < τj+1

}
,

take u∗[τj [·]τj+1) according to Lemma 2 and consider

the corresponding motion z(j)[τj [·]τj+1] of z-model (11)
generated from the position (τj , z

u
j ). Then, by Lemma 2,

e(τj + 0, zuj ) ≥ e(τj+1 − 0, z(j)(τj+1)) (22)

and, by Lemma 1, if we take (21), (10), and (12) into
account,

∥w−
j+1 − z(j)(τj+1)∥2 + α2

j ≤ ε+ (τj+1 − t0)ε. (23)

Let us prove, for each j = 1, k, the inequality

e(τj + 0, zuj ) + αj ≥

√√√√ N∑
i=h(τj+0)

∥x(ϑi)∥2 − βj , (24)

where

βj = (N − h(τj + 0) + 1)(L+ 1)
√
ε+ (ϑ− t0)ε.

Consider the induction on j from k to 1.

Let j = k. From (8) and (9), we have

e(τk+1 − 0, w−
k+1) = ∥x(ϑN )∥.

Then, by (22), (18) and (23), we get (24) for j = k.

Now, we assume that inequality (24) is valid for j = q,
1 < q ≤ k, and prove it for j = q − 1.

If τq ̸= ϑh, h = h(τq), according to (9) we have w+
q = w−

q .
So, by (23), we obtain

∥w+
q − z(q−1)(τq)∥2 + α2

q−1 ≤ ε+ (τq − t0)ε.

Thus, from (15) and (20), we get

e(τq − 0, z(q−1)(τq)) + αq−1 ≥ e(τq + 0, zuq ) + αq.

So, in this case, inequality (24) is valid for j = q−1 due to
the induction hypothesis, equality h(τq−1 +0) = h(τq +0)
and inequality (22).

If τq = ϑh, according to (20)–(22), by the induction
hypothesis, we have

e(τq+0, w+
q ) ≥ e(τq+0, zuq )+αq ≥

√√√√ N∑
i=h(τq+0)

∥x(ϑi)∥2−βq.

Then, using equalities (16) and h(τq−1+0) = h(τq+0)−1,
we obtain

e(τq − 0, w−
q ) ≥

√√√√ N∑
i=h(τq−1+0)

∥x(ϑi)∥2 − βq.

Therefore, in this case, the validity of (24) for j = q − 1
follows from inequalities (22), (18) and (23).

Using (20) and (24) for j = 1, by (19), we deduce

e(τ1+0, w+
1 ) ≥ e(τ1+0, zu1 )+α1 ≥

√√√√ N∑
i=h(τ1+0)

∥x(ϑi)∥2−ζ.

Hence, accoeding to (15), we conclude, that, for the
realized value γ of cost function (3), inequality (17) holds.

Besides the control law {U∆k
(·), ε,∆k}, we consider also

a disturbance law {V∆k
(·), ε,∆k} that forms a piecewise

constant disturbance realization as follows

v(t) = V∆k
(τj , x(τj), uτj (·), ε) ∈ argmax

v∈Q
⟨svj ,C(τj)v⟩,

τj ≤ t < τj+1, j = 1, k,

where

svj =
mv

j

√
ε+ (τj − t0)ε√
1 + ∥mv

j∥2
,

mv
j ∈ argmax

m∈G(τj+0)

[
⟨m,w(τj + 0, x(τj), uτj (·))⟩

+ φ(τj + 0,m) +
√(

ε+ (τj − t0)ε
)(
1 + ∥m∥2

)]
.

Here, as usual, uτj (·) is defined by (2) and

u(τj + ξ) = p0(τj + ξ − t0), t0 − τ ≤ τj + ξ < t0.

Lemma 5. For any number ζ > 0, there exist a number
ε∗ > 0 and a function δ(ε) > 0, ε ∈ (0, ε∗], such that, for
any value ε ∈ (0, ε∗], and any partition ∆k (4), (7) with the
diameter δk ≤ δ(ε), the disturbance law {V∆k

(·), ε,∆k}
ensures the inequality

γ ≥ e(τ1 − 0, w(τ1 − 0, x0, p0(·)))− ζ (25)

for any admissible control realization v[t0[·]ϑ).

This Lemma is proved similarly to Lemma 5 by using the
corresponding modification of Lemma 1 and the appropri-
ate v-stability property (see Lukoyanov (1998)) of values
(8) with respect to z-model (11).

7. PROOFS OF THEOREMS 1 AND 2

Theorem 2 follows directly from Lemma 4 and Theorem 1.
Let us prove Theorem 1.

