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Abstract: This paper describes mixed integer nonlinear programming (MINLP) heuristics for
solving dynamic scheduling problems in complex petroleum production systems with a network
topology. We modify the Feasibility Pump heuristic for convex MINLPs [Bonami and Gonçalves,
2010] by formulating a multiobjective problem, in which we aim at balancing the two goals
of quickly obtaining a feasible solution and preserving solution quality with respect to the
objective value. We further present a simple linearization-based heuristic, only aimed at quickly
generating feasible solutions. The MINLP heuristics are applied to a dynamic multi-pipeline
shale well and compressor scheduling problem, targeted on application in decision-support tools
for improving operations in large shale-gas systems. Developing efficient and robust heuristics are
important for the applicability of these tools, in the sense that low computation times are often
more important than global optima. A computational study shows that the proposed objective-
oriented Feasibility Pump is competitive both in terms of solution quality and computation time
compared to other heuristics and the branch-and-bound method.
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1. INTRODUCTION

Heuristic methods are widely used in the upstream
petroleum industry to improve the operational perfor-
mance and to increase the economic value of the assets.
The use of heuristics in this context can be divided into two
groups: the first is practical empirical-based heuristics, in-
cluding intuition and rule-based decisions, case studies and
trial-error based analysis [Vasantharajan et al., 2006]. The
second group consists of heuristic optimization techniques
used to find approximate solutions to computationally de-
manding problems for use in model-based decision-support
tools (DSTs) and knowledge-based (expert) systems. The
latter category of optimization heuristics are used for
solving a wide range of petroleum related optimization
problems, including field development and well-placement,
model-fitting for long-term reservoir planning, scheduling
of well maintenance, optimization of gas-lift allocation,
and scheduling and routing of well flows. Common for
several of these applications is that the decisions often
are made by groups of operators and engineers with time
constraints in the decision process, and hence limited ac-
ceptance of waiting on termination of exact (global) op-
timization algorithms. Computing good feasible solutions
in a short timeframe is therefore important for companies’
and operators’ acceptance and integration of DSTs in the
workflow.

The focus in this paper is on optimization problems for
scheduling and routing of well flows modeled by MINLPs.
The complexity of these MINLPs depend on the size of the
system considered, whether dynamics of parts or the entire
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system is included, the length of the planning horizon and
possibly model uncertainty. For some systems it may be
possible to exploit structure or sparsity, and hence solve
the scheduling problem to global optimality by an exact
algorithm. However, for these systems as well, it may be
desirable to run a heuristic in parallel to quickly generate a
feasible solution in case the global algorithm fails to solve
the problem within the available timeframe.

In this paper, we extend and modify the Feasibility
Pump (FP) heuristic [Fischetti et al., 2005, Bonami and
Gonçalves, 2010]. This heuristic is different from meta-
heuristics typically used in DSTs such as Genetic al-
gorithms, Tabu Search and Simulated Annealing, which
are algorithms typically developed through experimental
learning, and aimed at combining a robust search of the
solution space and local search strategies for preventing
the algorithm from being trapped in local optima [Glover
and Kochenberger, 2003]. These algorithms normally make
no assumption or requirements on the underlying models.
In contrast, the FP is a pure mathematical programming
heuristic based on iterating between solving a continu-
ous and a mixed-integer relaxation of the original prob-
lem, hence requiring explicit access and knowledge of the
model. The FP is used both as a standalone heuristic, as
well as integrated in different versions in various MI(N)LP
codes to aid the solvers in quickly obtaining feasible so-
lutions. Although the FP has been shown to be a very
good and robust heuristic for quickly generating feasible
solutions for difficult mixed integer programs, the heuris-
tic discards the original objective in all except for the
first iteration. Consequently, the quality of the solution
obtained by the FP is often quite poor [Achterberg and
Berthold, 2007]. To address this issue when applying the
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FP on the MINLP shale-well scheduling model, we propose
an Objective Feasibility Pump (OFP) inspired by a similar
technique for the FP applied on MILPs [Achterberg and
Berthold, 2007]. Note that we will not further consider
metaheuristics in this paper.

Transmission/
distribution line
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Wellhead
choke
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Fig. 1. Illustration of surface gathering systems.

The MINLP heuristics developed in this paper are applied
to a complex dry-gas shale well and compressor scheduling
problem illustrated in Fig. 1. The problem consists of
multiple dynamics shale-gas wells, with pipeline routing
and shut-in decisions, integrated in production planning
with a several months planning horizon. We present the
MINLP model for the scheduling problem in section 2,
while section 2.1 describes a new compact shale well and
reservoir model. A brief description of the FP, together
with the novel OFP and linearization-based heuristics are
given in section 3. Section 4 describes the performance
tools we use to evaluate the numerical results given in
section 5. Concluding remarks ends the paper in section 6.

2. PROBLEM FORMULATION

Consider the shale-well and compressor system illustrated
in Fig. 1. The system consists of |J | distributed wells, each
with its own wellhead choke. With spread well locations,
it is quite common for each well to have a small separator
tank for separation of any co-produced liquids. Once sepa-
ration is performed, the gas can either be routed to a low-
pressure line which feeds the gas to a shared compressor,
or the gas can be bypassed the compressor and routed
to a high-pressure line, which feeds the gas directly onto a
transmission or distribution line. The compression is either
performed by a mid-stream company, requiring a fraction
δG of the gas sales price G, or the compression is performed
by the well operator, assuming an equivalent compression
cost δG. In contrast, the operator receives the full sales
price if the gas is routed directly to the high-pressure line.
Routing the gas flow to the low-pressure line, however,
increases the well deliverability, since the pressure gra-
dient between the reservoir and the wellhead increases.
The compressor requires a minimum inflow rate qlowtot to
avoid surge, and has a maximum load capacity quptot. Wells
are normally continuously drilled and added to a shared
surface gathering and compression systems during a year-
long field development of shale-gas assets. Consequently,
when the number of wells grows, the total production may
eventually exceed the compressor capacity.

Let y1jk = 1 if a well is routed to the low-pressure line

leading the gas to the compressor, and y1jk = 0 if the
well is routed to the high-pressure line. When a well is
routed from the low-pressure line to the high-pressure
line, the well may have to be shut in for a certain time
to avoid backflow in the well, and by such increasing
the well pressure to eventually obtain a positive flow.
However, the gas flowrate must always be kept higher than
a critical rate qgc(p) to avoid liquid loading [Turner et al.,
1969], which is one of the major operational concerns in
shale-gas production [Al Ahmadi et al., 2010]. The critical
rate is a nonlinear function of pressure, and is normally
evaluated at wellhead conditions [Turner et al., 1969].
As the pressure-drop over the wellhead choke normally is
small in shale-gas wells, i.e. the wells operate on wellhead
pressures close to the line pressure, we evaluate qgc(p) at

the line pressures plowline and phighline , respectively. Let y2jk =

{0, 1} be a binary variable used to model whether a well is
shut in or producing. Combining the specifications of the
routing of the wellflows, the compressor properties, the
minimum line pressures and required minimum (critical)
flowrates, we formulate the following nonconvex MINLP
for shale-well scheduling over a planning horizon K:

max G
∑
j∈J

∑
k∈K\K

(1− δGy1jk) qjk∆k, (1a)

s.t.∑
j∈J

qjky
1
jk ≤ q

up
tot, ∀k ∈ K (1b)∑

j∈J
qjky

1
jk ≥ qlowtot , ∀k ∈ K (1c)

Fj(pjk+1, qjk+1, pt,jk, pwf,jk) = 0, ∀j ∈ J , k ∈ K\K
(1d)

pj0 = pinitj , ∀j ∈ J (1e)

pt,jk ≥ plowliney
1
jk + (1− y1jk)phighline , ∀j ∈ J , k ∈ K (1f)

qjk ≥ y1jky2jkqlowgc +

(1− y1jk)y2jkq
high
gc , ∀j ∈ J , k ∈ K (1g)

gsw(y1jk, y
2
jk) = 0, ∀j ∈ J , k ∈ K (1h)

y1jk, y
2
jk ∈ {0, 1} ,

qjk, pt,jk, pwf,jk ∈ R, pjk ∈ RI .