As was shown in Gomoyunov and Lukoyanov (2012),
for the control problem (1), (3), there exist the optimal
control strategy U0(·) and the counter-optimal disturbance
strategy V 0(·). In particular, it means that, for the number
ζ = ξ/2 > 0, there exist a number ε∗0 > 0 and a function
δ0(ε) > 0, ε ∈ (0, ε∗0], such that, for any value ε ∈ (0, ε∗0],
and any partition ∆k (4) with the diameter δk ≤ δ0(ε), on
the one hand, the control law {U0(·), ε,∆k} ensures the
inequality

γ ≤ Γ0 + ζ (26)
for any admissible disturbance realization v[t0[·]ϑ), and on
the other hand, the disturbance law {V 0(·), ε,∆k}, which
forms the piecewise constant disturbance realization

v(t) = V 0(τj , x(τj), uτj (·), ε), τj ≤ t < τj+1, j = 1, k,

ensures the inequality

γ ≥ Γ0 − ζ (27)

for any admissible control realization u[t0[·]ϑ).
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In order to ensure inequalities (17) and (25) for ζ = ξ/2,
take ε∗1 > 0, ε∗2 > 0 and δ1(ε) > 0, δ2(ε) > 0 by using
Lemmas 4 and 5. Put

ε = min{ε∗0, ε∗1, ε∗2} > 0, δ = min{δ0(ε), δ1(ε), δ2(ε)} > 0.

Let us show that this δ satisfies Theorem 1.

Consider the motion of system (1) generated from the
initial position (t0, x0, p0(·)) by the laws {U∆k

(·), ε,∆k}
and {V 0(·), ε,∆k}. Then, due to (17) and (27), we obtain

Γ0 − ζ ≤ γ ≤ e(τ1 − 0, w(τ1 − 0, x0, p0(·))) + ζ,

and, consequently,

Γ0 − e(τ1 − 0, w(τ1 − 0, x0, p0(·))) ≤ 2ζ = ξ. (28)

Similarly, considering the motion of system (1) generated
from the initial position (t0, x0, p0(·)) by the control law
{U0(·), ε,∆k} and the disturbance law {V∆k

(·), ε,∆k}, due
to (25) and (26), we have

Γ0 − e(τ1 − 0, w(τ1 − 0, x0, p0(·))) ≥ −2ζ = −ξ. (29)

Inequalities (28) and (29) complete the proof.

8. EXAMPLE

Consider a dynamical system described by the following
differential equation

dx(t)

dt
= sin (π(t+ 1))x(t)

+ (1− 0.1t)u(t) + 0.1t u(t− 1) + 0.8 v(t),

0 ≤ t ≤ 10, x ∈ R, u ∈ [−1, 1], v ∈ [−1, 1], (30)
and the initial condition

x0 = 1, p0(ξ) = 0, ξ ∈ [−1, 0). (31)

The motion quality is evaluated by the cost function

γ =
( 10∑

i=1

x2(i)
)1/2

. (32)

Note that, in control problem (30)–(32), for a solution
procedure from Gomoyunov and Lukoyanov (2012), the
dimension of the domains of the auxiliary functions being
convexified is equal to 10, whereas, for the procedure
described in Section 3, this dimension is equal to 2.

Let ∆k be a uniform partition of the control interval [0, 10]
with the diameter δk = 0.005 and ε = 0.05. By using the
solution procedure (Section 3) we numerically calculate the
values e(τj ± 0, ·), j = 1, k + 1, and construct the control
law {U∆k

(·), ε,∆k}. For related techniques of the software
implementation see Kornev (2012).

The obtained a priori calculated value of the optimal
guaranteed result is

Γ0 ≈ e(τ1 − 0, w(τ1 − 0, x0, p0(·))) ≈ 1.808.

The results of the numerical simulations are shown in
Fig. 1. We consider the following motions x(i)[0[·]10], i =
1, 4, of system (30) generated from initial position (31).

The motion x(1)[0[·]10] (green line) is generated by the
laws {U∆k

(·), ε,∆k} and {V∆k
(·), ε,∆k}.

The motion x(2)[0[·]10] (orange line) is generated by the
control law {U∆k

(·), ε,∆k} and disturbance actions:

v(t) = sign(x(τj)), τj ≤ t < τj+1, j = 1, k.

The motion x(3)[0[·]10] (red line) is generated by the
control law {U∆k

(·), ε,∆k} and zero disturbances.

The motion x(4)[0[·]10] (blue line) is generated by the
disturbance law {V∆k

(·), ε,∆k} and control actions:

u(t) = −sign(x(τj)), τj ≤ t < τj+1, j = 1, k.

The corresponding values of cost function (32) are

γ(1) = 1.791 ≈ Γ0, γ(2) = 1.791 ≈ Γ0,

γ(3) = 0.03 < Γ0, γ(4) = 2.536 > Γ0.

-1

0

1

0 2 4 6 t 10

Fig. 1. The results of the numerical simulations
in control problem (30)–(32).
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