In (1), p is reservoir pressure, pt is tubinghead pressure,
pwf is flowing bottomhole pressure and q is the gas rate.
We include gsw(y1jk, y

2
jk) for representing a general set

of constraints on the binaries for requiring minimum
stay-times for the pipeline routing and minimum shut-
in and production times for the wells. Note that the
degrees-of-freedom in (1) are y1jk, y

2
jk and pt,jk. Fj(·)

is a I-dimensional vector-valued function representing a
discretized dynamic reservoir and well model for each well
j ∈ J . The form and the size of this model greatly impacts
the tractability of the above nonconvex MINLP.

2.1 Shale Well Modeling

Hydraulically fractured shale and tight gas reservoirs are
mainly modeled using either a dual-porosity system (see
e.g. Al Ahmadi et al. [2010]), or as fully discretized single-
porosity dual-permeability models [Cipolla et al., 2010].
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The former, idealized modeling scheme is often used to
derive static production forecasting tools by assuming
steady-state operations, while the latter scheme normally
leads to complex, numerically demanding models. Knud-
sen and Foss [2013] presents a simple shale well and reser-
voir proxy model together with a tuning scheme to achieve
good transient fit of the model when performing well shut-
ins. This model is however designed to capture the dom-
inating dynamics during short cyclic shut-ins to prevent
well liquid-loading, and may therefore loose accuracy for
longer prediction horizons [Knudsen et al., 2014]. Conse-
quently, since (1) includes longer planning horizons, we
derive a slightly different model for the current application.

pwf

pt

q
Modeled section
in proxy model

x
y

z
Fractures

Shale matrix

= direction of gas flow
Ls

∆z

∆yf

Fig. 2. Illustration of reservoir and proxy model.

Consider Fig. 2 illustrating the geometry of a so-called
multi-fracture slab matrix model [Al Ahmadi et al., 2010],
consisting of shale matrix blocks and vertical intersect-
ing fractures, where the fractures are orthogonal to the
horizontal wellbore and assumed to penetrate the en-
tire organic-rich formation. By further assuming that the
fractures are symmetric around the wellbore and equally
spaced, we reduce the size of the model by only considering
a quarter section of the slab-fracture system as illustrated
by the orange rectangle in Fig. 2. The dominating direc-
tion of the flow in the shale matrix is orthogonal to the
fractures, i.e. in the x-direction, while the pressure drop
in the fractures are negligible due to very high fracture
conductivity. We assume that the gas is dry (i.e. single-
phase gas), and we use a single layer and a spatially
dependent permeability k(x). We further use an integral
transformation from pressure p to pseudopressure m(p)
[Al-Hussainy et al., 1966],

m(p) := 2

∫ p

pb

p′

µ(p′)Z(p′)
dp′, (2)

to incorporate pressure variations of the gas viscosity µ(p)
and the gas compressibility factor Z(p), where pb is a low
base pressure. Using the pseudopressure transformation
(2) reduces the nonlinearity of the governing partial differ-
ential equation (PDE). Including an initial pressure and
Neumann boundary conditions, we formulate the shale-
gas reservoir proxy model as the following one-dimensional
initial-boundary value problem (IBVP):

φµc
∂m

∂t
=

∂

∂x

(
k(x)

∂m

∂x

)
, (3a)

∂m

∂x

∣∣∣∣
0

= q
2Tpsc

Tsc∆z∆yfkf
, (3b)

∂m

∂x

∣∣∣∣
Ls
2

= 0, (3c)

m(x, 0) = minit. (3d)

In (3), φ is the porosity, c is the total (pressure dependent)
compressibility, q is the gas rate and T is temperature.
Spatial references are shown in Fig. 2. The subscript sc
refers to evaluation at standard surface conditions. An I-
dimensional spatial discretization of (3) is constructed by
using central difference approximations, while we apply
backward Euler approximation for time discretization of
(3a). This leads to the discretized reservoir proxy model

Amk+1 = mk +Bqk+1, ∀k ∈ K \K (4a)

m0 = minit. (4b)

The pressure drop from the bottomhole to the surface of
the well is modeled by using the static tubing-model [Katz
and Lee, 1990],

1

C2
t

q2k + p2t,k = e−Sp2wf,k, (5)

where pt is the tubinghead pressure, pwf is the bottomhole
pressure and Ct and S are tubing specific constants. The
first term in (5) models the tubing friction, which for some
wells may cause a significant pressuredrop, while the term
eS yields the hydrostatic head of the gas column. The gas
rate the well can deliver is for a given tubinghead pressure
pt found by the intersection of (5) and the well inflow from
the reservoir, given by

qk = y2jkβ (mk1 −mwf,k) , (6a)

mwf,k : = ã1p̄k,+ã2, (6b)

where mk1 is the pseudopressure in the gridblock adjacent
to the fracture, mwf is the bottomhole pseudopressure, p̄
is the square of the bottomhole pressure (i.e. p̄ := p2wf),
and β, ã1 and ã2 are constants. The conversion (6b) of
the bottomhole pressure squared to pseudopressure is
obtained by considering µZ as constant at low pressures
[Al-Hussainy et al., 1966], and constructing a linear fit
of the map p2 7→ m using the definition (2). As the
well model (5)–(6) only requires computing the square of
the bottomhole pressure, we can substitute p̄ for p2wf in
(5), hence reducing the nonlinearity of the tubing model.
Observe that pt serves as the boundary condition of the
aggregated single-well and reservoir proxy model.

The proxy model (4)–(6) is tuned and validated against
a high-fidelity numerical multi-fracture reference model
(MFR) with full-scale geometry as illustrated in Fig. 2,
using the reservoir modeling scheme described in Cipolla
et al. [2010]. We apply a similar parameter estimation
technique as described in Knudsen and Foss [2013] and
Knudsen et al. [2014]. The parameter estimation is based
on a filtering of the prediction errors through Butterworth
bandpass filters, fitting the proxy model such that it
captures the dominating dynamics during switching of
pipelines and during shut-ins. Fig. 3 shows estimation and
validation of the gas rate qk and the bottomhole pressure
pwf,k, with sets of alternating switching from the high-
pressure to the low-pressure line, and a shut-in followed
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by switching from the low-pressure to the high-pressure.
We use I = 4 grid blocks for the proxy model. Both
the estimation and the cross-validation shows that the
proxy model gives a good match of the rate transients
and the pressure build-up in the reference model, however
by sacrificing some accuracy in the peak rates due to the
design of the prefilters and the simplicity of the proxy
model.

3. MINLP HEURISTICS

Heuristics for MINLPs are algorithms that are designed
to assist in the solution process within an MINLP solver.
As such, heuristics for MINLPs are often divided into
two categories: construction heuristics and improvement
heuristics. Both of these classes are primal heuristics,
while the distinguishing feature between them is that
construction heuristics can be used as standalone methods
to find feasible solutions, while improvement heuristics
require a feasible solution to search for improved solutions
within a local area of the solution space. One of the
benefits of construction heuristics is that they often can be
used to compute feasible solutions within a fraction of the
time required by full-space MINLP algorithms [Bonami
and Gonçalves, 2010].

Initial testing with algorithms within the MINLP solver
BONMIN [Bonami et. al, 2008] revealed that the solver
required a prohibitively large amount of time to compute a
feasible solution to (1). This motivated the search for and
development of efficient MINLP heuristics as an approach
to find high quality feasible solutions in a relatively short
computation time. To this end, we have adapted and
applied four MINLP heuristics for solving (1), the basic FP
and its objective-oriented variant, OFP [Sharma, 2013],
and two linearization-based heuristics.

3.1 The Feasibility Pump

For describing the main steps of the diving heuristic FP,
consider the following general MINLP

min
x,y

f(x, y)

s.t. g(x, y) ≤ 0,

x ∈ X ⊂ Rn, y ∈ {0, 1}q
(7)

where f : Rn × Rq → R and g : Rn × Rq → Rp are
smooth functions and the set X is a bounded polyhedron.
The FP starts by computing a constraint feasible point
(x̄0, ȳ0) by solving the continuous NLP relaxation of (7),
obtained by relaxing the integrality restriction y ∈ {0, 1}q
to y ∈ [0, 1]q. The relaxed solution (x̄0, ȳ0) will generally
be integer infeasible. Subsequently each binary variable y
is rounded to the nearest integer point ỹ :=

[
ȳ0
]
, and the

current `1 projection problem

min
x,y

||y − ỹ||1
s.t g(x, y) ≤ 0,

x ∈ X ⊂ Rn,

y ∈ [0, 1]q,

(8)

is solved. If the solution to (8) is feasible with an objective
value equal to zero, then FP terminates and returns a
feasible solution to (7). Otherwise it rounds the new
solution, and solves the NLP (8) in an iterative manner by

rounding the solutions and solving the projection problem
until it converges to a point where the objective value is
zero, or a termination criterion such as an iteration limit
is met.

3.2 An Objective Feasibility Pump

The objective FP seeks to overcome the aforementioned
poor solution quality often obtained by the basic FP by
including the original objective f(x, y) in the search for a
feasible solution [Sharma, 2013] . The OFP uses the exact
same steps as the FP described above, but implements a
weighted sum of the original objective of (7), f(x, y), and
the `1 objective used in (8), formulated as the NLP

min
x,y

(1− αi)η1 ||y − ỹ||1 + αiη2f(x, y)

s.t. g(x, y) ≤ 0,

x ∈ X, y ∈ [0, 1]q
(9)

where αi ∈ [0, 1] is a weighting factor geometrically re-
duced at each iteration, and η1 and η2 are normalization
factors that are computed by expressing (9) as a multiob-
jective optimization problem. Note that finding optimal
normalization factors η1 and η2 are significantly more
difficult for nonlinear functions f(x, y) than for linear ob-
jectives as considered in Achterberg and Berthold [2007].

3.3 Linearization Heuristic

In addition to the FP and the OFP, we propose a simple
linearization-based heuristic for solving (1), in which we
apply Glover-type reformulations [Glover, 1975] of the
bilinear binary-continuous products in (1b)–(1c) and the
pure binary products in (1f)–(1g), together with a lin-
earization of the tubing model (5), eventually converting
(1) to an approximated, increased-size MILP. Once a fea-
sible solution to this MILP approximation is obtained, we
fix the binary variables to their values at this solution, and
solve (1) as a nonconvex NLP. A pseudocode description
of this heuristic is given in Algorithm 1.

Algorithm 1 Linearization heuristic

begin
1: solve a MILP approximation of (1) to feasibility
2: fix the binary variables to the solution y∗

3: solve the sub-NLP of (1) with fixed binary
variables

end

We consider two techniques for linearization of the non-
linear constraint (5), rendering two MILP formulations:
a first-order Taylor series approximation (FOTA), and a
piecewise linear approximation (PWL).

4. PERFORMANCE PROFILES

The state-of-the-art tool for evaluating and comparing
the performance of optimization solvers on a set of test-
problems is the so-called performance profiles [Dolan and
Moré, 2002]. The performance profile for a solver is the
cumulative distribution function for a performance metric,
such as the CPU time, the number of nodes, the number
of function evaluations or the objective value. Given a set
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Fig. 3. Parameter estimation and cross validation of proxy model with I = 4 grid blocks.

of problems P where |P| = np and a set of solvers S
where |S| = ns, the performance profile is generated by
comparing the results of applying all solvers s ∈ S on all
problems p ∈ P.

For each problem p and solver s, the performance tp,s is
defined as

tp,s := Performance metric on problem p by solver s.

The performance on problem p by solver s is compared
with the best performance by any solver s on this problem
by defining a performance ratio

rp,s =
tp,s

min {tp,s : s ∈ S}
. (10)

A parameter rM ≥ rp,s is specified for all p, s, by defining
rM = rp,s if and only if solver s does not solve problem p.
The cumulative distribution function for the performance
ratio is defined as

ψs(κ) =
1

np
size{p ∈ P : rp,s ≤ κ}. (11)

Hence, ψs(κ) is the probability that a solver s yields a
performance ratio rp,s that is at most worse by a factor of
κ of the best ratio.

5. COMPUTATIONAL STUDY

The performance of the 4 heuristics are tested and com-
pared with a standard branch-and-bound method (BB) on
a set of 15 test cases of the nonconvex MINLP (1). The test
sets consist of |J | = 6 wells, and a two-month planning
horizon K with a fixed 2-day time step. Each test problem
differs only in the value of the initial pseudopressure minit

j ,
which is randomly generated from the time span in the pro-
duction profiles shown in Fig 3. The discretized shale-well
proxy model (4) naturally replaces the constraints Fj(·)
in (1). We further use a Big-M reformulation [Nemhauser
and Wolsey, 1988] to omit the products of y2jk and m in

(6a).

The OFP is implemented inside the BONMIN framework,
while the FP exists as an algorithm in BONMIN. The two
linearization-based heuristics are implemented in Matlab

scripts that generate AMPL input files. The FP heuristic
and BB are used with their default settings in BONMIN v.
1.6, and the MILP approximations FOTA and PWL are
solved using CBC v. 2.7.7 in conjunction with the NLP
solver IPOPT v. 3.10.2. All test problems are implemented
in AMPL and computed on a personal computer running a
64-bit Ubuntu v. 12.04.3 with Intel i7-2600 3.40 GHz CPU
and 16GB of RAM.

We construct performance profiles for the MINLP heuris-
tics using two performance metrics: the CPU time to find
the first integer feasible solution, and a relative quality of
this solution in terms of an optimality gap. For the sake
of this latter metric, we define the optimality gap for the
heuristics as follows:

Gap = 100× |Best possible BB sol. – First feasible sol.|
Best possible BB sol.

,

(12)
where the Best possible BB solution for each of the test
problems is computed by running the BB method in
BONMIN with default settings for three hours. We use the
base-2 logarithm of κ in (11) in the performance profiles.
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Fig. 4. Performance profile with optimality gap (12) at
first feasible solution as metric.
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Fig. 4 and 5 compares the performance profiles with the
defined optimality gap (12) and the CPU time to first
solution as metrics, respectively. Fig. 4 clearly shows that
BB is the best algorithm with respect to the optimality
gap (12) of the first solution found in its tree search,
while Fig. 5 reveals that it is by far also the slowest
algorithm. It is observed that the OFP is the second best
algorithm with respect to the optimality gap, and finds a
solution that has at worst twice as large gap as the solution
found by BB. Fig. 5 further shows that the OFP is the
second fastest of those heuristics that find a solution to
all of the 15 test problems, only outperformed by the FP
which in Fig. 4 and in Table 1 is seen to clearly perform
worst in terms of solution quality. The two variants of the
linearization heuristics in Algorithm 1, FOTA and PWL,
yield solutions of similar quality as seen in Fig. 4, but the
PWL formulation is seen in Fig. 5 to be significantly more
robust than the FOTA formulation; the latter only finds a
solution to 4 out of 15 test problems. However, in these 4
test problems where the FOTA finds a solution, it is the
fastest of all the algorithms.

Comparing in Table 1 the geometric mean (GM) of the
objective values in the test problems obtained with the
different algorithms, shows that the relative difference
between the BB and the OFP algorithm is only 1.2%, while
the PWL difference is 9.6%. Hence, compared with the BB
method, we argue that the OFP is able to produce good
feasible solutions within a short computation time when
when applied to the nonconvex MINLP (1). Finally, we
comment that a structured reformulation of the shale-well
scheduling problem formulated as a disjunctive program
was initially tested, but observed to perform worse than
the compact MINLP formulation (1) due to substantially
increased problem size while retaining the nonlinear tubing
model (5).

Table 1. Average objective values and CPU
times for the algorithms on the test sets.

Algorithm FP OFP FOTA PWL BB

GM obj [106 $] 0.7023 1.1207 NA 1.0256 1.1347
GM time [s] 17.5 24.2 NA 42.9 252.4

6. CONCLUDING REMARKS

The computational study in this paper shows that the
objective-oriented Feasibility Pump is able to quickly find
good feasible solutions of complex MINLP scheduling
problems such as the multi-pipeline shale-well and com-
pressor problem. As such, we argue that the OFP may
be well suited for integration in DSTs for improving the
productivity in shale-gas system, which typically consists
of tens to hundreds of wells, and where yet production
optimization DSTs are almost absent.
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P. Bonami and J. P. M. Gonçalves. Heuristics for con-
vex mixed integer nonlinear programs. Computational
Optimization and Applications, 51(2):729–747, 2010.

C. L. Cipolla, E.P. Lolon, J.C. Erdle, and B. Rubin. Reser-
voir modeling in shale-gas reservoirs. SPE Reservoir
Evaluation & Engineering, 13(4):638–653, 2010.
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